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Abstract—Human activity recognition (HAR) is the ob-
ject of interest for many researchers in machine learning.
In principle, providing accurate and reasonable information
on an individual’s activities and movements for pervasive
computing is a very challenging problem. Recent advances
in HAR have led to advanced tracking of highly complex
human behaviors. This is progressively driving humans and
computers to become seamlessly integrated through devices
and software. The impact of this type of research has numer-
ous applications in different sectors. This paper presents
our initial experiments on evaluating the performance of
popular machine learning algorithms in predicting human
behaviors accurately. Our experiments suggest that some
models can accomplish high recognition accuracy and low
computational cost.

Index Terms—Human activity recognition, machine
learning, classification.

I. INTRODUCTION

Computers and humans converge into one inseparable
entity in daily life [1]. We use computers or their services
every day; e.g., mobile phone connects to operators, and
they use computers, we use the internet on computers
(or personal devices, which are similar to computers),
any computational device link to the internet can place
an order of our products or services, these tasks execute
on computers. In general, those machines contain small
accessories made with different materials and techniques.
We call those areas microelectronics since the scale of
the region are at micro or nano-meters, namely, µm or
nm, respectively.

The developed microelectronic devices have facilitated
remarkable features on the ubiquitous phone and wearable
gadgets. The low cost of these powerful computing
devices, small in size, and portability allow users to in-
teract efficiently. Motivated by the recent studies, activity
recognition using smartphones equipped with a rich set
of embedded sensors, such as the accelerometer, GPS,
microphone [2], has been introduced. HAR works date
back to ’90s [3]. There is substantial research to extract
the knowledge from the data acquired by pervasive sensors
[4]. However, there are still numerous arguments with the
correct recognition and classification of human activities
that motivate the expansion of technologies to improve
accuracy under more realistic conditions [5]. Researchers

heavily include smartphones and wearable gadgets for
their advantageous characteristics aiming towards thriving
human activity recognition. It is a relatively simple task to
classify activities that differ highly in magnitude in user,
but recognizing activities with similar body movements
is challenging. For instance, it is comparatively simple
to recognize running from sleeping, but it is arduous to
classify sitting from sleeping..

Despite significant research efforts, HAR remains a
challenging problem. It involves using different sensing
technologies to automatically collect and classify users’
activities for numerous medical, sports, and leisure appli-
cations. Activity recognizing devices has to acknowledge
and understand their users’ activity dynamically. Although
this information can be provided by obtaining the cur-
rent and updated information about the user, accurately
recognizing the user’s activities is tedious. There does
not exist any hard and fast ML algorithm affirming to
classify human activities or activity. When we look at
HAR literature, most studies primarily collect sensory
data and apply different classification algorithms offline
on those collected data. Offline processing of data can
exploit the overlap between training and test datasets [6].
We use offline processing in those applications where
online processing is not necessary. For instance, if the
operation follows a person’s daily routine, we do not have
to process the data in real-time.

We can collect the data throughout the day, upload
it to the server at the end, and process it afterward.
However, we can process the user’s real-time activity
if the job tracks every instance during certain sports
activities. This paper limits up to offline processing due
to time limitations, interested participants, and sensor-
based computing devices. Notably, we are interested in
classifiers’ performance in offline processing that we can
implement in the future for real-time processing. We
aim to evaluate three algorithms, Perceptron, Logistic
Regression, and Support Vector Machine, for a time-
series classification task in detail. We have hand-picked
Human Activity Recognition Using Smartphones time-
series dataset from UCI Machine Learning Repository
achieve for our experiment. This dataset is suitable for
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TABLE I
PERFORMANCE OF DIFFERENT CLASSIFIER IN HUMAN ACTIVITY

RECOGNITION

Classifier Average
Accuracy
(5-Fold)
Cross

validation

Training
Time (in sec)

KNN 87% (k = 10) 16.517
Complex
Decision Tree

91.8 % 7.6294

SVM 93.5 %
(quadratic

Kernel)

4.947

Linear
Discriminant

80.2 % 1.257

classification and clustering and contains multivariate
time-series dataset.

