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Abstract—The limited supply of qubits and significant quantum
noise impose limitations on the capability of quantum algorithms
in the Noisy Intermediate-Scale Quantum (NISQ) era. NISQ
devices have a variety of applications, such as Variational
Quantum Circuit (VQC), which provides answers to difficult
optimization and machine learning problems. This paper presents
a thorough investigation of quantum variational classification in
the NISQ context, with a focus on comprehending noise’s impact
on various feature maps and VQCs. We evaluate the effectiveness
of quantum classifiers using a variety of datasets, ranging from
straightforward binary classification problems to more complex
tasks. Our results reveal the critical role that feature maps and
variational circuit selection play in mitigating the effect of noise,
identifying specific quantum circuit designs that exhibit robustness
even in noisy situations. In order to highlight the potential of
quantum machine learning in solving complex problems within
the NISQ setting, this study emphasizes the delicate interaction
between feature map selection, variational circuit design, dataset
complexity, and quantum noise.

Index Terms—Variational Quantum Circuits, NISQ Devices,
Noise, Feature Map, Quantum Classifiers.

I. INTRODUCTION

The emergence of Noisy Intermediate-Scale Quantum
(NISQ) devices has significantly advanced quantum computing.
Current quantum processors, although characterized by a
limited number of qubits and lack of full fault-tolerance, have
the potential to revolutionize computational sciences by tackling
problems deemed intractable for classical computers [1]–[3].
These quantum devices’ nascent stage and high noise levels
present a unique set of challenges and opportunities [1].

One of the promising applications of NISQ devices lies in
machine learning and optimization, facilitated by variational
quantum circuits [4]. Hybrid quantum-classical algorithms,
such as the Variational Quantum Eigensolver (VQE) [5] and
the Quantum Approximate Optimization Algorithm (QAOA)
[6], exemplify this approach by leveraging the advantages of
quantum computation and mitigating potential losses through
classical optimization routines. These algorithms play a crucial
role in the construction of quantum machine learning (QML)
models.

The rapidly evolving field of QML aims to exploit the unique
properties of quantum mechanics, including superposition,
entanglement, and interference, to enhance machine learning
models [7], [8]. Typically, the generation of QML models

involves training quantum circuits using quantum algorithms in
a hybrid quantum-classical approach, which are then optimized
using various techniques such as quantum gradient descent
[9], variational quantum eigensolver [5], quantum natural
gradient [10], and quantum annealing [11]. These techniques
are designed to optimize the efficiency and accuracy of model
training on quantum hardware [12]. A central component of
these algorithms is the variational circuit, a parameterized
quantum circuit where parameters are iteratively updated using
classical optimization methods to minimize a predefined cost
function [13].

Parameterized Quantum Circuits (PQCs) [6], essentially
Quantum Neural Networks (QNNs) in the context of machine
learning [14], and Quantum Kernel Methods (QKMs) [8]
are two prevalent approaches for training QML models.
QML algorithms, such as Quantum Support Vector Machine
(QSVM) [15], Quantum Principal Component Analysis [16],
and Quantum K-means [17], have demonstrated quantum
speedups over classical methods. Despite the potential of QML
to offer considerable computational speedup, it remains unclear
whether QML can consistently outperform classical methods
across various learning tasks. Ref. [18]–[21] have probed the
performance of QML algorithms on diverse classification and
regression problems. While these studies suggest that QML
can outperform classical methods in certain instances, there
are also cases where it underperforms [4], [22].

Another significant challenge in QML is the noise inherent
in quantum hardware, which can substantially affect model
performance and accuracy [12], [23]. The performance of
QSVM on real-world datasets, for instance, has been found to
be lower than its theoretical promise due to quantum hardware
noise [24]. For QNNs, training on large datasets poses a
challenge due to the high computational complexity of quantum
circuits [3].

Several techniques, such as error mitigation [25], quantum
error correction [26], variational quantum thermalizing algo-
rithm [27], zero noise extrapolation [28], and randomized
circuit resampling [28], have shown theoretical promise in
enhancing the accuracy and robustness of QML models in the
presence of noise. It is not only of theoretical significance
but also of practical importance to study quantum variational
classification in the presence of noise. As NISQ devices
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continue to evolve, understanding the noise effects on quantum
classifiers becomes crucial for efficient quantum algorithm and
hardware design [29].

