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Abstract

Sign Language Recognition (SLR) models rely heavily on advances reached by
Human Action Recognition (HAR). One of the simplest and most dimensional-
reduced modalities is the skeleton joints and limbs represented with key-point
landmarks and edges connecting these landmarks. These skeletons can be obtained
by pose estimation, depth maps, or motion capture. For HAR, models are usually
interested in less granularity of pose estimation compared to SLR, where the
landmark estimation of not only the pose and body but the facial gestures, hands,
and fingers is crucial. In this work, we compare three whole-body estimation
libraries/models that are gaining attraction in the SLR task. We first find their
relation by identifying common keypoints in their landmark structure and analyzing
their quality. Then, we complement this analysis by comparing their annotations
in three sign language datasets with videos of different quality, backgrounds, and
regions (Peru and USA). Finally, we test a sign language recognition model to
compare the quality of the annotations provided by these libraries/models.

1 Introduction

Most recent work in Sign Language Processing (SLP), such as sign language recognition, sign
language translation, and production, relies heavily on advances reached by Human Action Recogni-
tion (HAR). More specifically, the skeleton modality produced by pose estimation models perfectly
suits SLP tasks that should be invariant to the clothing or background of the subjects. For example,
the skeleton modality is a simple and dimensional-reduced modality that has helped to recognize
pedestrian activities in urban mobility scenarios [11], player movement individually and in a group
for sports [10], or monitor elderly patients [17, 23]. In these tasks, landmarks at a low granularity
have been enough to achieve significant performance. However, for tasks related to sign language
processing, greater granularity is essential because of the importance of hands and gestures in sign
meaning.
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Most SLP tasks using the skeleton modality rely on two pose-estimation models available through
open-source libraries, either MediaPipe or OpenPose. The latter is among the most mentioned/adopted
in the linguistic and sign language research areas, i.e., at least 20% of papers accepted in the Sign
Language Workshop at LREC 2022 mention OpenPose. However, some other models might be
more suitable and accurate for hands and face landmarks estimation or a combination of them. In
this work, we compare three pose-estimation models, MediaPipe, OpenPose, and HRNet-based,
for sign language datasets. First, we identify the common and correspondent landmarks produced
by the different pose-estimation libraries and compare their quality through the percentage of in-
range (inside frame boundaries), out-of-range and missing values. We compare these landmarks for
three video-based sign language datasets with different quality (resolutions), background (one-color
background and in a classroom), and region (Peru and USA). Then, we complement this analysis
by testing the performance of two sign language recognition (SLR) models using the landmarks
produced by the pose-estimation libraries. Finally, we compare two groups of landmarks from body,
face, and hands to analyze their impact and show that a prior feature selection might help when
training sign language recognition models.

2 Related Work

In this section, we summarize the state-of-the-art for 2D pose estimation that has been usually trained
on body-joint datasets. Few works are starting working on whole-body joint estimations, and even
fewer have been trained on sign language datasets. Most of the advances in this task consist of models
with several stages and managing high and low-resolution of images.

There are two other categories to analyze the state-of-the-art, whether they perform a top-down
or bottom-up approach or a regression [8, 30] or heatmap approach, which is the most used lately.
Top-down methods estimate a bounding box through a person detector and, later, the body-joint
locations [8, 13]. In contrast, bottom-up approaches locate all the keypoint landmarks and, later,
group them into different individuals. As mentioned in [18], bottom-up might be more suitable
for urban mobility applications where several individual poses should be recognized in one image.
Similarly, most recent work uses a heatmap rather than the regression approach.