II. RELATED WORK

Activity recognition mainly focuses on the users or
their surrounding environment. Researchers especially
observe human actions to understand the varieties of
activities that humans function within a time interval. One
of the crucial components in HAR is the classification
algorithm used to classify different movements and
actions based on the users’ input data. Since the 2000s,
there have been several studies in activity recognition.
From the survey, researchers noticed that Decision
Trees, K-Nearest Neighbour(KNN), Naive Bayes(NB),
Support Vector Machine (SVM), and Neural networks
are extensively practices [7]. Baerhoven et al. [8]
experimented with the classification of 20 activities using
accelerometer data. Using a five biaxial accelerometer,
they collected data from walking, sitting, running,
watching TV, and climbing stair sets. They used the
collected data to train different classifiers, listed in Table
1, in the WEKA [9] toolbox. In an experiment, Ravi et al.
collected data from a single user, and their result reveals
that applying a 3-axis accelerometer to detect human
activities (we list these activities in the methods section)
gives an accuracy of 90.61% [10], [11]. Following a
similar experiment, Tahamia et al. collected data from
20 users randomly. Their result concluded that we could
improve the classification accuracy by changing the
parameters like the number of splits on KFold, types of
a kernel in SVM, number of Neighbours in KNearest
neighbors, and learning rate for respective classifier [12].
We present the results from these experiments that are
important in our research in Table 1.

Mustafa Kose and Ozlem used intelligent phone sensors
to recognize human activity in real-time. They asked five
volunteers to carry their smartphones in their pockets
during the data collection and active exercises. All

subjects performed the predefined task, running, walking,
sitting, and standing. They used clustered KNN and Naive
Bayes classifiers to train their model. From their result,
researchers found that clustered KNN gives an accuracy
of 92.13% [12].
Algorithms like KNN are suitable to be implemented
in smartphones because they need fewer computation
resources. HAR gadgets manufacturers often use semi-
supervised classification algorithms that use multiple
classifiers to classify unlabeled data. Since supervised
classification algorithms need intensive computation to
generate models, we estimate most computations in
servers. We migrate the obtained model from servers
into smartphones and gadgets for the classification of
input data. We can improve the training time by doing
parallel training in clusters rather than sequential training
[13]. Haitao et al. used the fusion of SVM&HMM for
activity recognition. They used motion features, structure
features, and polar coordinates features that could make
some very similar activities get the distinction significantly
[14]. Their result shows that the SVM&HMM has
a recognition accuracy of 98%. We will now discuss
some methods we implemented to evaluate the algorithms
mentioned earlier on the chosen dataset.

III. METHODS

This section presents the proposed methodology, in-
cluding data extraction, the used classifiers, and the
performance evaluation using Logistic Regression and
Support Vector Machine.

A. Data Acquisitions
We fetched the used dataset from UCI Machine Learn-

ing Repository available at https://archive.ics.uci.edu/ml/
machine-learning-databases/00240/. Detailed information,
including videos about data collection methods and
experiments, is available at [15]. This dataset contains
a 10299 number of instances with 561 features. They
selected 30 volunteers to perform the following activities:

1) Walking.
2) Sitting.
3) Standing.
4) Lying.
5) Walking Upstairs.
6) Walking Downstairs.

They used Gyroscope and Accelerometer to record these
activities as data. They randomly split the dataset into
70% training data and 30% test data. Each data point in
the dataset corresponds to one of the six activities from
above.

B. Data Visualization
We used standard Machine Learning libraries, mat-

plotlib and seaborn, to visualize the data. We are primarily
interested in the activities performed by each volunteer.

https://archive.ics.uci.edu/ml/machine-learning-databases/00240/
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Fig. 1. Pie-Chart of activities in training dataset

Fig. 2. Pie-Chart of activities in test dataset

Figure1,2 shows that the category distribution is uni-
form in the training and test dataset. The difference
between the ”Laying class (19.1%) and ”waling Down-
stairs (13.14%)” might create some misclassification. We
will consider this difference while analyzing the result.
Here onwards, we will only visualize the training dataset
because the readings are uniform for both datasets.
We removed few distinct noises from the definitions of
the training and testing dataset features. These feature
definitions have an inconvenient naming for further
calculations and training to remove special characters.
We have filled the null values in the dataset with 0 to
make a calculation straightforward.

