
A Convolutional Neural Network Approach for Classifying Leukocoria

Ryan Henning∗, Pablo Rivas-Perea∗, Bryan Shaw† and Greg Hamerly∗
∗Department of Computer Science
†Department of Chemistry

Baylor University
Waco, TX, USA

Contact Info: http://leuko.net/

Abstract—We use Convolutional Neural Networks to detect
leukocoria, or white-eye reflections, in recreational photogra-
phy. Leukocoria is the most prominent symptom of retinoblas-
toma, a solid-tumor cancer of the eye that occurs most often in
young children. We trained several networks for the task, using
training images downloaded from Flickr. We achieved low error
rates (<3%) for classification of eye images into three classes:
normal, leukocoric, and pseudo-leukocoric. We also provide a
method for tuning the outputs of a trained network to match
desired true-positive/false-positive rates.
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I. INTRODUCTION

Retinoblastoma (Rb) is the most common ocular malig-
nancy in children, occurring in 1 in 18,000 to 30,000 live
births worldwide [1]. A child with Rb can develop one or
more tumors in one or both eyes. Treatment of Rb can
include external beam radiation and photocoagulation. Early
detection prevents surgical removal of the eye [1].

The most common symptom of Rb is a white reflection
emitted from the retina of the eye through the pupil. It is
the reflection of light off the tumor which causes the white
color. This symptom is called leukocoria (white pupillary
reflection), and is present in 60% of the reported cases
in the United States [1]. Researchers at Baylor University
characterised leukocoria in recreational photography, and
they concluded that the intensity of the symptom is an
indicator of the cancer’s stage [2]. An example of leukocoria
compared to a “normal eye” can be seen in Figures 1a
and 1b. Leukocoria does not always indicate Rb, but it
also indicates several other ocular diseases including Coats
disease and cataracts.

While physicians screen for leukocoria, parents often
detect it first (using photography), but are not aware of
its connection to Rb. Automated detection methods do not
yet exist. Automated leukocoria detection would be of high
value, as it would lead to earlier diagnosis of this cancer in
children, thereby increasing the survival rate and providing
better quality of life for those who survive.

The task is difficult partly due to images taken with bright
LED flashes, such as images taken by the Apple iPhone.
Such flashes cause a very bright, slightly diffuse surface-
level white reflection in the eye region. These surface-level

(a) normal (b) leukocoric (c) pseudo-leukocoric

Figure 1: Examples of each type of cropped eye image.

white reflections resemble leukocoria that arises from ocular
tumors, but they are not created by a tumor, and they do
not come from inside the pupil. We call this visual effect
pseudo-leukocoria. See Figure 1c for an example.

With the increasing popularity of mobile-device photog-
raphy, pseudo-leukocoria is fairly common. For example,
the Apple iPhone is currently the most popular camera on
Flickr. Additionally, by our estimation, the bright LED flash
fires in approximately 12% of the photos taken with the
iPhone on Flickr. Therefore, a feasible solution for detecting
leukocoria must not only distinguish leukocoric eyes from
normal eyes, but it must also be able to distinguish true
pupillary leukocoria from surface-level pseudo-leukocoria.

We demonstrate that it is possible to detect leukocoria
in raw digital images of cropped eyes by training con-
volutional neural networks (CNNs). Our solution can ac-
curately distinguish between three classes of eye images:
normal, true leukocoria (pupillary), and pseudo-leukocoric
(surface-level). Our classification program is available at
http://leuko.net as well.

II. DATA

Our data come from two sources: recreational photographs
contributed by families of children with Rb (including
photos of people who don’t have Rb) and recreational
photographs we gathered from Flickr. We analyzed these
images and extracted by hand three types of cropped eye
images: normal (437 eye images), leukocoric (222), and
pseudo-leukocoric (173). The normal eyes came from both
data sources, the leukocoric eyes came from the images of
children with Rb, and the pseudo-leukocoric eyes came from
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Table I: Networks trained and evaluated in this paper. Net-
works 1-15 were trained using momentum with parameter
values a = 1.0 and m = 0.9. Networks 16-20 were trained
with RMSPROP with parameter value a = 0.1. Please see
the text for a description of the columns.