One of the first deep learning-based approaches, but pose only, was DeepPose [30], followed by
ConvNet [29] and Convolutional Pose Machine (CPM) [31] and the Stacked Hourglass approach
[22]. Later, other works attend all keypoints but are trained with different datasets for each section of
the body, like the hands and face. Some of the previous work in pose-only estimations were used
in works such as [27, 6], which cascades several hourglass networks and use CPM, respectively.
Another important previous work is [28] that presents HRNet, which also follows approaches based
on [22, 32, 9] but with the difference of a parallel component maintaining the high-resolution input
instead of restoring it from the reduced resolution process. However, few works are trained to
recognize the whole body keypoints at the time. For example, [15] introduces a whole-body dataset
by manually extending the annotation of COCO. Additionally, this work trains ZoomNet in a bottom-
up manner that zooms in on all more specific areas to determine finer keypoint locations. Another
work that tests the whole-body dataset is [33], which defines a weighted method to consider the
importance of different parts of keypoints based on OPenPifPaf [18]. OpenPifPaf is a ResNet-based
two-head network that predicts precise location (Part Intensity Field) on one side and association
(Part Association Field) on the other. Finally, some other recent methods intend pose estimation in a
whole stage and consider the video’s temporal dimension [1].

Before 2016, the most used metrics were: Probability of Correct Pose or Percentage of Correct Parts
(PCP), which measures the distance between predicted locations of a limb compared to the ground
truth; Percentage of Correct Key-points (PCK), which considers a correct estimation if this is within
a certain threshold distance of the true joint; or Percentage of Detected Joints (PDJ) which is similar
to PCK with the difference that the threshold is a percentage of the torso. Most recent works focus
more on Average Precision (AP), mean Average Precision (mAP), and mean Average Recall (mAR),
and still, some report PCK.
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3 Methodology

We aim to provide more insights on the suitability of three pose-estimation libraries or models
to annotate landmarks used in a SLP task such as sign language recognition. First, we introduce
technical details about these three libraries. Then, we pseudo-label three sign language datasets with
these libraries and compare the quality of their annotations. Finally, we complement this analysis by
using the annotated datasets to perform sign language recognition tasks with two SLR models in the
section 4. Our analysis scripts, adaptation of pose-estimation libraries and sign language recognition
models are publicly available1.

3.1 Pose-estimation Libraries

In this section we describe the models used in the MediaPipe and OpenPose library, as well as the
wholePose model.

MediaPipe (Holistic) integrates in one architecture different machine learning models for pose [2],
face detection [3], face recognition [16], hands [20] and uses an appropriate image resolution for
each region. It works with a total of 543 landmarks (33 pose landmarks, 468 face landmarks, and 21
hand landmarks per hand) [21]. For pose estimation, Mediapipe2 adopts a combination of a heatmap
and a regression approach. Besides, [2] reports training with two datasets of individuals performing
fitness activities.

OpenPose is an open-source real-time system3 that is built in a bottom-up approach [6]. To estimate
the pose, the model relies on subcomponents that first transform the input image into a feature map
for body part detection through a CNN . Then, the model produces confidence maps and part affinity
fields for association (PAFs) that represent the degree of associations. This network is based on the
architecture defined in [31] and an extension and variation work presented in [7]. To estimate the
hands, the model uses the work in [26] centered in hand pose detection, and in the same fashion the
facial keypoint estimation. Some disadvantages of this library are mentioned in [12, 25].

WholePose is what we call the model used in [14] which is based in an HRNet [28]. They report the
use of HRNet whole-body pose estimator provided by MMPose4 and tested in 27 selected keypoints.
Original HRNet is trained in COCO and MPII Pose Human datasets estimating many less keypoints.
This approach ranked first at the 2021 Looking at People Large Scale Signer Independent Isolated
SLR CVPR Challenge - RGB Track.

3.2 Analysis

The first dataset we analyze is from two interpreters of the Educational Peruvian TV Show Aprendo
en Casa (AEC) and presented in [4] in a controlled white background. The second dataset is a
corpus collected in [24] with deaf Peruvian signers and with a noisy background, usually a classroom
(PUCP-DGI156, but called in this paper as PUCP). The third dataset is a sample of the most used
American Sign Language dataset [19] (WLASL).

We analyze the quality of 71 landmarks of four sections: pose, face, left hand and right hand. We
also analyze the estimation in the following three categories in-range: when landmarks are within
the dimension of the frame; missing points: when the keypoint estimation model cannot define
the landmarks section of a certain part of the body; out of range: which are points that are not
exactly seen but estimated out of the frame. As we can see in Figure 1, MediaPipe identifies more
values of missing and out-of-range in the three datasets compared to openPose and wholePose.
WholePose does not provide explicitly labeled missing keypoints estimation; MediaPipe recognizes
more out-of-range keypoints in the three datasets; OpenPose recognizes more in left and right hands
for the three datasets. In Figure 2, we show the quality of one example of frame from each dataset.

