
Dog Breed Identification with a Neural Network over Learned
Representations from The Xception CNN Architecture

Kaitlyn Mulligan1 and Pablo Rivas2
1Department of Mathematics, Marist College, Poughkeepsie, NY, United States

2Department of Computer Science, Marist College, Poughkeepsie, NY, United States

Abstract— Machine learning is a growing field that has
greatly increased with the continuing advancements in tech-
nology. This area provides many tools that can perform
different tasks on large data sets. The focus of this paper
is on classification tools. Classification tools are utilized in
order to classify or predict the breeds of dogs based on an
input image. Many methods are used in attempts to classify
the images in the data set. The data set comes from a Kaggle
competition in which the goal is to predict the breed of
dog in the image. Participants tried many different methods,
some of which helped inspire this research. The classification
tools that are explored here are a Convolutional Neural
Network and Xception with a Multilayer Perceptron. The
paper explores the trial and error in all of the methods
as well as the final model that was used to predict and
classify the dog breeds. While the final model has a much
better prediction rate than the original attempt, there is an
acknowledgement of the errors made throughout the process.
With this acknowledgement comes areas to improve and
ideas to further explore this model as a classification tool
on dog breeds.

Keywords: Machine Learning, Classification, Xception, MLP,
CNN, Deep Learning, Merge Models

1. Introduction
Machine learning is a widely growing field. Continued

advancements in technology have greatly impacted the de-
velopment of machine learning allowing the field to gain
increased momentum. Machine learning allows data analyses
to be performed by the computer in place of humans. Al-
though some machine learning algorithms have been around
for some time, we have not always had the abilities with it
that we do now. With current technology and advancements,
we have the “ability to automatically apply complex math-
ematical calculations to big data - over and over, faster and
faster”[6]. Machine learning falls under a branch of artificial
intelligence based on the idea that “systems can learn from
data, identify patterns and make decisions with minimal
human intervention”[6]. The process that the systems use to
learn from the data is an iterative process. This is important
because as the models continue to be exposed to more and
more data, it is able to continuously learn from the new data.

The motivation for this research was to learn how to use a
classification tool on images in order to classify the image.
To do so, I utilized a data set which consisted of images
of different breeds of dogs. The goal was to build a model
which will learn the different breeds of dogs in order to
predict the breed of dog represented in the input image.
While in the process of building this model, I came across
many different techniques, of which, I tried a few. First,
I tried to use a Convolutional Neural Network to predict
the dog breeds. After trying a few different settings with
the CNN, I decided to then try Logistic Regression using
Xception and a Multilayered Perceptron. Once the optimal
model was found, it could then be analyzed to see how well
it performs in classifying the different dog breeds. Utilizing
these results, I then determined where improvements could
be made or if different methods should be attempted to
further improve the systems’ ability to predict the dog
breeds.

2. Background and Related Work
Throughout this process, I analyzed Convolutional Neural

Networks and Xception. Convolutional Neural Networks are
gaining popularity when it comes to classifying images, but
I wanted to find a method that would better predict the breed
of dog. Therefore, the method I decided to use for predicting
was Xception and an MLP. Xception seems like its own
method, but in simple terms it is a very large convolutional
neural network. It is “trained on more than a million images
from the ImageNet database” [9]. Xception is 71 layers deep
and can classify a variety of different images. Xception
is a newer method compared to Inception. It was named
Xception because it is an “extreme version of Inception”
[8]. With Xception, I used a Multilayer Perceptron. The
Multilayer Perceptron is a deep, artificial neural network.
In [1], they state that “the multilayer perceptron is the hello
world of deep learning: a good place to start when you are
learning about deep learning.”

There are many examples on the internet of how people
use different methods to classify images. In regards to dog
breed identification, many people have attempted to make a
model because it was a Kaggle competition. Many people
participated in this competition, using a variety of different
methods in an attempt to predict the dog breeds. After



viewing some of the participants’ ideas on how to go about
this problem, it seemed that using a Convolutional Neural
Network was a fairly popular method. Participants also used
Xception, Inception, and other methods to predict the breeds
of dogs.

