
Finding Time Series Breakpoints with
Fully Connected Neural Networks

Amy Pitts1 and Pablo Rivas2
1Department of Mathematics, 2Department of Computer Science

School of Computer Science and Mathematics, Marist College, New York

Abstract— Breakpoint analysis is a technique that helps
individuals better understand and model time series. This pa-
per describes how a fully connected neural network can pre-
dict breakpoints in time series. Using a sigmoidal activation,
an MSE loss function, an Adam optimizer and drop out rate
this function is able to estimate the location of breakpoints.
This model is training on simulated time series with clear
breaks created by mean changes and multiple trials were run
to identify the optimal hyper-parameters. Then, the model is
applied to real world pelican population data. Comparing
results to other breakpoint analysis approaches this neural
network model identifies the general location where a known
breakpoint occurs in this pelican data.

Keywords: Neural Networks, Breakpoints, Time Series

1. Introduction
When modeling time series data, it can be necessary to

identify places or points in time where significant change
occurs in the behavior of the data. By identifying these
breakpoints or change points, different parts of the data can
be fitted with separate, more appropriate models, allowing
for noteworthy changes in the data to be better represented in
the combined model. In 2018, in collaboration with Lafayette
College Research Experience for Undergraduates (REU)
program, we developed a Bayesian procedure that identifies
the number and location of breakpoints in times series. Such
research produced a Bayesian Adaptive Auto-Regression
(BAAR) model which is a new procedure for finding the
distribution of the number and location of breakpoints in
time series [cite under review]. While such approach is
statistical model, we now address the same problem from
a neural network perspective. This research proposes using
a fully connected dense neural network approach to locate
breakpoints in time series. The algorithm learns from simu-
lated data where the breakpoint set is known, and then it is
tested on unseen non-simulated data. Both the neural model
and BAAR are compared and finding that the neural model
is also able to find breaking points in highly nosy data.

2. Background and History
Since breakpoints are found in numerous types of time

series, there has been ample interest in developing techniques

to detect them in recent decades across a wide range of
fields. Existing techniques have been applied to everything
from the United States Treasury bill rates [3] to hydrology
[5] and climate records [4].

There have been various techniques in detecting change-
point locations. The simplest technique relies on expert
opinion. This is the process of experts approximating where
the breakpoint location will occur based on historical knowl-
edge. However, there is a lot of human error introduced
with that technique which has sparked the development of
more computational methods. One widely used technique is
the Bai-Perron Test [1] which has an accessible R pack-
age “strucchange” [7]. The test returns a single optimal
breakpoint set but requires the user to specify a maximum
number of breakpoints and minimum segment size. Another
technique is Bayesian Adaptive Regression Splines (BARS),
a Bayesian curve fitting technique developed by DiMatteo et
al. [2] and implemented by Wallstrom, Liebner, and Kass [6].
These two methods inspired the Bayesian Adaptive Auto-
Regression (BAAR) procedure mentioned earlier [cite under
review]; however, no machine learning approach has been
investigated until now. This paper is the first attempt on
using fully connected neural networks for the detection of
breakpoints.

A fully connected neural network consists of a collection
of fully connected layers from one domain m ∈ R to n ∈ R
[10]. The input nodes affect the output nodes. Historically,
neural networks were first introduced by Frank Rosenblatt
with the Perceptron in the 1950s [10]. The input data is
used to find weights, and then the weights and inputs are
multiplied and summed together. Using the total sum, a step
function was applied to obtain an output [10]. However,
the original Perceptron model was fundamentally limited
when encountered with data that cannot be linearly separated
into two groups [10]. This problem can be overcome with
a multilayered Perceptron. Each node is referred to as a
neuron. This name was inspired by a paper published by
Warren McCulloch and Walter Pitts in the 1940s about the
mathematical model of a brain, specifically how neurons are
connected and interact [10]. However, it should be noted
that fully connected networks do not fully capture how
neurons behave. Today, fully connected networks are more
robust with several alternatives for backpropagation, choices
or activation functions, and ability to train multiple layers



more efficiently.

