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Abstract—The complexity of searching algorithms in classical
computing is a perpetual researched field. Quantum computers
and quantum algorithms can compute these problems faster, and,
in addition, machine learning implementation could provide a
prominent way to boost quantum technology. We call quantum
machine learning to this novel set of tools coming from artificial
intelligence and quantum mechanics. To achieve our purpose, we
focus on applications on quantum machine learning; in particular,
we propose a review and exploration of topics such as variational
quantum algorithms, kernel methods, and a review of Grover’s
algorithm (GA) as a quantum classifier. We start with the GA
exploration to achieve this goal, which is a quantum search
algorithm that achieves quadratic speedup over optimal classical
search implementation. This paper implements a GA exploration
that includes a concept summary and implementation, consider-
ing only AND, XOR, and OR gates. We also discuss potential in
quantum machine learning.

Index Terms—quantum machine learning, Grover’s algorithm,
classification

I. INTRODUCTION

The searching problem to locate the distinct record from
a sizeable unstructured dataset with N = 2n data points is
often phrased intricacy [1]. For example, if we want to find
the shortest route in a map such that the route passes through
all the cities, we can search for all the possible routes and
only keep those routes with the shortest path. Classically, we
can search for a record x from a database in N/2 tries and
N tries in the worst scenario. The probability theory claims
that given x records, we can obtain the particular record a in
O(N) complexity. We will discuss in detail that this problem
can be solved in O(

√
N) using quantum algorithms [2], [3].

In recent years, quantum algorithms are proven to speedup
the complexity to its classical counterparts. Deutsch’s Algo-
rithm was the the first quantum algorithm that performed
faster than its classical one [4]. In 1994 Shor’s algorithm
achieved exponential speedup than any classical algorithms for
factorization and finding discrete logarithms. Grover proposed
a searching quantum algorithm that is polynomially faster
than optimal classical searching algorithms [5]. GA is a
search algorithm that has applications on physics (collision
problems), computational complexity (NP-complete problems)
and computing (searching unsorted databases). We can use
Grover’s algorithm in above mentioned finding shortest route
problem and any unsorted database searching problem and
achieve the polynomial speedup in computation [5]. In this

paper, we aim to provide mathematical Grover’s Algorithm
analysis, and implementation, of a particular version of its
classical version.

Quantum algorithms, as those mentioned previously, imple-
ment transformations which are matrices, in terms of Linear
Algebra, and those have their particular (Dirac) representation
[6]. Each transformation requires an operator to create super-
position, rotation (on system or on state), or another change
on the system. Operator act on states. Each of those states
has the form |ψ〉 = α |0〉 + β |1〉 , which is the general state
in the {|0〉 , |1〉} basis, where {α, β} are complex numbers,
a.k.a. amplitudes [7]. In quantum circuit model, one operator,
namely it acting on states, has the form:

H =
1√
2

(
1 1
1 −1

)
, (1)

H =
1√
2

(
|0〉 〈0|+ |0〉 〈1|+ |1〉 〈0| − |1〉 〈1|

)
. (2)

Equation (1) is the matrix representation; and eq. (2) is the
Dirac (bracket) representation. H transforms single-qbit as
|ψ〉 . Nonetheless, we can propose a generalization, it means if
we apply H on each qbit in a system with N qbits, the system
is now on superposition. Grover use this property along with
oracle(a black box) and diffuser to search a unsorted database
in O(

√
N) complexity. We can implement this circuit to reduce

the runtime of any database search by running it on a quantum
device.

With the algorithm shown in Figure 1, the goal is to find
w, given an oracle Uf with

f : {0, 1}n → {0, 1},

f(x) =

{
1 if x = w

0 else if,
(3)

and

f0(x) =

{
0 if x = 000...0

1 else,
(4)

where the phase oracle is

Uf |x〉 = (−1)f(x) |x〉 , (5)

where,

Uf :

{
|w〉 → − |w〉
|x〉 → |x〉 ∀x 6= w.