3. Methodology
The process of programming a system to predict the breed

of dog in an image required a great deal of trial and error. I
made several attempts before deciding to use Xception and
an MLP to predict the breed of dog in an image. Initially,
I planned to use a Convolutional Neural Network. During
my time in a machine learning class, I learned about CNNs
and their applications. I realized that it would be a good
method to apply as I attempted to predict dog breeds based
on images. During the process of learning about CNNs,
my classmates and I applied them to classify images that
we took from around the building. This data set included
chalk, lights, chairs, and a few other items. The model
created was able to correctly predict to a certain extent.
From this lesson, I adapted the model to my data set to
try to predict dog breeds. In using the CNN, I first tried it
with two convolutional layers and five full connection layers.
These full connection layers consisted of relu, sigmoid, and
dropout. I then attempted another version of a CNN without
any convolutional layers. This produced a few problems
which will be touched upon in the following section.

For this research, as mentioned, I utilized Xception and a
Multilayered Perceptron. Before going into the experimenta-
tion phase of implementing my model, I will establish some
basics of these methods.

Xception utilizes depth-wise separable convolutions. In
total, there are 36 convolutional stages within this method-
ology. The Xception model performs the one by one con-
volution first, and then moves into the channel wise spatial
convolution. This is depicted by Fig. 1.

Xception does not have an intermediate activation. Due to
this, it has the highest accuracy compared to other methods,
such as Inception [8]. Lastly, Xception performs better due
to the better use of the model parameters [8].

Briefly described earlier, the Multilayer Perceptron is a
deep, artificial neural network. Multilayer Perceptrons are
composed of three key components. The first is the input
layer. This is the layer that receives the signal. Next, I
have an arbitrary number of hidden layers. Lastly, I have
the output layer. This is the layer that makes the decision
or prediction regarding the input. A simple model of a
Multilayer Perceptron is depicted in Fig. 2.

With the MLP, I implemented classification. The classifi-
cation provides the results that can be utilized to determine
how well the system is performing. Metrics such as confu-
sion matrices, LogLoss, and Balanced Accuracy Score are
all provided as output to understand the performance of the
system.

When implementing Xception and the MLP, the data is
split into testing and training data. The model then learns
on the training data. The goal for the system is to obtain
a high accuracy rate and minimize the error by adjusting
parameters. With this comes some trial and error which will
be explored in the following section.

4. Experiments

4.1 Data

The dog breed data set, which was the focus of this
research, came from a Kaggle competition, Dog Breed
Identification1, in which the task was to determine the breed
of a dog based on an image. The data set included a training
and testing set of images for different breeds of dogs. Each
image has a file name that corresponds to a unique ID which
can be found in the file labels.csv. This file contains
the ID which is the file name, and the breed of dog in the
image. A preview of this file is shown in Fig. 3. The data
set is comprised of 120 unique dog breeds. For my model, I
only utilized the training data set provided and from there,
split it into training and testing sets. The original training
data set included 10,222 images of dogs.

4.2 Convolutional Neural Network

To reiterate, my initial idea was to use a CNN to predict
dog breeds. After making the necessary design choices,
I was able to begin experimenting with it. I started off
with a small number of epochs and a small batch size.
In doing so, I did not obtain sufficient results. From this
initial run, I realized I had to keep adjusting the values
of the parameters and try larger and smaller values for
the number of epochs and the batch size. In addition to
this, I also tried different combinations of the two. After
trying several combinations, results obtained were still not
ideal. I continued to change things around and moved on
to trying different full connection layers. I did not initially
have dropout layers in my CNN so I tried to add some. Once
changing my full connection layers, I continued to change
around the number of epochs and the batch size to see if
I could improve my results. After trying to predict some
dog breeds, I realized that the model was greatly overfitting
the data. Overall, throughout these attempts with my CNN
model, the highest accuracy rate I obtained was 10%. After
consulting the professor, I decided to change some more
aspects of the CNN. I changed more parameters and got
rid of the convolutional layers. After several attempts to
make this work, I continually obtained errors. From there, I
decided to try a different method instead of the CNN.