Fig. 3. Confusion Matrix of perceptron

TABLE II
BALANCED REPORT OF PERCEPTRON

precision recall f1-score support
LAYING 0.99 1.00 1.00 537
SITTING 0.75 0.96 0.84 491
STAND-
ING

0.97 0.68 0.80 532

WALKING 0.91 0.94 0.92 496
WALKING
dOWN-
STAIRS

0.91 0.97 0.94 420

WALKING
UPSTAIRS

0.98 0.92 0.95 471

accuracy 0.91 2947
macro avg 0.92 0.91 0.91 2947
weighted
avg

0.92 0.91 0.91 2947

C. Algorithms Implementation

As we mentioned in our introduction, we will im-
plement classical machine learning in this cleaned and
ready-to-train dataset, particularly perceptron, Logistic
regression, and Support Vector Machine.

1) Perceptron
We implemented the sklearn perceptron module
with ten iterations and no shuffling. The initial
training gave an accuracy of 86% on perceptron.
We implemented the 10 Fold cross-validation to
improve the model performance and repeated (9
times) 10 Fold cross-validation. The accuracy im-
proved to 90% with 6 10 Fold and the repeated
cross-validation shows the accuracy of 98.5%. The
resulted of our experiment is shown in Figure 3 an
Table II.
We observe from the confusion matrix that the
perceptron has activity 1 (Sitting) and activity



TABLE III
BALANCED REPORT OF LOGISTIC REGRESSION

precision recall f1-score support
LYING 1.00 1.00 1.00 537
SITTING 0.98 0.88 0.92 491
STAND-
ING

0.90 0.98 0.94 532

WALKING 0.94 0.99 0.97 496
WALKING
dOWN-
STAIRS

0.99 0.96 0.98 420

WALKING
UPSTAIRS

0.97 0.94 0.96 471

accuracy 0.96 2947
macro avg 0.96 0.96 0.96 2947
weighted
avg

0.96 0.96 0.96 2947

2 (Standing); it has 160 misclassifications on
these classes. However, the repeated 10-fold
cross-validation shows the result to be consistent
above 98%. This improvement is significant.

2) Logistic Regression
Yasar S. Abu-Mostafa defines Logistic Regression
[16] as:

h(x) = θ(wTx), (1)

where h, h ∈ H is a hypothesis, h(x) is a prediction
model, w is a weight vector and x is an input vector.
θ is so called logistic function defined as [16]:

θ(s) =
es

1 + es
. (2)

We can interpret the output of Logistic Regression
as a probability. Thus, we can use these properties
of Logistic Regression to predict, given the input
vector xi, the probability that the given data can be
one of 6 activities. This notion is crucial because
sometimes the tracking devices can predict running
as walking or sitting as sleeping. The probability
bound of Logistic Regression will help update
each activity’s possibilities weights and reclassify
correctly.

a) Performance
We used a linear model from the sklearn
library to implement the Logistic Regression.
We changed a penalty to l2, iterations to 300,
and the rest of the parameters to default. We
were able to get an accuracy of 96% and the
training time was below a minute. We used
a confusion matrix to plot the error. Figure
4 shows the confusion matrix for Logistic
regression and we present the balanced score
in Table III.

Fig. 4. Confusion Matrix of Logistic Regression

Figure 4 shows a maximum error of 57
instances between activity 1 (refer to data
Acquisitions sections for activity name) and
activity 2. There is also an error of 25 between
actual activity five and predicted activity 3.
The accuracy improved to 98.5% with 10
Fold cross-validation. The cross-validation
is similar to perceptron; thus, we leave that
section as an explanation to the reader.