(6)
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1 0Fig. 1. Quantum circuit for the general version of Grover algorithm.

Then

Uf = 1− 2 |w〉 〈w| , (7)

and

Uf 0 :

{
|0〉 → |0〉⊗n

|x〉 → − |x〉 ∀x 6= 00...000.
(8)

With this algorithm we want to find the input x ∈ {0, 1}n
such that f(x) = 1. With f : {0, 1}n → {0, 1} as an unknown
function, where we implemented Uf as an oracle. y = w with
highest probability. T = H⊗nUf0H

⊗n, from eq. 8, we obtain
Uf0 = 2

(
|0〉 〈0|

)⊗n − I. This result is known as reflection
operator and it will be used soon [8].

Two registers used in the Grover’s algorithm, n qubits in
the first register and one qubit in the second register is the key
architectural structure to achieve this speedup complexity over
the classical algorithm [9]. We start the circuit for Grover’s
Algorithm by creating a superposition of 2n computational
basis states in the top register (general version of Grover’s
algorithm is shown fig. 1). All the qubits in the first register are
initialized to state |0, ......, 0〉. After applying the n Hadamard
gate, H⊗n, on the first we have the state:

|ψ〉 = H⊗n|000...........0〉 = 1√
N

N−1∑
x∈{0,1}n

|x〉. (9)

Note that, |ψ〉 is the superposition here. If we start the second
register with a single qubit in state |0〉 or |1〉, after the
Hadamard we achieve the respective Hadamard basis [2]. Let
f : {0, 1}N → {0, 1} be a function defined as:

f(x) =

{
1 if x is the searched element
0 Otherwise.

We define Uf as an oracle often referred to as a black box,
defined as,

Uf (|i〉|j〉) = |i〉|j ⊗ f(i)〉. (10)

When we apply Uf on the state |ψ〉, the state of the second
register does not changes [4] but the state of the first register
changes, and we call this state |ψ1〉. We assume that the
Hadamard basis in the second qubit is |−〉. Here, |ψ〉 and
|ψ1〉 lives in HN . Equation 11 defines the effect of an oracle
on the achieved superposition.

|ψ1〉|−〉 = Uf |ψ〉|−〉 =
1

N

N−1∑
i=0

(−1)f(i)|i〉|−〉. (11)

Due to Quantum parallelism,, we can observe all the database
elements simultaneously at the quantum level. If the position
of the searched element is known, then it will be labeled as
the negative value of i in equation 11. It is impossible to
get this result at the classical level. Before we perform the
measurement and collapse our superposition in the classical
bits, we apply another set of Hadamard gates, unitary operator,
and n Hadamard gates for O(

√
N) times. Let us define this

unitary operator, Uf0 as

T = 2|ψ〉〈ψ| − I. (12)

When we apply this operator on state ψ1 we have,

|ψ〉 =
(
2|ψ〉〈ψ| − I

)
|ψ1〉

=

√
2n − 1

2n
∣∣w†〉+√ 1

2n
|w〉 . (13)

Equation (13) is the state of the first register and the
second register is still on state |−〉 by assumption. Notice,
|ψ〉 is in {w,w†} states, w represents the summation of all
states that can be solution to search problem; and w† is the
summation of all states which are no solutions. Coefficients are
factor normalization constrained by the normalization condition,∑
i |ci|

2
= 1.

Thus, we can measure this state on both the register to
evaluate the function f and get the probability finding the x
record. Below, we present the implementation of this algorithm.
Assuming we have an output of 1 for the function f with high
probability, we calculate the probability of all possible input
qubits on both the register. It is guaranteed to achieve the
mentioned output.

II. MODELS, METHODS OR MATERIALS

This section contains variational and kernel methods as
potential models to implement Grover’s algorithm as a quantum
classifier with applications in Quantum Machine Learning.
For this purpose, we expose those topics briefly. We shall
commence with VQA, and at this end, we discuss some exciting
areas of application.