We also analyze the general quality of videos by calculating percentage of frames with all landmarks
in-range. MediaPipe and OpenPose have less percentage of frames identifying the right wrist and
specially the left wrist compared to WholePose. This holds for the three datasets and in Figure 3,

1https://github.com/gissemari/impactOfPoseLibrariesInSLR
2https://google.github.io/mediapipe/solutions/holistic
3https://github.com/CMU-Perceptual-Computing-Lab/openpose
4https://github.com/open-mmlab/mmpose
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Figure 1: Percentage of Model Failure Cases in the three datasets

Figure 2: Example of visual quality for videos in left: AEC; center: PUCP; and right: WLASL

we show the particular case for WLASL where those percentages drop to around 70% and 50% for
right and left hand respectively. On the top right plot, we analyze all the landmarks for left hand and
they oscillate between a 38% and 55% for WLASL too. In the case of PUCP (bottom plots), only
MediaPipe drops to around 60% for right and left hand keypoints, and MediaPipe and WholePose
maintain a percentage of more than 90% and 80% for right and left hand respectively.

4 Experiments

The quality of the pose-estimation libraries is assessed by using their landmarks prediction on three
datasets to test two sign language recognition models. In particular, the three sign language video-
based datasets (AEC, PUCP and WLASL) are fed to each of the three pose estimation models. From
the total amount of landmarks or pose estimated, we select one group of 29 and another of 71, creating
other two landmark datasets for each sign language dataset, i.e. the AEC set of 29 landmarks are
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Figure 3: Percentage of in-range landmarks in body section Left Hand, Right Hand and Face

three (MediaPipe-29, OpenPose-29, and WholePose-29). We try to also test if more landmarks
imply better performance in the SLR models. Therefore, we report our results considering 29 and 71
keypoint landmarks in Top-1 and Top-5 (if the ground truth corresponds to one of the most probable
5 predicted classes).

A gloss is a token to describe the class or label of an specific sign. Our sign language recognition
models were trained for a sample of glosses that have more than 15 instances, excluding classes that
perform very bad in initial experiments, and the ones that imply pointing which are very similar
("I","YOU","THERE", etc.). These conditions resulted in 28 classes of AEC, 36 of PUCP, and 101 of
WLASL.

4.1 SLR Models

The first sign language recognition model consists of the landmark-based and graph-based component
of [14] adapted to work with 71 keypoint landmarks, as they originally consider only 27 keypoints.
The second one is a transformer-based model [5] tested in WLASL dataset [19]. It processes
the keypoint estimation through the Vision API5. For simplicity, we identify these two models
as SmileLab and Spoter respectively. Both models train between 3 and 8 millions of parameters
depending on the size of landmarks.

4.2 Results and Discussion

We divide each dataset in 80% for the training and 20% for the testing. For hyperparameter tuning, we
selected one landmark dataset (a certain group of landmarks estimated with one of the pose-estiation
models for a SL dataset) and tune the learning rate (LR) for an specific SLR model. Then, we use the
same LR for the landmark datasets produced by the other two pose-estimation library on that same
SL dataset and report the results.

To guarantee robustness of the comparisons, we run each experiment five times and report the average
accuracy along with the standard deviation, as show in Table 1 for results in Top-1 and 2 for results in
Top-5.

5https://developer.apple.com/documentation/vision
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As it can be seen in Table 1 and 2, none of the libraries works the best in all the datasets and settings.
WholePose is more stable because it ranks first or second for the two SLR models for AEC and PUCP.
MediaPipe works better in all the settings for WLASL. This seems contradictory to the Analysis
Subsection where the percentage of frames with all landmarks in-range for MediaPipe in this dataset
is low. Moreover, from the three datasets, WLASL is the one with better resolution quality which
make us think that MediaPipe work better when the video is from a good quality. OpenPose works
better in PUCP dataset for both sets of landmarks and both SLR models [5, 14].