Recognizing the need to understand quantum classifiers’
resilience under noise, this paper undertakes a comprehensive
study of quantum variational classification in the NISQ era.
We evaluate the impact of noise on different feature maps,
variational circuits, and their performance across diverse
datasets, including iris [30], [31], Two Interleaving Half
Circles, Concentric Circles, Binary Classification, and Isotropic
Gaussian Blobs from scikit-learn1, and a synthetic dataset
following [29]. The effects of bitflip and thermal noise on the
performance of variational quantum circuits on these datasets
are thoroughly investigated. Our approach involves establishing
a baseline performance by implementing a variational quantum
circuit model for a specific optimization problem on a noiseless
quantum simulator. Subsequently, we simulate the effect of
noise by running the circuit on two different noisy simulators.
The first simulator introduces bitflip noise, modeled by the
Pauli-X error channel with a probability of p [9]. The
second simulator introduces thermal noise, modeled by the
amplitude damping channel with a damping rate of γ [32]. The
performance of the circuit is then evaluated under these noisy
conditions and compared to the baseline established with the
noiseless simulator.

II. VARIATION QUANTUM CIRCUITS AND FEATURE MAPS

A. Variational Quantum Circuits
At the heart of variational quantum algorithms are Variational

Quantum Circuits (VQCs), which are paramount in the design
and performance of quantum classifiers. VQCs are parameter-
ized quantum circuits with parameters that undergo iterative
optimization to minimize a designated cost function [33]. A
VQC can be generally formulated as follows:

U(x, θ) = Us(x)
∏
i

Uw(θi), (1)

In this equation, U(x, θ) signifies the unitary transformation
embodied by the variational circuit. The feature map, Us(x) =
|ϕ(x)⟩⊗n

: ϕ : X 7→ H, maps from the input space X to the
quantum Hilbert space H, with n representing the number
of qubits. Uw(θi) refers to the parameterized single-qubit or
multi-qubit gates, while θ = {θ1, θ2, ..., θm},m, n ∈ Z+, are
the parameters of the circuit [34].

A VQC-based machine learning model can be construed as
a quantum circuit [7], [35]. The QML model is derived by
measuring a Hermitian operator M in Equation 1, yielding:

fθ(x) = ⟨U(x, θ)|M |U(x, θ)⟩ , (2)

The performance of Equation 2 in terms of learning can
be enhanced via training and minimizing the cost function. In
the realm of a quantum classifier, the cost function could be
defined as:

C(θ) =
1

N

N∑
i=1

|yi − fθ(xi)|2 (3)

1https://scikit-learn.org/stable/datasets.html, version 1.2.2

Fig. 1. Mapping of input from input space X to a quantum Hilbert space H
via a mapping function ϕ(·). k(·) is a vector on H.

In this equation, N is the total number of training examples,
yi are the true labels, xi are the input data, and fθ(xi) are the
predictions made by the quantum classifier for each input xi.

The parameters θ of Equation 1 are updated using classical
optimization algorithms, such as gradient descent, in order to
minimize Equation 3.

The update rule for the parameters in the case of gradient
descent is:

θt+1 = θt − η∇L(θt) (4)

In this equation, η is the learning rate, and ∇L(θt) represents
the gradient of the loss function, L(θ) =

∑
i |yi − ŷi|2, with

respect to the parameters at the tth iteration [36].

B. Feature Maps

Feature maps function as the bridge that encodes classical
data into quantum states, thus forming an integral component of
quantum machine learning architectures. They map input data
x = (x1, x2, ..., xd) from a d-dimensional space to a quantum
state |ϕ(x)⟩ in the Hilbert space H [4].

The general form of a quantum feature map, ϕ, can be
depicted as:

|Ψ(x)⟩ = ϕ(x) |0⟩ = U(x) |0⟩ (5)

In this equation, |0⟩ represents the initial state of the qubits,
and U(x) is the unitary transformation that is dependent on
the input data x [8], [29]. Fig. 1 provides an illustration of
this mapping between two feature spaces.