A. Variational Quantum Algorithms

Variational Quantum Algorithms (VQA) address the circuit
depth limit, and a limited number of qubits constrain current
(near-term) quantum devices by implementing the classifier
optimizer to train the parameterized quantum circuit. VQAs run
the parameterized quantum circuit in the Quantum devices and
the parameter optimization on the classical optimizer. VAQs
mitigates the noise of the quantum circuit because it keeps the
depth of the quantum circuit shallow. VQA is considered the
prime proposal to achieve the quantum advantage with near-
term quantum devices [10]. Given any problem (we consider
classification for our simplicity), the first step is to define
the loss (or cost) function C for our problem. C encodes
the solution to our problem. We then perform the quantum
operation called ansatz to optimize the parameter θ. The
optimization task is defined as:

θ∗ = arg min
θ
C(θ). (14)

Equation (14) is trained in quantum-classical loop to obtain θ.
One thing to note here is that while the classical optimizer is
used to train θ, the VQAs use quantum devices to estimate C.
This behavior is often considered the trade-off of VQAs. Once
we define the cost function and ansatz, we are ready to train the
parameter θ and solve the problem (14). Using the information
in C gradient, it is proved that we can guarantee the speedup
and convergence of optimizer for many optimization problems
such as (14).

The most prominent implementation of VQA, sometimes
also called Quantum Neural Network (QNN) is to tackle
the classification task [11]. Here we briefly discuss the
implementation of VQAs in the Grover search algorithm for
classification. Du and Tao reformulated the classification task
as the search algorithm using VQAs. The Grover-search-based
quantum learning scheme (GBLS) dramatically reduces the
number of measurements, and it outperformed the classical
classifier in the measure of query complexity [9]. Following
the optimization problem in (14), we can define the update
rule for θ as:

θ(t+1) = θ(t) − η

B

B∑
i=1

∇L(θ(t), Bi), (15)

where η is the learning rate, Bi is the i− th batch for batch
gradient descent and B is the total number of batches. We can
use varied B on GBLS for optimization of different quantum
classifiers. In the classification process we use the grover-based
searching only for the training and the prediction is done using
optimized Variational Quantum Circuit (VQC). Recall from
Grover 1996 article [5], the algorithm finds the record a from
the dataset of size N by iteratively applying a predefined oracle

Uf = I − 2|a〉〈a|, (16)

and a diffusion operator defined on equation (12), and (9) as
the input state. See figure 1 for the implementation of circuit
for Grover algorithm. We are limited to change the oracle for
this circuit. GBLS uses this property to define the classification

problem as a searching problem. It replaces the oracle with
VQC UL1 =

∏L
l=1 U(θl) and multiple controlled qubits.

B. Kernels

In the previous section, we discussed how we could
reformulate any classification task as a searching problem. In
this section, we briefly discuss quantum kernels and quantum
classifiers. By doing so, we would be able to introduce the
concept of quantum classifiers in terms of quantum kernels
and, hence, a searching problem that Grover’s algorithm can
solve.

The kernels method is an eminent tool in patterns analysis
to identify non-linear relationships in any given dataset [12].
The fundamental kernel methods lie in data embedding into
higher dimensional Hilbert space to be easy to analyze. The
kernel method uses kernel functions that estimate the similarity
between data in higher dimensional space by calculating their
inner-product. We can switch between different models simply
by switching between the kernels. In Quantum computing, this
approach corresponds to change the data encoding strategy.
Here we define a data encoding strategy. Let φ : X → F be
a feature map for a input space X and k : X × X → C be a
real or complex values positive definite functions for two data
points.

Definition 1 (Modified from Def. 2 of [13]). : Quantum Kernel
is defined as the inner product between two data encoding
feature vectors with x, x′ ∈ X

k(x, x′) = |〈φ(x′)|φ(x)〉|2. (17)

We define 〈.|.〉 as the inner product of two pure quantum states.

We can estimate eq. (17) using quantum computers that can
calculate the inner product between two pure quantum states.
Quantum models are often considered linear models in feature
space.