The greater the number of landmarks we use in training the model, the better the top 1 accuracy we
obtain, but this only happens in Spoter model. The opposite result is found in SmileLab, only two out
of nine models have higher accuracy using 71 landmarks than 29 landmarks for Top-1. For Top-5,
the same rate two out of nine remains, as it can be seen in Table 1. Therefore, there is no enough
evidence to conclude that it is better to use a higher number of landmarks for the SLR task.

SLR
Model Library

Top-1
AEC PUCP WLASL

29 71 29 71 29 71

Spoter
MediaPipe 0.649

± 0.017
0.665

± 0.022
0.366

± 0.021
0.390

± 0.025
0.634

± 0.011
0.701

± 0.018

OpenPose 0.528
± 0.010

0.544
± 0.031

0.467
± 0.020

0.505
± 0.009

0.473
± 0.007

0.576
± 0.011

WholePose 0.613
± 0.028

0.627
± 0.018

0.442
± 0.032

0.453
± 0.011

0.418
± 0.028

0.502
± 0.004

SmileLab
MediaPipe 0.573

± 0.018
0.571

± 0.025
0.277

± 0.014
0.265

± 0.017
0.677

± 0.023
0.533

± 0.025

OpenPose 0.590
± 0.019

0.611
± 0.021

0.421
± 0.021

0.405
± 0.018

0.562
± 0.026

0.445
± 0.018

WholePose 0.646
± 0.022

0.675
± 0.008

0.390
± 0.021

0.380
± 0.026

0.584
± 0.021

0.518
± 0.018

Table 1: Spoter [5]and SmileLab [14] Top-1 results for groups of keypoints:29 and 71

SLR
Model Library

Top-5
AEC PUCP WLASL

29 71 29 71 29 71

Spoter
MediaPipe 0.869

± 0.0125
0.882

± 0.0134
0.751

± 0.032
0.735

± 0.015
0.893

± 0.010
0.919

± 0.008

OpenPose 0.879
± 0.010

0.869
± 0.0.024

0.784
± 0.024

0.777
± 0.013

0.797
± 0.007

0.838
± 0.012

WholePose 0.8854
± 0.014

0.905
± 0.015

0.781
± 0.016

0.758
± 0.016

0.764
± 0.030

0.801
± 0.015

SmileLab
MediaPipe 0.813

± 0.007
0.803

± 0.021
0.608

± 0.040
0.613

± 0.028
0.876

± 0.012
0.796

± 0.022

OpenPose 0.842
± 0.011

0.853
± 0.015

0.700
± 0.027

0.697
± 0.030

0.798
± 0.019

0.734
± 0.018

WholePose 0.866
± 0.007

0.854
± 0.015

0.690
± 0.044

0.689
± 0.019

0.812
± 0024026

0.767
± 0.015

Table 2: Spoter [5]and SmileLab [14] Top-5 results for groups of keypoints:29 and 71

5 Conclusions and Future Work

This work presents an analysis of three whole body pose-estimation libraries, i.e., MediaPipe,
OpenPose, and WholePose and compare them using basic statistics and through the additional task
of sign language recognition. We found that WholePose library shows less number of bad-quality
landmarks and performs better most of the time in the two sign language recognition models we
tested. These findings show that, contrary to the most-used pose estimation library being OpenPose,
sign language researchers might want to start using more other models such as WholePose and
MediaPipe.
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Most of the state-of-the-art and analyzed libraries are being trained to look at the whole body.
However, we believe pose-estimation models considering the special context of sign language, mostly
focused on the torso, hands, and facial gestures, can help improve these models for this type of task.

For future work, we would like to fill the missing landmarks of one pose-estimation library with the
in-range annotations from other pose-estimation library. In that way, we can get a combined landmark
dataset and measure it is worth to have a more complete dataset and the accuracy of an SLR model
improves with respecto to annotations done by individual pose-estimation libraries.

Finally, the training of these pose-estimation models relies on iterative supervision or metrics of most
common people size. However, there are other scenarios, like people of smaller size which have to
be considered when using these models to deploy products and end-user solutions. Testing in these
context can help improve pose-estimation models.
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