1www.kaggle.com/c/dog-breed-identification

www.kaggle.com/c/dog-breed-identification


Fig. 1: Proposed model architecture that uses the Xception model [10]. First the model receives input color images of
size 64 × 64 that go through the Xception model using 1 × 1 convolutions (point-wise convolutions) followed by n × n
convolutions at different scales (depth-wise convolutions) leading to a feature vector of size 2048. This feature vector is
connected to a series of dense layers using the traditional perceptron model ending in 120 SoftMax neural units, one for
each class. Note that the Xception network is not re-trained, but it is independent of the dense network, which is trained
separately.

Fig. 2: A simple multi-layer perceptron model that maps
an input x ∈ R2 to an output y ∈ R. It achieves such
mapping through a hidden layer of three neurons, each with
its own activation function. This simple model is capable of
approximating non-trivial non-linear function mappings.

4.3 Xception and MLP
When implementing this new method to predict dog

breeds, the first step I needed to do was to load Xception
and split the data into training and testing sets. With the
data split, I then needed to run the training and testing sets
through Xception. In my model, I needed to learn which set
of neurons along with what value of eta, η, would provide
me with the best model to predict dog breeds. The parameter
η represents the initial learning rate of the model. This value
“controls the step-size in updating the weights” [7].

These values are not known without running the model
to see what the cross validation score is and comparing
it amongst others. Therefore, I created a for loop within
a for loop. I utilized eight different sets of neurons and four
different values of η. At the end of each for loop run through,
the cross validation score would be compared against the
current, best cross validation score. If it was better, these
new values would be stored, but if it was not better it would

Fig. 3: Sample of image IDs and corresponding breed labels.
More information on the structure of the data set is publicly
available.

move on to the next set of neurons or the next value of
η. Once all of the sets of neurons and values of η were
scanned through, I would have a final, best model to use for
predictions.

Before running the model with all the sets of neurons
and value of η, I wanted to confirm the model worked in
the manner in which I hoped. Therefore, I decided to run it
with only two sets of neurons and two values of η initially.
This was useful because it allowed me to correct all of the
errors it produced before running the complete model. Once
the errors were corrected, I moved on to running the model
with all the sets of neurons and values of η to determine
which out of all of them created the best model to predict
dog breeds.

During the process of running the full model, I learned
that it took a long time to complete running. In order to
simplify the process, I broke it down to run one set of
neurons at a time with all of the values of η. While running
the model with one set of neurons at a time, I recorded
all of my observations to compare all of the results in the
end. When comparing the results in the end, I examined
the cross validation scores and not the balanced accuracy



Fig. 4: Confusion matrix on the training set. The main diag-
onal is evidence of very good performance during training.

score. I looked for the highest cross validation score because
utilizing cross validation takes into consideration and helps
control overfitting. I did not look for the highest balanced
accuracy score because this value was not being run through
cross validation, therefore, this value should not be trusted
as a truly accurate representation of the prediction accuracy.
Looking for the highest cross validation score out of all
of the results I obtained, I found that the set of neurons
(400, 200) and η being 0.001 would produce the best model
for the classification of dog breeds. Once these values were
saved, I no longer needed to run the entire model. Instead,
I was able to just run the MLP Classification with these
hyperparameters to obtain the performance metrics which
will be analyzed in the following section.

5. Discussion and Analysis
In order to analyze the performance of the model I created,

I needed to run performance metrics. The performance met-
rics I obtained included confusion matrices, LogLoss, and
Balanced Accuracy. The confusion matrices show how well
the model was trained and how well the model predicted the
test data set. It compared the true dog breed to the predicted
dog breed regarding specific images. For my optimal model
I obtained the following confusion matrices for the training
and testing data sets.