Different types of feature maps can be employed for
encoding. The distinguishing factor among these feature maps
lies in their data encoding methods and the transformations
applied to the initial state. Various feature maps suitable for a
wide range of QML problems have been proposed by different
authors [4], [29], [37]–[39]. However, in this paper, we confine
our discussion to several derivatives of the encoding strategy
proposed in [29]. For a circuit with d depth, a unitary operator
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Fig. 2. Quantum circuit diagram representing a two-qubit quantum operation consist of 2 dimensional feature vector x and 8 learnable parameter vector
θ. The circuit consists of Hadamard (H) gates, phase (P) gates, controlled-NOT (CNOT) gates, and rotation gates (Ry and Rz) parameterized by angles
from the vectors x and θ. The gates are applied in a specific sequence to qubits q0 and q1, followed by measurement (indicated by the meter symbols) on a
computational basis. The phase gates include a parameterized phase shift, with one of the phase gates incorporating a product of angles. The rotation gates are
applied with different parameters from the θ vector.

defined by the following equation can execute a classically
intractable feature map:

Uθ(x) =
∏
d

exp

i
∑

j⊆1,2,...,n

ϕj(x)
∏
k∈j

Pk

H⊗n (6)

In this equation, the number of qubits is represented by
n = |x|, ϕj(x) denotes the coefficient encoding for x, and
Pk ∈ {I, X, Y, Z} can be extended as Pauli-gates, while H
symbolizes the Hadamard gate.

These feature maps, serving as the intermediary between
classical data and quantum computations, play a pivotal role in
the performance of quantum classifiers under different types of
noise. Therefore, understanding their behavior and resilience in
the face of noise is vitally important in designing and applying
quantum variational classifiers [33].

III. METHODOLOGY

A. Problem Setup

We initiate our discussion by defining the binary classifica-
tion learning problem for the datasets specified in Section I.
Let’s assume that X ⊆ Rd is a feature space of d dimensions.
Given a dataset D ∈ X comprising N training examples,
D = {(x1, y1), (x2, y2), . . . , (xN , yN )}, where xi ∈ Rd

denotes a d-dimensional feature vector and yi ∈ {0, 1} indicates
the corresponding binary label, the goal of a binary classifier is
to learn a function f : Rd → {0, 1} that can accurately predict
the label y for new, unseen feature vectors x [40].

In the context of quantum machine learning, this learning
problem is mapped onto a quantum system. Here, the feature
vectors are encoded into quantum states using a feature map,
as described in Section II-B. Thus, the quantum classifier can
be expressed as follows:

f(x) = ⟨Ψ(x)|U†(θ)MU(θ) |Ψ(x)⟩ (7)

In this equation, |Ψ(x)⟩ = Φ(x) |0⟩ is the quantum state ob-
tained by applying the feature map Φ(x) to the initial state |0⟩,
U(θ) is the variational quantum circuit parameterized by θ, M
is the measurement operator, and ⟨Ψ(x)|U†(θ)MU(θ) |Ψ(x)⟩
is the expected value of the measurement on the state obtained
by applying U(θ) to |Ψ(x)⟩ [35].

In our setup, we choose the measurement operator, M , to
be the Pauli operator. This results in an outcome within the
{−1,+1} range. For any given feature vector x, we assign a
label as y = sign(f(x)). The parameters θ of the variational

quantum circuit are optimized to minimize the cost function
defined in Section II-A, thereby learning the function f that
best classifies the training examples [13].

B. Experimental Setup

This study employed a quantum variational approach to
optimize a parameterized quantum circuit using a classical
optimizer in a 2 qubits system. The optimization procedure is
carried out under noisy conditions, examining the impacts of
various noise models. The experimental setup, including the
quantum circuit architecture, the optimization algorithm, the
loss function, and the noise models, is detailed in the following
subsections.

1) Quantum Circuit Architecture: We developed two random
variational quantum circuits inspired by qiskit [41] variational
circuits. Fig. 2 depicts one such quantum circuit for a 2-
dimensional feature vector and 8 learnable parameters.

• Two-Local-Inspired Circuit: This configuration comprises
alternating rotation and entanglement layers. The rotation
layers include single-qubit gates independently applied
to each qubit, while the entanglement layers encompass
two-qubit gates that entangle the qubits according to a
pre-determined strategy. The specific gates used in the
rotation and entanglement layers are randomly selected
from a set of candidate gates, such as Pauli rotation gates
and controlled gates.