3. Method
Fully connected networks are known to be “structure

agnostic”, meaning that there are no special assumptions
needed to be made about the input [10]. The network starts
with an initial number of neurons. Let m represent the input
of the first layer and let yi be the output of the layers. The
yi is given by [10]:

yi = σ(w1x1 + · · ·+ wmxm). (1)

Since σ is a nonlinear function and wi are the parameters
learned, the full output y is then [10]

y = [σ(w1,1x1 + · · ·+ w1,mxm), (2)
. . . , σ(wn,1xn + · · ·+ wn,mxm)] .

As an example, Fig. 1 shows a network with 64 neurons that
fully connect to 5 other neurons in a separate layer.

In our dataset, we produce vectors that contain breaking
points at random locations. The data is split into chunks
on five and passed into the network. The chunks of five
points are necessary so the network can detect if there is
a single jump (breakpoint) in the data. If the chunk was
a larger number than five then the section of data might
encompass more then one breakpoint. This would make
it difficult for the neural network to select the placement
of both breakpoints. Therefore, by limiting the size of the
chunks we limit the chances of getting two breakpoints or
more in each chunk.

After choosing a specific number of neurons for the dense
layer, it follows to choose a proper activation. The sigmoidal
function is used for this activation in this project. The
sigmoid also known as a logistic function, and is given by
[9]:

f (si) =
1

1 + e−si
. (3)

A softmax activation can be also attempted; however, our
experimental results showed that the sigmoid converges to
more accurate results in terms of our loss function. Our
choice of loss function is the mean squared error (MSE).
This is given by:

MSE =
1

n

n∑
i=1

(yi − ỹi)2 (4)

where ỹi is our predicted value and yi is the actual value.
To control the gradient descent the ‘adam’ optimizer

is used. Adam is “an algorithm for first-order gradient-
based optimization of stochastic objective functions, based
on adaptive estimates of lower-order moments” [8]. This
gradient descent algorithm does backpropagation based on
the loss function.

In the proposed model we also applied a drop out of
strategy of 25%. This form of regularization randomly drops

some of the nodes during the gradient descent [10]. There-
fore, less nodes go into the next fully connected layer. This
plays an important role in avoiding a single neuron gaining
too much power, thus controlling the model. A neuron with
too much power will make other neurons too dependent on
it, which is a phenomenon known as co-adaption [10]. With
drop out, all neurons will have to learn and be independent
on their own.

4. Implementation in Python
4.1 Simulated Data

For the fully connected Neural Network to generalize
properly, it required a large amount of data. Specifically, it
needs several time series data. Time series data tends to be
messy, hard to obtain, and it is hard to definitely know where
the exact breakpoints are. Therefore, we created simulated
time series and trained the neural network. Simulated time
series is ideal because one can control and record the exact
location as well as how big the drastic change of the data at
the breakpoint location is.

We randomly generated a specified amount of random
values between two numbers. We alternating between ran-
domly choosing values in the interval (0, 50) and (50, 100).
The interval lengths are selected by randomly generating
values which represent the breakpoints. For each iteration,
10 different data sets are produced. The first starting with
one break, then two breaks, all the way up to 10 breakpoints.
Every even interval has values between (0, 50) and every
odd interval has values between (50, 100). Fig. 2 depicts
an example of a randomly generated time series with one
breaking point, while Fig. 3 depicts one with multiple
breaking points.

4.2 Fully Connected Neural Network
The methodology described above is implemented in

Python and available here:

github.com/amypitts01/data440.git

With the code in the repository, the reader has the ability
to define the number of data points in each data set and the
length of the time series, with a default value of 500. The
reader can also define the number of time series produced,
with a default value of 100. In regards to the simulated data,
the user can also define the sequence length, i.e., the chunk
of the time series that will be evaluated one at a time by
the network, with a default value of 10. After the data is
created, split into sequences and stored in a matrix X, where
xi ∈ R10. The reader can also define the number of neurons
in the hidden layer, with a default value of 128. The reader
can also define the number of epochs, with the default value
of 100. The default values are set after a large number of
experiments collected over multiple trials, all of which are
address in the next section.



Fig. 1: A dense fully connected network architecture. The input layer takes on an input vector x ∈ R64 and, using non-linear
activation functions, it maps the input into an output y ∈ R5.

Fig. 2: Randomly generated time series with one Breaking-
point.