Fully-
Convolutional connected # Free Error Rate ±

id Layers Layers Layer Types Parameters Std. Error

1 — 6-3 h-s 28,827 6.37± 1.29%

2 — 12-3 h-s 57,651 5.89± 1.19%

3 — 25-3 h-s 120,103 6.49± 1.18%

4 — 50-3 h-s 240,203 6.73± 1.13%

5 — 100-3 h-s 480,403 6.97± 1.12%

6 7 5-3 h-h-s 11,898 5.05± 0.88%

7 14 5-3 h-h-s 23,767 5.05± 0.98%

8 21 5-3 h-h-s 35,639 5.17± 0.97%

9 21 10-3 h-h-s 69,679 5.41± 1.02%

10 21 15-3 h-h-s 103,719 5.29± 0.91%

11 7-7 5-3 h-h-h-s 3,502 3.97± 0.83%

12 14-14 5-3 h-h-h-s 9,431 4.09± 0.76%

13 21-21 5-3 h-h-h-s 17,810 3.73± 0.69%

14 21-21 10-3 h-h-h-s 22,975 4.21± 0.66%

15 21-21 15-3 h-h-h-s 28,140 4.33± 0.88%

16 7-7-7 5-3 h-h-h-h-s 3,334 2.40± 0.74%

17 14-14-14 5-3 h-h-h-h-s 11,545 2.88± 0.63%

18 21-21-21 5-3 h-h-h-h-s 24,656 3.00± 0.83%

19 21-21-21 10-3 h-h-h-h-s 25,621 2.88± 0.61%

20 21-21-21 15-3 h-h-h-h-s 26,586 3.73± 0.64%

Flickr. Since each image source contributes to two image
classes, an algorithm trained on this dataset cannot fully rely
on camera characteristics to achieve accurate classification.

We used the Flickr API to download several thousand
images licensed as CC-SA or CC-NC. We filtered using Exif
data, keeping only images that were taken by the iPhone
4/4s/5 where the LED flash was reported as “fired”. From
those images we cropped out normal and pseudo-leukocoric
eyes. See http://leuko.net/cnn2014/data/ for attributions.

Ground-truth classification of each eye image was per-
formed by the authors of this paper. The set of leukocoric
eye images and part of the set of normal eye images overlaps
the dataset used in [2]. We assumed that the set images from
Flickr do not demonstrate true leukocoria, as true leukocoria
is rare while bright white-eye reflection in images taken by
an iPhone using the flash is quite common.

III. METHODS

A. Neural networks for classification

There are many modifications and adaptations to popular
fully-connected feed-forward neural networks. One adapta-
tion is the convolutional neural network (CNN), which is
well-suited for image-processing tasks [3]. CNNs have been
shown to significantly outperform many other state-of-the-
art algorithms for classification of images [4].

CNNs differ from traditional neural networks by using
a more biased structure akin to human visual processing.
Specifically, the architecture is tailored in two ways. First,
each neuron in a convolutional layer only receives input from
a small patch of the entire image. This captures the idea of
receptive fields (i.e. each neuron receives input from its own
receptive field). Second, each neuron in a convolutional layer
is replicated across the layer’s input such that each replica
has a different receptive field and the union of the receptive
fields covers the entire input. This captures the idea of filters
(i.e. each neuron in a convolutional layer acts as a translation
invariant filter of the input it receives).

The first layer of a CNN learns filters similar in concept
to the features that are learned by RISA [5], which has been
used in the analysis of tumor signatures and outperforms the
best known expert-designed feature detector for that task [6].

To use our training images as input to a CNN, we need
only to scale each image such that they all have the same
dimensions; we do not perform any other pre-processing.
In this paper, we scale each image to 40 × 40 pixels using
bilinear interpolation, and we use full color (RGB) as input.

To use a CNN for classification of our dataset into three
classes, we use a three-neuron fully-connected layer as the
output of the network. The output layer nodes are tied
together as a soft-max group so that the outputs can be
interpreted as probabilities, one for each of the possible
image classifications. The predicted class is the one with
the highest associated probability.

Because our training set is relatively small, we employ
ten-fold cross-validation for estimating the generalization
error of each network. We accumulate the performance on
each fold in the results that follow.

B. ROC tuning

In this application, it is important to control false positive
predictions so that a user will take seriously predictions of
leukocoria. To that end, we develop a method of tuning
the outputs of a trained network to manipulate its receiver
operator characteristics (ROC).

Due to the soft-max group used in the output layer, the
outputs sum to one. Naming those outputs x, y, and z, we
create three positive constants a, b, and c which also sum to
one. Thus, (x+ a)/2 + (y + b)/2 + (z + c)/2 = 1.

We adapt the outputs of the network to be the values x′ =
(x+a)/2, y′ = (y+ b)/2, and z′ = (z+ c)/2. These output
values still represent probabilities of each classification, but
include a bias. The predicted class is still the one with the
highest associated probability.

This method can be generalized to n outputs, requiring
n−1 constant assignments. For n = 2 (binary classification),
this is equivalent to the practice of setting a single threshold.