• EfficientSU(2)-Inspired Circuit: This configuration con-
sists of layers of single-qubit operations spanned by the
special unitary group SU(2) and CNOT entanglements.
The circuit is designed to prepare trial wave functions
for variational quantum algorithms or to function as a
classification circuit for quantum machine learning. The
specific single-qubit gates are randomly selected from the
SU(2) group, which represents 2x2 unitary matrices with
determinant 1, such as the Pauli rotation gates.

2) Loss Function and Optimization: The binary cross-
entropy loss function, as defined in equation 8, was employed
in the optimization process.

L(y, ŷ) = −y log(ŷ)− (1− y) log(1− ŷ) (8)

In this equation, y is the true label, and ŷ = f(x) is
the predicted probability. This loss function measures the
divergence between the predicted probabilities and the true
labels in binary classification tasks. [42].



The optimization of the parameterized quantum circuit was
performed using the Simultaneous Perturbation Stochastic
Approximation (SPSA) optimizer [43], [44]. SPSA is a well-
regarded optimization method, particularly suitable for noisy
optimization problems. Its efficiency in terms of function
evaluations is due to the fact that it only requires two function
measurements to compute an estimate of the gradient, regardless
of the dimension of the optimization problem.

The SPSA algorithm follows these steps when given a
loss function L(θ) to minimize, where θ ∈ Rn denotes the
parameters of the model:

(i) Initialize the parameters θ(0) and set the iteration number
k = 0.

(ii) At each iteration k, generate a random perturbation ∆(k)

with i.i.d. entries drawn from a symmetric Bernoulli ±1
distribution.

(iii) Estimate the gradient g(k) of the loss function at θ(k)

using the symmetric difference quotient:

g(k) =
L(θ(k) + ck∆

(k))− L(θ(k) − ck∆
(k))

2ck∆(k)
(9)

where ck is a positive step size sequence.
(iv) Update the parameters using the estimated gradient:

θ(k+1) = θ(k) − akg
(k) (10)

where ak is a positive gain sequence.
(v) Set k = k+1 and repeat steps (ii)− (iv) until a stopping

criterion is met.
The step size and gain sequences ck and ak are usually chosen
to satisfy certain conditions for convergence, such as ak =
a/(k + A)α and ck = c/(k + 1)γ , where a,A, α, c, γ are
constants.

This algorithm provides a simple and efficient method for
optimizing the parameters of variational quantum circuits,
particularly in the presence of noise.

C. Experimental Procedure

Our variational quantum circuit model was trained for a total
of 300 steps, with initial parameters randomly initialized from
a uniform distribution using the numpy library in Python. We
leveraged standard machine learning libraries alongside Qiskit
for quantum computing functionalities.

Three distinct experimental conditions were set up for
the study: (1) a noiseless simulation, (2) a simulation with
bit-flip noise, and (3) a simulation with thermal noise. The
noiseless simulation was conducted using Qiskit’s Aer module
“qasm simulator” backend with 1024 shots for each circuit
execution. To ensure reproducibility, the random seeds for the
simulator and the transpiler were set to 42.

The simulation incorporating bit-flip noise utilized the
AerSimulator backend with a noise model replicating bit-flip
errors. The noise model was configured to flip a single qubit
gate with a probability of 0.05 when a single qubit gate was
applied, and a probability of 0.1 was set to flip the state of a
qubit during measurement. A probability of 0.05 was set for
resetting a qubit to state |1⟩ instead of |0⟩. Correlated bit-flip

errors were introduced to two-qubit gates via a mixed Pauli
error channel within Qiskit. The noisy backend for bit-flip was
set up with the noise model, 1024 shots per circuit execution,
and random seeds of 42 to maintain reproducibility.

For the simulation with thermal noise, the AerSimulator
backend was supplied with a noise model that mimicked
thermal errors. This model introduced thermal relaxation
errors, determined by the relaxation time constant T1 and
the dephasing time constant T2 (where T2 ≤ 2T1) for each
qubit. Instruction times for reset and measurement were set
to 1 microsecond, with single-qubit gates represented by Pauli
gates and two-qubit gates by CNOT. The noisy backend for
thermal noise simulation shared the same settings as the bit-flip
configuration.

