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Abstract. Support Vector Machine (SVM) and Kernel Method (KM)
are used widely for classification and regression in learning from data.
Kernels are positive definite functions that map the data into higher (pos-
sibly infinite) dimensions. Generally, SVMs1 implement kernel methods
as a subroutine that maps the non-linear data to a higher dimensional
where it becomes linearly separable. SVM draws a linear decision bound-
ary between classes of data points in this feature space. This paper re-
views kernels and kernel methods from a classical machine learning per-
spective and their possible implementation in quantum machine learning.
We start with the basis of kernels, including Hilbert space and Repro-
ducing Kernel Hilbert Space, Mercer’s condition, and prove three widely
used kernels validity satisfying Mercer’s condition. We review two differ-
ent approaches of quantum machine learning, parameterized quantum
circuit and kernel-based training, and discuss the potential advantage of
one over another. This paper can facilitate the readers’ getting started
with kernel theory and quantum machine learning.

Keywords: kernel methods · support vector machines · reproducing
kernel Hilbert spaces · machine learning · quantum machine learning.

1 Introduction

In learning, SVMs and KMs are often used, but not limited, in numerical opti-
mization, improvised generalization, working set selection, and parameter tuning
and have shown promising result in science and engineering [34]. Given a dataset
D = {(xi,yi),xi ∈ Rn, y ∈ R, i = 1, . . . , N}2, where n is the number of features
in D, often referred as dimension of D and N is the total number of data in-
stances, SVM learning method computes an approximation function as

f(x) = b+

m∑
j=1

yjαjk(xj ,x) (1)

1 Except linear SVMs. Linear SVMs are linearly separable in input space and do not
require feature mapping to a higher dimension.

2 In many literature we find y ∈ {−1,+1}. We consider this setting for binary classi-
fication and try to generalize here for multi-class classification and Regression
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with y ≈ sign(f(x)) for classification, and y ≈ f(x) for regression. For learning
purpose, a Support Vector (SV) set {xj , j = 1, .....,m} ⊂ {xi, i = 1, . . . , N} are
determined. A kernel function k is chosen based on the learning problem, and
parameters αj and b are computed. As a refresher, a kernel function maps the
data from input space to higher dimensional feature space (sometimes infinite
dimensions), in which data are linearly separable and hence, easier to analyse.

In recent years, kernel-based learning has been used widely in quantum-
enhanced machine learning [30]. Huang et al. showed that for a specific dataset,
the quantum kernel could learn with lower generalization bound error over opti-
mal classical kernel method [20]. Effective spectral transformation technique can
maintain quantum kernels superiority for a large dataset in noisy intermediate-
scale quantum (NISQ) era [41]. Blank et al. exhibited to bypass the specific
state preparation requirements and use the kernelized binary classifier to per-
form swap-test on data-encoding quantum states [6]. Recently, it was shown that
supervised quantum machine learning fundamentally relates to quantum kernel
methods [35]. Using quantum-embedding kernels, we can construct a learning
problem that proves the separation between quantum machine learning and clas-
sical machine learning [25].
We consider these kernel behaviors as our motivation to explore kernel theory.
This paper reviews the kernels, kernels tricks, and elementary introductory lin-
ear algebra. We briefly discuss two approaches for quantum machine learning
and one’s advantages and drawbacks over others. In the next section, we define,
discuss and briefly describe kernel, some kernel functions, and their properties.

2 Kernel and Kernel Functions

Definition 1. (Kernel [35]) Given two vectors x1,x2 ∈ X ⊆ D, and ϕ : X →
F is a feature map from input space X to Hilbert space F such that x → x :=
ϕ(x), k is a class of kernel that corresponds to the dot product in F is given by

k(x1,x2) = ⟨ϕ(x1), ϕ(x2)⟩F . (2)

Thus, for any two vectors x1,x2 that are mapped to a feature space F by
some mapping function ϕ, their dot product ⟨·, ·⟩ give rises to a kernel function
k. Fig. (1) illustrates the mapping.