As you can see, in Fig. 4, the model is training well as
there is a clear diagonal line which represents the true breed
matching the predicted breed. Then analyzing the testing
confusion matrix, in Fig. 5, I could see that the diagonal line,
which represents the accurate predictions, is not as prevalent.
Instead, I could see that there are scattered dots throughout

Fig. 5: Confusion matrix on the test set. This indicates a clear
diagonal pattern; however, notice that there are other classes
that are also incorrectly predicted, leading to a balanced
accuracy of 54.8%. While this may seen like it is above
the random noise level, we need to recall that this is not the
traditional accuracy, but the balanced accuracy rate.

the rest of the confusion matrix, which represent incorrect
predictions.

The testing LogLoss and Balanced Accuracy were also
reported. These measures are not a good representation of
the true rates of LogLoss and Balanced Accuracy because
they are not being passed through cross validation, but
they provide a good idea of how the system is performing.
The optimal model produced a LogLoss of 9.5954 and a
Balanced Accuracy of 0.5480, or 54.80%. In future uses of
my system, I plan on editing the LogLoss and Balanced
Accuracy so that they are running through cross validation
in order to obtain a better representation of these values.
Another future improvement of this model is to increase
the number of splits utilized. These results were obtained
using only three splits. An increase to ten splits will allow
the model to train more which will potentially increase the
accuracy rate of predictions.

With the performance metrics obtained in mind, attempts
to predict dog breeds were made. One way that predictions
can be made are by utilizing the test data, which the data was
split into at the beginning of training. Using the test data, I
passed in an image that is from the data set and saw what
the system predicted it as. To determine this, I analyzed the
predictive probability and looked for the maximum value in
the array. The index of the maximum value represents the
index of the dog breed predicted. Since this input image is
an image from the original data set, I was able to obtain
the true value of the dog breed in the image. Comparing



Fig. 6: Sample input image of a dog. Note that the images are
scaled to the range [−1, 1] to ease the tensor computations
and minimize the problems associated with gradient descent
calculations.

the value that the system outputted against the true value, I
could determine if the system predicted that specific image
correctly or not. With the index of the predicted breed, I
could also obtain the name of the breed that the system
predicted. This allowed me to compare the input image of
the dog with what the system predicted it to be. For example,
suppose we are trying to predict the breed of the dog in
Fig. 6. The system will return the array of probabilities
represented in Fig. 7. The model also outputs the index at
the maximum value of the probabilities. In this case, the
value it outputted was 16. I also programmed it to output
the true value of the dog breed represented in the image. In
this case, this output was also a 16, indicating that the breed
was predicted correctly, with a probability of 0.99559.

Another way to predict images is by inputting your own
images into the system. For example, I was able to input
an image of my dog and see what the system predicted it
to be. The system would again output the probabilities for
the image being each breed in the data set. As in the last
case, taking the maximum value of this gave me the index of
which breed the system is predicting for this image. Using
the index, I could determine which breed this is. Since it
was a self-inputted image, and I know the breed of my dog,
I was able to determine if it was predicting correctly or not.
Unfortunately, with the image I inputted, it did not predict
my dog correctly. The system predicted an index of 88 for
one photo which represents an Entlebucher and an index of
82 for a second photo which represents a Malamute. My
dog is a Golden Doodle, which, unfortunately, is not very
similar to either of these breeds.

Fig. 7: Sample array of probabilities for each of the 120
classes. Notice that in the first column and fifth row, the
maximum value is shown with probability 99.58%, and thus,
the predicted class would be number 17.