We conducted the optimization process under each of these
three conditions. The results obtained from these simulations
were subsequently analyzed to evaluate the impact of quantum
noise on the performance of the variational quantum circuit.

IV. RESULTS AND DISCUSSION

A. Result

Our analysis reveals noteworthy insights about the interaction
between quantum noise and the performance of various
datasets in a quantum machine learning framework. Six
datasets— Isotropic Gaussian Blobs, Concentric Circles, Iris,
Adhoc, Binary Classifications, and Two Interleaving Half
Circles—training and test accuracies were examined under three
distinct conditions: Simulator, Bitflip noise, and Thermal noise.
The scatter plot for these datasets is presented in Fig. 3 for
visualization. A summary of the training and testing accuracies
for all datasets and noise conditions is presented in Table I.

For the “Isotropic Gaussian Blobs” dataset, we observed a
significant dip in training and test accuracies when exposed
to Bitflip and Thermal noise compared to the Simulator. The
training accuracy decreased from 51.25% with no noise to
37.5% and 40% with Bitflip and Thermal noise, respectively.
The test accuracy exhibited a similar trend, dropping from
50% to 20% and 35% under Bitflip and Thermal noise
conditions, respectively. The lower performance could be
attributed to the dataset’s inherent structure, which might be
more susceptible to quantum noise, highlighting the need for
more robust quantum error correction techniques for such
datasets. The “Concentric Circles” dataset revealed a different
image. While there was a noticeable drop in performance
while using Bitflip and Thermal noise, it was not as severe as
when using Isotropic Gaussian Blobs. The training accuracy
dropped from 90% in the Simulator to 72.5% and 70% in Bitflip
and Thermal noise, respectively. The test accuracy followed
a similar pattern, dropping from a considerable 100% in the
simulated environment to 55% and 65% under Bitflip and
Thermal noise, respectively. The low testing accuracy in the
presence of Bitflip noise suggests that this type of noise might
be more disruptive to the model’s generalization capabilities.
The “Iris” dataset exhibited exceptional performance across all
noise conditions, with its lowest test accuracy at 90% under
Bitflip noise. It displayed a perfect test accuracy of 100% under
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Fig. 3. Scatterplots of six distinct datasets, each preprocessed to have two
features, making them suitable for binary classification and visualization. Two
Interleaving Half Circles is a synthetic dataset displaying two interleaving half-
circle distributions. Binary Classification is a customizable synthetic dataset
generated for multi-class classification tasks. The Adhoc dataset is tailor-made
for a unique task, showcasing the versatility of data handling in machine
learning. The classic Iris dataset features measurements of three species of
Iris flowers utilized for classification problems. Isotropic Gaussian Blobs
generate isotropic Gaussian blobs ideal for clustering or classification tasks.
Lastly, Concentric Circles is a synthetic dataset with two classes distributed in
concentric circles. Each subplot in the figure represents a distinct data structure
and classification task, highlighting the diverse challenges in machine learning.

the Simulator and Thermal noise, demonstrating the robustness
of this dataset.

The “Adhoc” dataset performed exceptionally well across all
noise conditions, maintaining a test accuracy of 95% and 100%
under Bitflip and Simulator/Thermal noise, respectively. This
high performance could be related to the inherent properties of
the “Adhoc” dataset, which may be more resilient to quantum
noise.

The “Two Interleaving Half Circles” dataset, similar to “Con-
centric Circles”, showed a moderate decrease in performance
when subjected to Bitflip and Thermal noise. However, it still
maintained high training and test accuracies above 90% in all
conditions, suggesting its strong resilience to quantum noise.

Finally, the “Binary Classification” dataset displayed a
unique trend, with test accuracy higher than training accuracy
across all noise conditions. This might be indicative of the
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Fig. 4. Comparative analysis of cost versus training steps for six datasets in
three different noise conditions: Simulator, Bitflip, and Thermal. Each subplot
demonstrates the impact of quantum noise on the learning process of variational
circuits, illustrating the varying degrees of noise resistance depending on the
complexity of the dataset.