From (2) we see that we can compute the kernel function k by computing
the inner product between two vectors and vice-versa. Since, inner product is
symmetric by definition, the kernel function is also symmetric. i.e.,

k(x1,x2) = k(x2,x1), (3)

that satisfies the Cauchy-Schwarz Inequality, given by (taken from [38]):

||k(x1,x2)||2 ≤ k(x1,x1) · k(x2,x2). (4)

From (3) one can ask, are all symmetric functions kernel? Or in particular, what
makes a function f a kernel function? Mercer proved that any positive definite
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Fig. 1: Mapping of a input from input Space X to a feature space often called
Hilbert Space H via a mapping function ϕ(·). k(·) is a kernel function defined as
k : X → R.

symmetric function k(x1,x2) is a kernel function [12,27]. Let, x1,x2, .....,xl be
any set of vectors, l ∈ N and α1, α2, ..., αl be some real values. Then, from
Mercer, k must satisfy

l∑
i=1

l∑
j=1

αiαjk(xi,xj) ≥ 0. (5)

Previously, we digressed ourselves and introduced Mercer’s Theorem properties
informally to support our claim that any symmetric positive definite function is
a kernel. However, we did not explicitly mention Mercer’s Theorem’s properties
to facilitate the verification. Before we explain Mercer’s theorem, let us define
Gram Matrix, which will be handy later.

Definition 2. (Gram Matrix [13]) K ∈ Rn×n is a Gram matrix whose (i, j)-
th element is

Kij := k(xi,xj),∀i, j ∈ 1, . . . , n. (6)

We can prove that (6) satisfies Mercer’s condition (we will shortly define
Mercer’s Theorem and Mercer’s condition) and therefore is a valid kernel.

Proof. Let ri, rj ∈ C and {x1, ....., xM} ⊆ X with M ≥ 2, we can express that

M∑
i,j=1

rir2 ∗ k(xi,xj) = ⟨
∑
i

riϕ(xi),
∑
j

rjϕ(xj)⟩ = ||
∑
i

riϕ(xi)||2 ≥ 0.

An inner product matrix must be a Gram Matrix for any valid kernel from
Mercer’s Theorem.
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Mercer’s Theorem
(Simplified from [32,28,13]) Let X be a compact subspace of Rn. Suppose k :
[a, b]× [a, b]→ R is a continuous definite symmetric function satisfying (5). k is a
positive definite kernel on X . Let Tk : L2(X )→ L2(X ) be an integral operator.
If, k is a kernel of Tk then ∀f ∈ L2(X ) it gives rise to Tk via

Tkf(x) =

∫
X
k(x, y)f(y)dy, (7)

then, we can expand k(x, y) in a uniformly convergence series for set of or-
thonormal bases {ψi(·)}∞i=1 of L2 that consist eigenfunctions of T2 such that the
corresponding eigenvalues sequences {λi}∞i=1 are non-negative given by

k(x, y) =

∞∑
j=1

λjψj(x)ψj(y). (8)

Thus, for any kernel function, K(x, y) = ⟨ϕ(x), ϕ(y)⟩, that computes the dot
product between input x and y, transformed by a function,if it satisfies the
Mercer’s condition, i.e., ∫ ∫

K(x, y)g(x)g(y)dxdy ≥ 0, (9)

which is equivalent to (5), then it is guaranteed that there is an underlying
mapping function ϕ. Mercer’s condition is often referred as Positive-Definite
Symmetric (PDS) condition.

In the next section we define and briefly describe some kernel functions and
their properties.

2.1 Kernel Functions

Below we describe three kernel functions and their properties. Each of the kernel
functions induces some feature space. However, since no explicit mapping to this
feature space occurs, we can find the optimal linear separators for non-linear
data in feature spaces with millions of dimensions [33]. Table 1 summarizes the
selected kernel.

We describe the kernels mentioned in Table 1 in the following subsections.
Without loss of generality, we omit the cost C for simplicity.