For tuning ROC true-/false-positive rates, we add the same
constant to the normal and pseudo-leukocoric outputs. This
allows us to set a single threshold value on the output.
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Figure 2: Visualization of passing a leukocoric image through network #16 (after training). Each set of filters and weights
are static values (after training), while the outputs shown are for this particular input. The filters in layer 1 operate in RGB
color, thus they are shown in RGB color. All other filters, weights, and outputs are shown in the red-green scale (red denotes
negative values, green positive values, and intensity denotes magnitude). Max-pooling in convolutional layers one and two
are not shown here. The output is correct on this input.

IV. EXPERIMENTS AND RESULTS

We initially trained traditional three-layer fully-connected
artificial neural networks. Such neural networks can be
considered CNNs which lack convolutional layers. We then
trained CNNs of varying architecture and depth in order to
demonstrate their effects on performance. Each network has
some number of convolutional layers followed by exactly
two fully-connected layers, where the second of the fully
connected layers (the output layer) always has exactly three
neurons. See Table I for a description of each trained
network and for the error rate achieved by each network.
Table I is organized as follows:
• The “Convolutional Layers” column denotes the num-

ber of trainable filters in each layer, where left-to-right
indicates lower-to-upper layers. In this paper, all con-
volutional layer neurons have a receptive field size of
5× 5 pixels. Each first- and second-level convolutional
layer is followed by a 2×2-pixel max-pooling layer to
decrease network dimension.

• The “Fully-connected Layers” column denotes the
number of hidden neurons in each fully-connected
layer. All fully-connected layers are above all con-
volutional layers. Note that in all networks the last
fully-connected layer has three neurons, representing
the probability of each possible classification.

• The “Layer Types” column denotes the squashing (acti-
vation) function used by the neurons in each layer (‘h’
for hyperbolic-tangent, ‘s’ for soft-max).

• The “# Free Parameters” column denotes the number of
independently trainable parameters in the network. This

is calculated by summing the number of independent
weights in each layer of the network. Note that not
every weight in a convolutional layer is independent—
replicated neurons have tied weights.

• The “Error Rate” column denotes the error rate of the
learner on the accumulated folds. Classification at this
stage is done with no ROC turning.

The first 15 networks were trained using the momen-
tum optimizer for updating the weights during training, a
commonly used optimizer for neural networks [7]. Using
momentum on the remaining (deeper) networks would re-
quire a very long training time, so we used a new optimizer,
RMSPROP, designed for quickly training deep networks [8].

The network with the lowest error rate was network #16,
which also has the least number of free parameters. Figure 2
shows a visualization of network #16. Note that most filters
in the first layer do not respond to the iris; however, filters 5
and 6 of the first layer, which are activated by green pixels
surrounded by darker pixels, are responding to the pupil.
In the second layer, the network continues focusing on the
pupil and now appears to ignore the surrounding skin, as
indicated by the outputs having bright green centers. The
remaining layers continue transforming the input into more
abstract features until we get a representation of probabilities
in the output layer. The prediction in the figure is correct.

Figure 3 shows a visual confusion matrix over the accu-
mulated training folds, evaluated by network #16. Figure 4
demonstrates our method of tuning the ROC of network #16
to decrease the number of false positives at the expense of
a few true positives, as described by Section III-B.
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Figure 3: Visual confusion matrix over the accumulated
training folds, evaluated by network #16.
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Figure 4: ROC tuning on network #16.

V. CONCLUSION

CNNs are a good tool for identifying leukocoria in recre-
ational photography. With a moderate amount of data, no
preprocessing (other than rescaling), and a relatively small
network we are able to achieve excellent accuracy at this
task, using a purely learning process.

CNNs produced much better results than did the tradi-
tional three-layer fully-connected neural networks. These
better results are due to the biased architecture of the
CNN, biased by the researcher toward a certain way of
solving the classification problem (i.e. local connectivity and
replicated neurons to produce trainable filters). Such a biased
architecture still allows for a fully trainable system, requiring
no hand-coded feature extractors.

For our task, where the training set is not large, we
achieved better results from a small capacity network (i.e.
one with few free parameters). Networks with large capacity

are most appropriate when a lot of training data is available.
We expect that we could achieve better results using such a
network if we had more data.

ROC tuning proved useful, allowing the same network to
be used in different contexts with different thresholds. It’s
likely preferable to have few false positives in recreational
use, while more are acceptable in clinical settings where a
professional can immediately validate predictions.

VI. FUTURE WORK

We are working on improving prediction accuracy on
eye images that are poorly cropped. To achieve this, we
will broaden our dataset by duplicating each example at
differing scales, translations, and rotations. We will also
investigate how performance improves when the images are
pre-processed (using image registration and normalization).

The long-term goal of our research is to build a system
for detecting leukocoric eyes in raw, full-scale recreational
photographs. Such a system could be installed in recreational
cameras and offer warnings when leukocoria is detected.
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