TABLE I
PERFORMANCE OF VARIOUS DATASETS UNDER SIMULATOR, BITFLIP, AND

THERMAL NOISE CONDITIONS

Dataset Noise Train Accuracy Test Accuracy

Isotropic Gaussian Blobs
Simulator 0.5125 0.5

Bitflip 0.375 0.2
Thermal 0.4 0.35

Concentric Circles
Simulator 0.9 1.0

Bitflip 0.725 0.55
Thermal 0.7 0.65

Iris
Simulator 0.9625 1.0

Bitflip 0.8875 0.9
Thermal 0.925 0.95

Adhoc
Simulator 0.995 1.0

Bitflip 0.945 0.95
Thermal 0.995 1.0

Two Interleaving Half Circles
Simulator 0.9 0.9

Bitflip 0.9 0.85
Thermal 0.9375 0.9

Binary Classification
Simulator 0.675 0.75

Bitflip 0.7 0.8
Thermal 0.7375 0.8

dataset’s properties or beneficial interaction with the quantum
noise models employed.



B. Discussion

Table I and Fig. 4 present an intriguing picture of the
interplay between feature maps, variational circuits, quantum
noise, and the nature of the datasets in a quantum machine
learning setting. Noteworthy is the better performance of
models on the Iris and Adhoc datasets, which are typically more
complex than the binary classification problems presented by
the Isotropic Gaussian Blobs and Binary Classification datasets.
This could indicate that the feature maps and variational circuits
used in this experiment are more adept at capturing complex
patterns in the data rather than simple binary separations.

In the context of noise, the Bitflip and Thermal noise
conditions demonstrate a varying impact on the training cost
of the variational circuits. As the step count increases, the
training cost tends to decrease more for Simulator conditions
than their Bitflip and Thermal counterparts, indicating that
quantum noise can slow the learning process or even halt it.
The Bitflip noise, for instance, consistently causes the cost to
remain almost constant across all datasets, signaling that this
kind of quantum noise could seriously impede learning in a
NISQ-era quantum machine learning model.

The performance drop in Isotropic Gaussian Blobs and
Binary Classification could be because the quantum circuits’
high capacity is not as advantageous in these simpler problems
and could even be detrimental due to overfitting. The less
complex the problem, the more the model is susceptible to
noise, as evidenced in the Bitflip and Thermal noise conditions
for Isotropic Gaussian Blobs. On the other hand, for more
complex problems like the Adhoc and Iris datasets, the model
seems more resistant to noise, indicating that the right choice of
feature map and variational circuit can mitigate noise’s impact.

The importance of choosing the right feature map for a given
dataset comes into sharp relief. The high performance on the
Adhoc dataset suggests that if a feature map perfectly captures
the data structure, noise is less of an issue, maintaining high
accuracy even under noise conditions.

This study’s limitation to two qubits is an important
factor to consider. Quantum systems gain their power from
entanglement, and with more qubits, there’s a higher potential
for entanglement and hence more computational power. If more
qubits were used, the models might perform better on simpler
datasets as well, as they could take advantage of this increased
capacity to better handle noise and possibly prevent overfitting.

V. CONCLUSION

This research has illuminated the intricate interplay between
feature maps, variational circuits, quantum noise, and dataset
complexity in quantum machine learning. Notably, our models
showcased superior performance on more complex datasets
such as Iris and Adhoc, implicating that the chosen feature
maps and variational circuits are adept at deciphering intricate
data structures.

However, quantum noise, notably Bitflip and Thermal,
impeded the optimization of variational circuits, underlining
its adverse effects in the NISQ era. Interestingly, the careful
choice of feature maps and variational circuits could mitigate

the impact of noise, a phenomenon evident with the Adhoc
and Iris datasets.

Our research was constricted to two-qubit systems, limiting
the potential for entanglement, a crucial resource in quantum
computation. Would the inclusion of more qubits improve
performance on simpler datasets by leveraging increased
entanglement, even in noisy environments?

In conclusion, our findings underscore the importance of
the careful selection of dataset complexity, feature map, and
variational circuit design in the face of quantum noise in
quantum machine learning. A salient question for future
research is: How can we develop more noise-resistant feature
maps and variational circuits? Furthermore, how might we
strategize noise management in larger quantum systems?
Addressing these questions will be instrumental in advancing
quantum machine learning in the NISQ era and beyond.
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