Table 1: Three Common kernels [39,21,19].
Kernel Function Formula Optimization Parameter

Linear k(x,x′) = ⟨x,x′⟩ -

Polynomial k(x,x′) = (⟨x,x′⟩+ r)d r ∈ R and d ∈ N

RBF k(x,x′) = exp(−||x,x′||2
2σ2 ) + C C and γ = 1

2σ2

Explanation: RBF is Radial Basis Function, C: Cost, r: coefficient, d: Polynomial Degree.
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2.1.1 Linear Kernels A linear kernel is the basic type of kernel often con-
sidered the simplest kernel. It is defined as the dot product between the points
that we are trying to classify:

k(x,x′) := ⟨x,x′⟩. (10)

Let us prove that linear kernel satisfies Mercer’s Condition, by satisfying (5),
and hence is a valid kernel.

Proof. Let us assume that we have m vectors, {x1, . . . ,xm}. Then ∀c ∈ RN ,

∑
i,j

cicjk(x,x
′) =

m∑
i=1

m∑
j=1

cicj

N∑
a=1

xiax
′
ja

=

m∑
i=1

m∑
j=1

N∑
a=1

cixiacjx
′
ja

=

N∑
a=1

(

m∑
i=1

cixia)(

m∑
j=1

cjxja)

=

N∑
a=1

(

m∑
i=1

cixia)
2 ≥ 0.

Thus, from (4) and (5) we say that (10) is a positive definite kernel, satisfying
the Mercer’s condition. Note that we do not transfer the data to any other space
in the linear kernel, but we use the inner products of points to obtain the feature
space.

Below we briefly mention some properties of linear kernel informally.

1. The input vectors are not projected into higher dimensions and remain in
the original feature space.

2. It can be estimated by calculating the inner product between input vectors.
3. It is often used in a dataset with many features.

The linear kernel performs the computation in the original space and does
not induce higher dimensional feature space.

2.1.2 Polynomial Kernel Given x,x′ be the vectors in the input space, we
define a polynomial kernel as

k(x,x′) := (⟨x,x′⟩+ C)
d
, (11)

where d is a polynomial degree, C is a free training parameter, often referred
as cost. Polynomial kernel with degree two is quite popular in Natural Lan-
guage Processing (NLP). We can prove that (11) satisfies Mercer’s condition
and therefore is a valid kernel. Assume C ≥ 0 and d a positive integer.
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Take C = 0, for an arbitrary set of n vectors, xn, . . . ,xn, it immediately
follows that Kij = k(xi,xj) is positive-definite. If we take d Hadamard product
of k(xi,xj), this will yield Gram matrix, which is a positive definite by definition.

Take C > 0, (⟨xT ,x′⟩ + C) is also positive definite because the sum of
two positive-definite is also positive definite. If we take d Hadamard product
of (⟨xT ,x′⟩ + C), this will also yield Gram matrix. Thus, (11) satisfies a Mer-
cer’s condition and is a kernel function.

Below we briefly mention some properties of Polynomial kernel informally.

1. It accounts the original features of input samples and the combination of
these features to estimate the similarity between two data-points.

2. It give rises to a polynomial decision boundary in input space of degree d.
3. The decision boundary in feature space is still a hyperplane.

It induces the kernel space of d dimension and maps the input data to this
feature space.

2.1.3 Radial Basis Function kernel Given two vectors x,x′ in an input
space, RBF kernel is defined as

K(x,x′) = e−
1

2σ2 ||x−x′||2 , (12)

where σ is a variance.

Proof. To prove that (12) is a kernel function, let us define a feature map:

ϕ(x) = e
−1

2σ2 ||x||22 , (13)

and a kernel function,

k1(x,x
′) = e

1
2σ2 ⟨x,x′⟩, (14)

where k1 is a valid kernel because it is the exponential of positive scalar times
linear kernel.

Let us define a valid kernel function, satisfying Definition 1:

k2(x,x
′) = ⟨ϕ(x), ϕ(x′)⟩ = e

−1

2σ2 [||x||22+||x′||22], (15)

We can rewrite equation (12) as

K(x,x′) =e
−1

2σ2 (x−x′)T (x−x)

=e
−1

2σ2 ||x||22+||x′||22−2⟨x,x′⟩

=e
−1

2σ2 ||x||22+||x′||22e
1
σ2 ⟨x,x′⟩

=k2(x,x
′)k1(x,x

′). (16)

Eq. (16) proves that the RBF kernel could be defined as a product of two valid
kernels. The product of two positive definite kernels is a positive definite kernel.
Thus, (16) satisfies Mercer’s condition and hence is a valid kernel. Further, from
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the Taylor series, we know that ex gives a polynomial equation of infinite power;
thus RBF kernel works as a projection into infinite dimension. It is one of the
most preferred and widely used kernels in SVM [10].