Let us define a Hermitian operatorM acting on a vectors in
Hilbert space H. We can define M as,

M =
∑
i

αi|µi〉〈µi|, (18)

where αi are the eigenvalues of M, |.〉〈.| is the outer product
and |µi〉 is an orthonormal basis in H. Now we define quantum
models as a function f of data input x,

f(x) = 〈φ(x)|M|φ(x)〉. (19)

Notice that eq.19 is in the form 〈.|.〉 and can be calculated as
an inner product which we have defined as kernel methods.
Thus, any quantum models can be considered kernel methods,
and those models are a.k.a. quantum neural networks; however,
based on the definition 1 those are closely related to kernel
methods.

Ref. [12]–[15] investigates in-depth on quantum kernels. The
scope of this paper is not to construct a quantum classifier but to
relate quantum classifiers as kernel methods. The mathematical
definition of VQA is closely related to the kernel methods.



In both of the approaches, the data are analyzed in higher-
dimensional Hilbert space. Previously we discussed how VQAs
could be used to reformulate classification tasks as searching
problems. We can build an oracle on the Grover algorithm as
per our desire and perform the classification.
Below, we present a simple implementation of building an
oracle using the universal clauses only using AND, XOR, and
OR gates. Our algorithm builds an oracle based on these gates
such that it forces the output to be 1 before we supply it to
the diffuser.

C. Methods

First, we need to get input information from the user. The
user inputs the number of input qbits, number of clauses,
and the clauses themselves. Our algorithm requires those
information to be passed to construct an oracle. We call our
algorithm universal because the user can input any combination
of the clauses. The algorithm will output final probabilities
based on the user inputs (evaluating the user clauses). The user
is asked to input the clauses in a specific format. Consider the
next example.

The user can input the following details:
• Number of qubits: 5.
• Number of clauses: 3.
• Clause 1: 0 AND 1.
• Clause 2: 1 XOR 2.
• Clause 3: 2 OR 3.

We have implemented XOR, OR, and AND gate, which we
describe next.

Qbit indices are separated by the gate. So, the possible input
clauses are 0 AND 1, 1 XOR 2, and 2 OR 3 in any order
of the qubits. This is just one example. We can simulate this
algorithm for any number of qubits and clauses (the number of
clauses should be less than qubits), giving us the probability.

We implemented the XOR gate (Figure 2) using implemented
using two CNOT gates. Our input qubits will be control
variables, and they will output to one same qubit. Then, the
output qubit will have value one if only one of the input qubits
has value one.

input0 •

input1 •

output
Fig. 2. XOR gate

The AND gate (fig. 3) is implemented using one Toffoli
gate. If both input variables have value one, the output variable
will also have value one. Otherwise, it will return zero.

input0 •

input1 •

output
Fig. 3. AND gate

The OR gate (fig. 4) is implemented using one Toffoli and 2
CNOT gates. The output is one, if and only if one of the input
gates has value 1. We performed all the coding implementation
in the IBM Quantum framework [16].

input0 • •

input1 • •

output
Fig. 4. OR gate

Figures 3-4 show the implementation of AND, XOR, and
OR gates as described above.

For each clause gate, we use one clause qubit. Then, using
Toffoli gate, we check if all of the clause qubits have value one,
we return one. Otherwise, we return zero. We construct our
oracle under this definition and the mathematical abstraction
described in the introduction.

Before oracle, we place each input qubits into superposition
by applying the Hadamard gate as described in the introduction.
Thus, we have constructed an oracle. Finally, the diffuser is
used O(

√
N) times before the measurement.

The diffuser is an essential part of Grover’s algorithm. The
diffuser function is universal. That means any two oracles
that have the same number of input qbits can use the same
diffuser. The function consists of the H-gates, X-gates, and
multi-controlled Z-gate. We show an example for the circuit
with 4 qubits and 3 universal clauses in Figure 5.