6. Conclusion
The motivation of this model was to learn how to use

a machine learning classification tool in order to classify
images, namely, dog breeds. In future research, I would
like to improve the prediction accuracy rate. One way to
approach this goal would be to run it with more sets of
neurons and values of η. There is a potential this could
increase the prediction rate, but this is unknown until further
research is performed. Additionally, to further improve the
model, the MLP Classification, LogLoss score, and Balanced
Accuracy score should be run through cross validation. This
would provide a better measure of the actual prediction
rate because it takes into consideration overfitting and deals
with that inflating or deflating the prediction rate. Lastly,
to improve my current model, I would like to train my
model with ten k-folds of cross validation instead of three.
My current results represent the results obtained using three
folds. In the future, I would be interested in seeing how
changing the number of folds to 10 would change the
prediction rate.

In addition to improving my current model, I am also
interested in testing other methods’ abilities to predict the
dog breeds. I have already tested a Convolutional Neural
Network and Xception throughout this process. I would be
curious as to how other methods work and how the results
would or would not improve. It would be interesting to
show how the different methods compare against each other
as well. Additionally, as I was performing my preliminary
research about this data set and what participants in this



competition did, it seemed a lot of them limited the number
of dog breeds they included in their models. It would be
interesting to test different combinations of a certain number
of breeds to see how the accuracy could increase or decrease
due to this. This can be greatly impacted depending on if
one dog breed is more or less prevalent in the entire data
set as compared to the other dog breeds.

References
[1] “A Beginner’s Guide to Multilayer Perceptrons (MLP),” Skymind.

[Online]. Available: https://skymind.ai/wiki/multilayer-perceptron. [Ac-
cessed: 14-May-2019].

[2] A. Escontrela, “Convolutional Neural Networks from the ground
up,” Towards Data Science, 16-Jun-2018. [Online]. Available:
https://towardsdatascience.com/convolutional-neural-networks-from-
the-ground-up-c67bb41454e1. [Accessed: 24-Mar-2019].

[3] “Dog Breed Identification,” Kaggle. [Online]. Available:
https://www.kaggle.com/c/dog-breed-identification. [Accessed: 13-
Feb-2019].

[4] H. Bendemra, “Build Your First Deep Learning Classifier using
TensorFlow: Dog Breed Example,” Towards Data Science, 26-Apr-
2018. [Online]. Available: https://towardsdatascience.com/build-your-
first-deep-learning-classifier-using-tensorflow-dog-breed-example-
964ed0689430. [Accessed: 24-Mar-2019].

[5] J. Brownlee, “When to Use MLP, CNN, and RNN Neu-
ral Networks,” Machine Learning Mastery, 23-Jul-2018. [On-
line]. Available: https://machinelearningmastery.com/when-to-use-mlp-
cnn-and-rnn-neural-networks/. [Accessed: 08-May-2019].

[6] “Machine Learning: What it is and why it matters,” SAS. [Online].
Available: https://www.sas.com/en_us/insights/analytics/machine-
learning.html. [Accessed: 14-May-2019].

[7] “sklearn.neural_network.MLPClassifier,” scikit learn. [Online]. Avail-
able: https://scikit-learn.org/stable/modules/generated/sklearn.neural_
network.MLPClassifier.html#sklearn.neural_network.MLPClassifier.
[Accessed: 08-May-2019].

[8] S.-H. Tsangm “Review: Xception - With Depthwise Separable
Convolution, Better Than Inception-v3 (Image Classification),”
Towards Data Science, 25-Sep-2018. [Online]. Available:
https://towardsdatascience.com/review-xception-with-depthwise-
separable-convolution-better-than-inception-v3-image-dc967dd42568.
[Accessed: 14-May-2019].

[9] “Xception,” MathWorks. [Online]. Available: https://www.mathworks.
com/help/deeplearning/ref/xception.html. [Accessed: 14-May-2019].

[10] Chollet, Francois. “Xception: Deep learning with depthwise separable
convolutions.” Proceedings of the IEEE conference on computer vision
and pattern recognition. 2017.


	Introduction
	Background and Related Work
	Methodology
	Experiments
	Data
	Convolutional Neural Network
	Xception and MLP

	Discussion and Analysis
	Conclusion
	References