Below we briefly mention some properties of RBF kernel informally.

1. It places RBF centered at each point then performs linear manipulation
that maps the data to a higher dimension, (possibly infinite) space where
the data-points are easier to separate [43].

2. It is a stationary kernel that is, for some vector-valued c of dimension to
match inputs, a stationary kernel will yield same k(x,y) for k(x+c,y+c) [16].

3. It can be applied without any prior knowledge about data.

Using the Taylor series, we can expand ex to a polynomial equation of infinite
power. Thus, the RBF kernel can induce a feature space of infinite dimension in
theory.

2.2 Reproducing Kernel Hilbert Space (RKHS)

Before we begin defining the RKHS and its properties, we define some related
terminology.

Definition 3. (Hilbert Space [44]) Hilbert space is a complete inner product
space with respect to norm defined as

||x|| =
√
⟨x, x⟩. (17)

Definition 4. (Reproducing Kernel [2]) For a Hilbert Space H k(·, ·) is a
reproducing kernel if ∀f ∈ H, f(x) = ⟨k(x, ·), f(·)⟩.

Definition 5. (Reproducing Kernel Hilbert Space [4]) It is a Hilbert Space
H with a reproducing kernel k whose span is dense in H.

In simpler terms, RKHS is a vector Space, H with a scalar product ⟨·, ·⟩ and a
mapping function ϕ : X 7→ H such that, ∀x, y ∈ X and k a kernel function

k(x, y) = ⟨ϕ(x), ϕ(y)⟩H. (18)

The space we define here is a space of functions. So, all the elements in this space
are functions. From previous definition (equation (18)) we define the functions
in H as

x ∈ X 7→ ϕ(x) ∈ H := kx := k(x, ·).
Consider x as a parameter of function kx and a as an argument. So, when
we pass a to kx, it maps to k(x, a). That is, x ∈ X is mapped to a function
Kx : X → R, kx(y) = k(x, y). In other words, under this definition we can write
ϕ(x) = k(·, x) and ϕ(y) = k(·, y) without ambiguity. From these examples we
can illustrates two important features of RKHS [15] mentioned below.

– The feature map of every point is in the feature space.

∀x ∈ X , k(·, x) ∈ H.
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– k has a reproducing property, i.e., ∀x ∈ X ,∀f ∈ H, ⟨f, k(., x)⟩H = f(x)
In particular, for any x, y ∈ X

k(x, y) = ⟨k(., x), k(., y)⟩H.

Moore-Aronszajn Theorem [1] states that for every positive definite function
k(·, ·) there exists a unique RKHS and vice-versa.

2.3 Quantum Kernels

Before we turn ourselves towards quantum kernels, lets recall some subtle de-
scriptions of RKHS. A RKHS is an alternative feature space F for a kernel κ,
that is a feature space of functions x→ fx(·) = κ(x, ·) [36,35]. In simple terms,
F is a Hilbert Space with a reproducing kernel k : X ×X → R that satisfies two
properties.

– For x ∈ X , κ(x, ·) ∈ F .
– ⟨f, κ(x, ·)⟩ = f(x),∀f ∈ F .

We provide an example to check if a kernel is a reproducing kernel with repro-
ducing properties.
Consider a kernel definition K(x, x1) =

∑P
i=1 ϕi(x)ϕi(x1). Lets fix a point x and

remove x1, we get

K(x, .) =

P∑
i=1

ϕi(x)ϕi(.) =

P∑
i=1

ϕi(x)ϕi ∈ F .

It is a linear combination of functions, so it does belong to F . This satisfies the
first property.

Next, let us take a function in F defined as f =
∑

j w
jϕj . Then compute

⟨f, k(x, .)⟩F =

p∑
j=1

wjϕj(x) = f(x).