5. Results
To find the best set model architecture we ran multiple

different trails aiming to find the optimal number of neurons,
drop out rate, and chunk size of data. Each trial was run for
100 epochs with 500 data points. Both the neurons value
and drop out rate were tested against the sequence length.
While changing the number of neurons, the drop out rate
stayed at 0.1. When testing the number for drop out rate the

Fig. 3: Randomly generated time series with five Breaking-
points.

number of neurons stayed at a constant rate of 128 neurons.
The results are displayed in Table 1. Each box displays the
average validation binary accuracy in 5-fold cross-validation.

The highest average validation binary in Table 1 is 0.9113
which corresponds to a sequence length of 10 and 128 neu-
rons. The sequence length of 10 obtains a higher accuracy
compared to all the other length options. Other attempts were
made with 15 and 20 neurons; however, it was overfitting on
predicting zero breaking points. Since the goal is to predict



Table 1: 5-fold cross validated accuracy for finding the best
number of neurons for a sequence length

Sequence Length:

Number of Neurons: 5 7 10

64 0.8567 0.8860 0.9076
128 0.8616 0.8914 0.9113
256 0.8605 0.9005 0.9034
512 0.8578 0.8960 0.9061

Table 2: 5-fold cross validated accuracy for drop out rate
against sequence length fixing the number of neurons to 128

Sequence Length:

Drop Out Rate 5 7 10

0.1 0.8616 0.8914 0.9113
0.25 0.8805 0.8970 0.9177
0.5 0.8794 0.8899 0.8982

breakpoints, overfitting of this kind is very detrimental. With
this information, we eliminated the option of having 15 and
20 Neurons. Using 10 neurons obtains a higher accuracy
and it also has an average validation loss of about 0.0875.
This value is smaller than anything produced from the other
sequence lengths of 5 and 7. Using this information we can
now test different drop out rate. We keep the number of
neurons to a consistent 128 and change the sequence lengths
and drop out rate. The results are displayed in Table 2.

The highest validation accuracy value is 0.9177 which is
obtained by using a sequence length of 10 and a drop out
rate of 25%. Using a sequence length of 10 obtains higher
accuracy compared to using 5 and 7 as the sequence length.
This result is also shown in the data above. Therefore, the
optimal combination is using a sequence length of 10, 128
number of neurons and a drop out rate of 25%.

The next test is to see if running the model for more
epochs improves the overall validation binary accuracy of
the model. In the trials above only 100 epochs were used,
now the table below shows the validations after 100, 200,
500, and 1000 epochs. The model was trained on the optimal
10 sequence length, 128 neurons, and a drop out rate of 25%.

Table 3 shows that increasing the number of epochs does
not necessarily increase the validation accuracy of the model
therefore, 100 epochs is the ideal which will save a lot of
training time.

Using these optimal values found I obtain predictions

Table 3: 5-fold cross validated accuracy for finding the best
number of epochs

Number of Epochs:

100 200 500 1000

Accuracy 0.9177 0.9099 0.9089 0.9083

Fig. 4: Data set with one breakpoint shown around time 210.

Fig. 5: Black line represents actual breakpoint set, Blue line
represents predicted breakpoint set.

which can be visualized in Fig. 4 and 5 with a breaking
point at time 210; and in Fig. 6 and 7.

Fig. 5 shows that the model overpredicts the data on the
left of the actual breakpoint, displayed in black, and correctly
identifies no breakpoints left of the actual breakpoint. The
two taller peaks that occur around time 100, and 125 are in
fact not breakpoints which demonstrate the limitation of this
process. If the model was predicting correctly the predicted
breakpoint graph would display black spikes showing were
the breakpoints actually are with blue spikes directly over
the black.

Fig. 6 shows the data with the predicted breakpoints on
Fig. 7. The predicted breakpoint set shown in blue shows
small spikes that are close to the actual breakpoints displayed
in black. Although the blue spikes are not as tall as the
black spikes they are close to the true breakpoints showing
that the model does a better job identifying the seven breaks
compared to Fig. 5.



Fig. 6: Data set with seven breakpoints distributed through
the graph.

Fig. 7: Black line represents actual breakpoint set, and the
blue line represents predicted breakpoint set.