3) Support Vector Machine
Support Vector Machine is a classification
technique that finds the decision boundary to
separate different classes and maximizes the
margin [12]. We will experiment with SVM with
the varying kernel, ”linear, ploy, RBF or sigmoid,”
and account for the best performing kernel trick.

a) Performance
We used the sklearn library to implement the
SVM and used the confusion matrix for error
measurement. We tasted with regularization
values of 0.5, 1, 1.5, 2.0 on sigmoid kernel and
RBF. SVM performed uniform with both trans-
formations on all regularization values with
an accuracy of 95%, but the result reduced
the accuracy to 79% on a regularization value
of 0.5. Figure 5 shows the error measures of
SVM in the confusion matrix and we present
the balanced report in Table IV.

The SVM has an accuracy of 95%. The most
misclassified activities are activity one and



Fig. 5. Confusion Matrix of Support Vector Machine

TABLE IV
BALANCED REPORT OF SUPPORT VECTOR MACHINE

precision recall f1-score support
LYING 1.00 1.00 1.00 537
SITTING 0.95 0.89 0.92 491
STAND-
ING

0.91 0.95 0.93 532

WALKING 0.94 0.98 0.96 496
WALKING
dOWN-
STAIRS

0.99 0.96 0.98 420

WALKING
UPSTAIRS

0.99 0.95 0.94 471

accuracy 0.95 2947
macro avg 0.95 0.95 0.95 2947
weighted
avg

0.95 0.95 0.95 2947

activity 2, and activity four and activity 5. SVM
has minor misclassification of every activity as
activity 6. We trained our model by changing the
transformation degree between 1 − 6. However,
there was an improvement of 0.037% on 5th

degree transformation, we decided to choose
a 3 − degree transformation on regularization
of 1 with Sigmoid kernel. The Support Vector
Classifier(SVC) shows slightly lower accuracy on
repeated 10 Fold cross-validation but still above
98%.

4) Result
We tested our dataset on other classification al-
gorithms and accounted for the performance. We
present all the implemented algorithms and their
performance accuracy in Table V.

TABLE V
PERFORMANCE OF DIFFERENT CLASSIFIER IN HUMAN ACTIVITY

RECOGNITION

Classifier Accuracy % Standard Deviation
Random Forest 92 0.006

Ridge 96 0.005
SVC 95 0.009

Decision Tree 86 0.013
Gaussian NB 77 0.027

K-Neighbour (10) 90 0.012
Perceptron 91 0.043

Logistic Regression 96 0.008

IV. DISCUSSION

We limited our experiment to few classification al-
gorithms. On Support Vector Classification (SVC) and
Logistic Regression, both algorithms have an error of less
than 5%. The result is satisfying given the computation
required. We believe the research can further expand by
applying k-means clustering to the data set before using
any classification algorithms. Once we obtain the cluster
from k-means, and if we know the overlapping labels,
we can perform feature transformation on overlapping
data and make them separable in Z space given by the
equation:

Z = φ(x) = (1, x21, x
2
2, ......, x

2
n), (3)

where n is the number of features we need to transfer, the
transformation mentioned above limits the transformation
of 2 degrees, but it can further be generalized by
Legendre Polynomial Transformation. We can perform
feature reduction to improve accuracy. In this paper, we
limit ourselves to evaluate different Machine Learning
Algorithms’ performance and leave the accuracy
improvement for further research.

V. CONCLUSION

In this paper, we experimented with various classifiers
measuring their performance on six different human
activities. The performance was measured using standard
accuracy as the main comparison element. We focused our
attention on the SVM classifier and Logistic Regression,
which repeatedly reported accuracy of above 98%, using
10-fold cross-validation. Our experimentations suggest
that implementing either logistic regression or SVMs
for HAR is viable and has great potential for success.
Further, our initial findings suggest that optimizations,
such as applying feature transformations can increase
classification performance. These initial experiments are
rooted in the belief that we must first attempt to solve
machine learning problems using established, simple
algorithms as a baseline before deciding to use other
experimental deep learning algorithms. Consequently,
further work should consider deep learning methodologies



and ensemble methods to verify the dataset’s properties
and the response of other experimental models.
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