This means that k is a reproducing kernel. A reproducing kernel is often used as
input encoding in quantum machine learning. Let x ∈ X be a set of input data.
Let |ϕ(x)⟩ be an encoded quantum state that lives in Hilbert space F . In other
words, this data encoding is similar to the feature map ϕ : X → F , often referred
to as quantum feature map. Thus, by the definition of kernel function we get a
kernel κ from ϕ via (2). From the second property of reproducing kernel, κ is a
reproducing kernel of an RKHS Rk where |ϕ(.)⟩ lives. Hence, we conclude that
any kernel function that satisfies the reproducing properties is a quantum kernel
without getting into the mathematics behind the claim.

Definition 6. Quantum Kernel [36] If X is an input domain and ϕ data
encoding feature map, a quantum kernel is an inner product between two data-
encoding feature vectors, ρ(x), ρ(y) with x, y ∈ X ,

κ(x, y) = tr{ρ(y)ρ(x)} = || ⟨ϕ(y)|ϕ(x)⟩ ||2. (19)
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Unlike classical kernel, quantum kernel is a product of complex-valued kernel
κc(x, y) = ⟨ϕ(y)|ϕ(x)⟩ and its complex conjugate, κc(x, y)

∗ = ⟨ϕ(y)|ϕ(x)⟩∗ =
⟨ϕ(x)|ϕ(y)⟩. We will prove that (19) is a valid kernel, i.e. symmetric and positive
definite. κc(x, y) is a valid kernel from (2). We have to show that κc(x, y)

∗ is
also a valid kernel.

Proof. (Simplified from [35] Def. 2) For any cm ∈ C and for any xm ∈ X ,m =
1, . . . ,M ∑

m,m′

cmc
∗
m′(κc(xm, xm′))∗ =

∑
m,m′

cmc
∗
m′ ⟨ϕ(xm)|ϕ(xm′)⟩

=

(∑
m

cm ⟨ϕ(xm)|

)(∑
m

c∗m |ϕ(xm)⟩

)
∣∣∣∣∣
∣∣∣∣∣∑

m

c∗m |ϕ(xm)⟩

∣∣∣∣∣
∣∣∣∣∣
2

≥ 0. (20)

We proved that the complex conjugate of a kernel is positive definite function
therefore a valid kernel. By the property of kernel, the product of two kernels is
also a kernel. Thus, (19) is a valid quantum kernel.

3 Quantum Machine Learning

Classical machine learning algorithms generally require several operations poly-
nomial to dataset size N in training examples. Due to the constant growth in
globally stored data, O(N2) might be two demanding even after efficiency opti-
mization without altering the statistical performance [9]. Quantum computation
could potentially improve the efficiency by running costly machine learning al-
gorithms or their subroutines efficiently [37,9]. In quantum computing, a state
|ψ⟩ with n qubits is a vector in 2n dimensional complex space. A wide variety
of QML algorithms build a matrix transformation by performing quantum logic
operations/measurements on qubits for which it multiplies the state vector by
2n × 2n matrices [5]. Leveraging the matrix transformation, quantum comput-
ers have improved the efficiency exponentially over the classical counterparts by
solving common linear algebraic operations in the time that is polynomial in n
[17,5]. These efficiency improvements have shown some promising results in ma-
chine learning algorithms. For example, for a dataset with N dimensional feature
space, andM training vectors, SVM can formulate a quadratic problem [40], that
can be solved proportional to O(log

(
ϵ−1
)
poly(N,M)) with ϵ accuracy. However,

Rebentrost et al. has shown that for both training and classification, quantum
SVM can be implemented with O(logNM) run time complexity [31]. Rivas et
al. showed that it is possible to determine qubit input sequence for yielding 1 as
an output of the circuit [22] in O(

√
N) complexity using Grover Search. There

are two approaches for QML widely exploited in literature, Quantum Neural
Network (QNN) or parameterized quantum circuits and using quantum kernel
as the inner product of two data-encoded quantum states. We briefly describe
these two approaches in the following sections.
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3.1 Parameterized Quantum Circuits

In parameter Quantum Circuits (PQCs), often called QNN in machine learning,
the learning problems are formulated as variational optimization problems. The
hybrid system3 is used to find the approximate solution for these problems.
The general approach for learning in a hybrid system follows to pre-process the
data in the classical computer. It helps to determine the set of parameters θ
for PQC. In the hybrid system, a quantum device prepares the quantum states
and performs measurements. The measurement outcomes are post-processed by
classical computers. A learning algorithm in a classical computer updates the
model parameters. The entire algorithm is executed in a close loop of the hybrid
system.