6. Discussion
Using the best set of neurons, i.e., 128, a dropout rate

of 25%, and data partitioning into sequences of length 10
for 100 epochs we can now test the model on new unseen
data. The dataset we used is the Pelican Population data.
The Pacific brown Pelican population data is generated by
the Christmas Bird count from 1938 to 2016. This can be
seen in Fig. 8, where 1938 is index 0, and 2016 is index
78. The model created by the dense neural network is then
used to analyze the pelican data and Fig. 9 is produced. The
line represents the predicted breakpoints. Note that there is a
spike around time 10 which corresponds to around the 1940s.
In fact, using the Bayesian procedure, BAAR, to predict
breakpoints, we found a breakpoint in the time frame 1949
and 1952 which is very close to where the method in this
paper predicted the breakpoint. This breakpoint corresponds
to the introduction of pesticide DDT (dichloro-diphenyl-
trichloroethane) for public use. The link between DDT and
the decline of brown pelicans is well-established making

Fig. 8: Original Pelican data

Fig. 9: predicted breakpoints

it an excellent case study for testing the efficacy with
real data. This result is exciting because it shows that the
breakpoint prediction corresponds to a breakpoint that has
been accepted in the academic community.

7. Conclusion
Using a fully connected neural network consisting of a

collection of fully connected layers to predict breakpoints
although it produces a high accuracy is only semi-reliable.
Analyzing the simulated data model using the ideal hyper-
parameters produces results shows that the model over-
predicts on low mean areas, predicts the break, and then
accurately predicts no breaks in the high mean areas. Even
with the overfitting, the method does typically identify the
correct breakpoint, there are just more false positives. Using
the knowledge that there are over predictions when applying
the method to pelican data the reader can know be wary
excessive results on low mean data. Therefore, using this
technique on unseen data can give you general vicinity on
where breakpoints occur. An argument can be made about
using first derivative filters; however, these are known to



be sequence length-dependent and this causes an unwanted
dependency. The model presented here is not depending on
the length of the time sequence to give a prediction, but
rather, it uses the length to look at chunks of data at a time,
but is able to detect changes at smaller time scales. Further
research will include an analysis of the weights that the
network is learning; it is likely that the network is learning
first order filters at different scales and these are activated in
different segments of the neural network. This is a conjecture
that remains to be supported by further evidence.

References
[1] J. Bai, and P. Perron, “Computation and analysis of multiple structural

change models.” Journal of applied econometrics, vol.18(1), pp.1-22.
2003.

[2] I. DiMatteo, C.R. Genovese, R.E. and Kass “Bayesian curve-fitting
with free-knot splines.” Biometrika, vol.88(4), pp.1055-1071. 2001

[3] M.H. Pesaran, D. Pettenuzzo, and A. Timmermann, Forecasting time
series subject to multiple structural breaks. The Review of Economic
Studies, vol.73(4), pp.1057-1084. 2006

[4] E. Ruggieri, A Bayesian approach to detecting change points in
climatic records. International Journal of Climatology, 33(2), pp.520-
528. (2013).

[5] O. Seidou, and T.B. Ouarda, “Recursion-based multiple changepoint
detection in multiple linear regression and application to river stream-
flows”. Water Resources Research, vol.43(7). 2007

[6] G. Wallstrom, J. Liebner, and R.E. Kass, “An implementation of
Bayesian adaptive regression splines (BARS) in C with S and R
wrappers”. Journal of Statistical Software, vol.26(1), p.1. (2008).

[7] A. Zeileis, F. Leisch, B. Hansen, K. Hornik, C. Kleiber, and M.A.
Zeileis. The strucchange Package. R manual. breakpoint in the struc-
change package (2007)

[8] D. Kingma, and J. Ba “Adam: A method for stochastic optimization"
arXiv preprint arXiv:1412.6980 2014.

[9] R. Gomez, “Understanding Encoder-Decoder Sequence to Sequence
Model" Raul Gomez blog Available at: gombru.github.io/
2018/05/23/cross_entropy_loss/ (2018).

[10] R. Zadeh, B. Ramsundar, “Chapter 4. Fully Connected
Deep Networks" TensorFlow for Deep Learning Available at:
oreilly.com/library/view/tensorflow-for-deep/
9781491980446/ch04.html