D. Algorithm and quantum circuit

This section contains information about the algorithm and
the implemented circuit for our experiment. In the methods
section, we described the process and steps to construct an
oracle for the Grover algorithm using universal gates. Figure
5 shows an example of the circuit for the algorithm presented
above. The circuit in the dotted box after the first set Hadamard
gate is an oracle. We can define our oracle with clauses, gates
and number of qubits as it is shown in the figure.

We also present an algorithm to construct user defined oracle
in Algorithm 1. For more details about the algorithm please
see the Methods section.

III. RESULTS

In this section, we present two different examples. Figure 6
illustrates a histogram of probabilities when the input clauses
are 0 AND 1 and 1 XOR 2 on 3 qubits circuit. 110 is the
only answer, and it has a probability of 0.767. We explain this
further. From our definition of the oracle, our oracle always
outputs 1. So, qubit 0 and 1 outputs one if and only if both
are 1, and 1 XOR 2 outputs one if and only if 2 is 0. 1 can
not be 0 because it is one by clause 1. So, the only possible
sequence of input to get one as an output of an oracle is 110.
Our oracle, too, gives this answer.

Below we present another example with 4 qubits and 3 input
clauses. Figure 7 shows a histogram. The Input clauses are 0
AND 3, 1 XOR 2, 2 AND 3. If we follow the similar definition



|q0〉 H • • • •

US
|q1〉 H • • • •

|q2〉 H • •

|q3〉 H • •
c0 •
c1 •
c2 •

Output |ψ〉
cbits /

0 1 2 34

Fig. 5. Quantum circuit for Grover algorithm with the user defined clauses for an oracle. We used the clauses |q0〉 AND |q3〉, |q1〉 XOR |q2〉 and |q2〉 AND
|q3〉. ci refers to clauses, and cbits are the classical bits.

Algorithm 1 To construct a defined oracle.
Input: q1, q2, ..., qn and c1, ......., ck
Parameter: Set of universal clauses.
Output: Input bits that output 1.

1: for each input q:
2: |ψ1〉 ←− Hadamard(q)
3: for each input clause ci do
4: ORACLE:{

Oi ←− ci(qj , qk)
out ←− Toffoli(O1, O2, ....., On)

5: end for
6: Grover(ORACLE)

Fig. 6. 0 AND 1, 1 XOR 2

of obtaining 1 as in the above example we see that the only
possible answer is 1011 and it has a probability of 0.473.

We see that the probability of the input sequences decreases
as we increase the number of qubits. This is not always true.

Fig. 7. 0 AND 3, 1 XOR 2, 2 AND 3

The only constrain it respect here is the sum of probability
has to be 1. We will have multiple answers when we increase
the number of qubits and the number of clauses. This is true
because as we increase the number of qubits and clauses we
will have different options to obtain 1 as an output. Also, we
do not have any limitations on the number of clauses. The
only condition on our algorithm is that the control qubit should
come first, followed by universal gate followed by target qubit.
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V. CONCLUSION

In this article, we discussed Grover’s algorithm and its
mathematical definition. We explained how variational quantum
algorithms could be used in machine learning implementing
Grover’s algorithm. In particular, we explored an arena where
we can reformulate the classification problem as a searching
problem. We believe we can adopt variational quantum algo-
rithms, e.g., for ML classification algorithms. This topic can be
further explored and researched. We used the universal gates
AND, XOR, and OR gates to construct an oracle for Grover’s
algorithm with universal clauses. Our constructed oracle finds
a way to calculate the probabilities of possible input sequences
such that the output of the function always yields 1. As we
saw on Figures 6-7, the probability of the input qubit decreases
with the increase in input qubits, which is the desired outcome.

As the next step, we will attempt to prove that we can
reformulate any classification problem as a kernel method and
vice versa. We will use this hypothesis to reformulate the
classification problem as a searching problem. In the end, we
will prove that we can solve this newly reformulated searching
problem through Grover’s algorithm with user-defined universal
clauses oracle. Hence, we believe this research can be further
expanded, exploiting Grover’s algorithm when more working
qubits are available along with access to powerful computers
to simulate the process.
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