For a input domain X and output domain Y, a classical machine learning
model can be defined as a function fθ : X → Y for deterministic models and
pθ : X [⊗Y]→ [0, 1] for probabilistic models [36]. We will see that PQCs can be
interpreted as machine learning models with a mere conceptual change. Given
a close quantum system with n qubits we apply a quantum circuit U(θ, x) x ∈
X , θ ∈ Rk to the initial state |0⟩⊗n

. The quantum circuit depends on inputs x
and parameters θ. One can interpret the expected value of measurementsM as
an output of a quantum system in hybrid system. There can be any internal
structure for U(x, θ); however, (21) provides the most popular choice:

U(x, θ) =W (θ)S(x), (21)

where S(x) is the data embedding block and W (θ) is the parametrised block.
Provided with a quantum circuit and input, a domain deterministic quantum
model can be defined as follows.

Definition 7. Deterministic Quantum model (simplified from [35,3,8]). If
X be a input domain and U(x, θ) be a unitary operator, and M =

∑
i λipi be a

Hermitian operator of interest with ith eigenvalue λi and pi the ith projector on
corresponding eigenspace, |ψ⟩ (x, θ) is the state prepared by U |0⟩⊗n

, determinis-
tic variational quantum model is defined as

fθ(x) = ⟨ψ(x, θ)|M |ψ(x, θ)⟩ . (22)

Similar to classical machine learning algorithms, PQC models can be trained
by minimizing the loss function L(θ). The parameter vector θ on (21) can be
optimized via gradient descent and gradient-free way. For the scope of this paper,
we discuss the gradient-based optimization where the parameters are updated
in an iterative method towards the direction of the local minimum provided by
the update rule:

θ ← θ − η∇θL, (23)

3 A widely accepted term for a system with classical computers and quantum computer
where pre/post-processing of data and learning algorithm implementation occurs
in classical computer and state preparation and measurement occurs in quantum
computer.
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where η is the learning rate and ∇θL is the gradient vector. We can approximate
the partial derivatives of (22) that depends on a parameter µ ∈ θ using finite-
difference method,

∂fθ
∂µ
≈ fθ − fθ+△θ

||△θ||
, (24)

where △θ is the Cartesian unit vector where µ was exchanged by µ +△µ, △µ
is a tiny shift.

With gradient-descent as an optimization technique, one immediately thinks
of vanishing gradient and exploding gradient problems. Performing unitary op-
erations on Recurrent Neural Networks (RNN) solves the exploding gradient
problem [42]. By the definition of quantum gates, all quantum gates except
measurements and reset operations are unitary. Thus, any quantum circuit im-
plementing quantum gates avoids exploding gradient problems. While the issue
of vanishing gradients on the random quantum circuit with reasonable depth re-
mains [26] we could alleviate the problem by using the highly structured quantum
circuits [14].

The following subsection describes a different approach, kernel-based learn-
ing, for supervised quantum machine learning.

3.2 Quantum Machine Learning and Kernel Methods

In QML (we focus on supervised learning), rather quantum computing, the data
x ∈ X are mapped into a quantum state ϕ : x→ |ϕ(x)⟩ by a mapping function ϕ :
X → F that lives in a Hilbert space F and described as |ϕ(x)⟩. This mapping is
similar to state preparation circuit Uϕ(x). More importantly, encoding inputs to
a higher dimension is surprisingly similar to kernel methods. In kernel methods,
we can access the higher dimensional feature space via kernel or inner products of
features vectors given by (2). Similar to kernel methods, we can access the Hilbert
space F of quantum state via measurement, which can also be expressed by
inner products between quantum states [35]. Unlike PQC, the Quantum Kernel
Estimator (QKE) does not use a variational circuit for data processing [3]. So,
one can easily avoid the barren plateau problem [18,26] using kernel methods
for learning, but the cost of pair-wise distance estimation remains.

The first step in QML is to encode the data that can be implemented by
a quantum circuit Uϕ(x). Various data-encoding feature map techniques give
rise to a kernel. It is important to note that there are kernels that the classical
computer can not compute efficiently [25]. Basis encoding, amplitude encoding,
repeated amplitude encoding, rotation encoding, and coherent state encoding
are some data-encoding strategies that give rise to quantum kernels [36]. We can
obtain these kernels by calculating the inner product between states, that is,
provided by overlap defined by (19). Once we have the kernel, we can implement
it as a subroutine in (1). Note that in quantum machine learning, although the
kernel is computed in a quantum computer in (1), the hyperplane is constructed
in a classical computer. We can train the quantum-kernel featured model via
least square approximation [31,30] or solve standard regularized empirical risk
minimization over the RKHS of the quantum kernel [36].
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Quantum kernel learning methods finds best coefficient αm,m = 1, ...,M
to optimize the observable measurements in a subspace spanned by trainable
parameters M given by

αopt = max
α

∑
m

αm −
1

2

∑
m,m′

αmαm′ymym′κ(xm, xm′), xm ∈ X , ym ∈ Y. (25)

In the previous two sections, we describe learning in quantum machine learn-
ing via two different approaches. Recently, there have been numerous works in
these areas. An excellent review with experiments in this field can be found in
[11,23,35,24]. In the next section, we review the advantages and disadvantages
of these two approaches over.

3.3 Is Kernel-based learning better than Variational Training?

This optimization problem is convex in kernel-based learning, and the subspace
contains globally optimal measurements that provide some advantage for kernel
models over variational training models. Using available tools, it is guaranteed
to find the optimal minimum [7]. On the other hand parameterized ansatz, or
“templates”, defines the optimizing subspace for variational training [3]. It is
uncertain if this subspace overlaps with the training data sub-space. Thus, the
optimization might not be convex, and hence we do not always have access to the
optimal minimum. Therefore, kernel-based learning guarantees better or at least
the same minima to variational training by finding the global optimal measure-
ments for all possible quantum models. One thing to note, although in principle
quantum computers can train the kernel methods learning in O(N) complex-
ity in the number of training samples N , the pair-wise distance calculation is
at least O(N2) complexity in classical machine learning. So, does training vari-
ational quantum circuit have an advantage over kernel-based training for the
larger dataset, or in general, overall? Well, it depends. Parameter-shift rules [29]
for gradient-based learning in variational circuits scales linearly in a number
of parameters |θ| and circuit measurement M for training the model. So, the
growth function is O(|θ|M). From this growth function, one can immediately
follow that if the number of parameters grows slow enough with the increase
in data size, then the variational-based training does have an advantage over
kernel-based learning. However, if similar to a neural network, the number of
parameters in ansatz grows linearly with the data size, the variational quantum
model will have the same scaling as kernel-based learning regarding M . Regard-
less, suppose one selects variational training over kernel-based training. In that
case, there is no guarantee to obtain an optimal final measurement, and we will
be adding extra work to select a better variational ansatz. Thus, kernel-based
learning can be a better choice for quantum machine learning in theory.

4 Conclusion

In this review, we surveyed the applications of kernel and kernel methods in
SVM (briefly) and quantum machine learning. We covered various topics, in-
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cluding Mercer’s theorem, RKHS, three kernel functions, quantum kernels, and
quantum machine learning. While doing so, we showed that any symmetric func-
tion that satisfies Mercer’s condition is a valid kernel. We further proved that
the kernel functions satisfying the reproducing property of RKHS could be con-
sidered quantum kernels. We explored two approaches for quantum machine
learning, parameterized quantum circuit or variational quantum model train-
ing and kernel-based training. We believe with access to fault-tolerant quantum
computers, kernel-based quantum machine learning enables computations that
are exponentially hard classically.
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