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Abstract—Multimodal Machine Learning (MMML) has
emerged as a promising topic with the ability to jointly utilize
data from several data modalities to improve performance and
address difficult real-world problems. Large-scale multimodal
datasets and the availability of powerful computing resources
have sped up the development of sophisticated deep learning
architectures that are designed for multimodal data. In this paper,
we conducted a systematic literature review focusing on the deep
learning architectures used in MMML that combines image and
text modalities. The objective of this paper includes looking at
various models and deep learning architectures used in MMML
with image and text data, learning about the fusion techniques
used to combine both modalities, datasets that are used to train
the models and limitations of these models. For this purpose, we
have garnered 341 research articles from 5 digital library database
and after an extensive review process, we have 89 research papers
that allow us to thoroughly assess MMML. Our findings from
these papers shed light on providing new directions for further
study in this evolving and interdisciplinary domain.

Index Terms—model distillation, word embeddings, bert, natu-
ral language processing, machine learning, deep learning

I. INTRODUCTION

The advent of digital technologies has led to an exponential
growth in data across various disciplines, resulting in a
paradigm shift in our understanding of complex systems [1],
[2]. This proliferation of data encompasses multiple modalities,
including visual cues in images, textual semantics, and auditory
signals, which collectively provide a more comprehensive
representation of the world [3], [4]. This multifaceted landscape
has given rise to the field of Multimodal Machine Learning
(MMML), which aims to develop computational models capable
of integrating data from diverse modalities to improve predictive
accuracy and decision-making capabilities [2], [5].

The motivation for multimodal integration arises from the
limitations associated with unimodal data. While images offer
rich visual information, they often lack the contextual depth that
can be provided by accompanying text [6]. On the other hand,
textual data, despite its semantic richness, may not capture
the full spectrum of visual or auditory experiences [7]. Fusing
these modalities enables constructing more robust and nuanced
models that approximate human-like perception [8], [9].

The advent of deep learning architectures has further acceler-
ated the capabilities of MMML, allowing for the extraction and
fusion of complex features from multiple data sources [10], [11].

However, designing effective multimodal architectures presents
unique challenges, such as mitigating overfitting, addressing
data imbalance, and handling noisy data [12], [13]. Successful
models strike a delicate balance between preserving the unique
attributes of each modality and leveraging their inter-modal
interactions to optimize performance [14], [15].

In the current era of data ubiquity and technological
convergence, text and image modalities have emerged as pivotal
elements in the MMML landscape. Images encapsulate visual
complexity and emotional nuance, while text provides semantic
context and narrative structure [16], [17]. The fusion of these
modalities yields insights that are greater than the sum of their
individual contributions, revolutionizing various application
domains [18], [19].

The objective of this systematic literature review is to
provide a comprehensive analysis of state-of-the-art MMML
architectures that leverage text and image data. Specifically,
this study aims to:

• Investigate the utilization of pre-trained models in MMML
for feature extraction from text and image data, elucidating
the techniques that enhance data representation.

• Offer an in-depth examination of fusion architectures,
evaluating their efficacy and impact on multimodal data
integration.

• Identify the existing limitations and challenges in MMML,
paving the way for future research directions.

II. METHODOLOGY

The methodology section explains the thorough technique
we used to investigate different aspects of MMML. We begin
by developing specific research questions and continue with
exhaustive search queries followed by systematic data extraction
and integration of a rigorous quality assessment.

A. Research Questions

Our approach begins with the meticulous formulation of
precise research questions intended to direct our exploration of
the complexities of MMML. These inquiries steer our research
toward crucial issues, including using pre-trained models for
feature extraction, the variety, and influence of fusion topologies
and inherent limitations. After rigorous analysis we come up
with the following research questions:
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TABLE I: Digital Database Search Queries

Database Name Search Query Volume Filters
Scopus (ABS (machine AND learning) AND TITLE (multimodal) AND ABS (image) AND

ABS (text) AND (TITLE-ABS (deep AND learning) OR TITLE-ABS (neural AND
network)))

None.

IEEE Explorer ((("Document Title": multimodal) AND (("Document Title": "deep") OR
("Document Title": "machine learning") OR ("Abstract": "deep") OR
("Abstract": "machine learning") OR ("Abstract": "neural network"))
AND ("Abstract": text) AND ("Abstract": image)) NOT ("Document Title":
"audiovisual") NOT ("Document Title": "video")))

None.

Springer Link Where the title contains: multimodal; Query: text AND image AND ("deep
learning" OR "machine learning" OR "neural network"); Sort by relevance

Pick top 80 of most relevant.

ACM Digital Library Abstract: (neural) AND Title: (multimodal) AND Abstract: (deep learning)
AND NOT Title: (video) AND NOT Title: (audio) AND E-Publication Date:
(06/27/2018 TO 06/27/2023)

None.

Semantic Scholar Keywords: multimodal machine learning deep learning image text. Dates:
(01/01/2018 To 4/31/2023) Sort by relevance.

Pick top 13 relevant documents
by TL;DR visual inspection.

• RQ1- Does multimodal machine learning models use well
known previously established architectures?
– RQ1.1- What are the most used pre-trained architectures

for extracting and training image and text data?
– RQ1.2- What datasets are used to compare the architec-

tures?
• RQ2- What fusion strategies usually used in MMML?
• RQ3- What are the limitations or challenges to face using

these architectures?

B. Searching Methodology

In an effort to answer our research questions, we exhaustively
searched through several digital libraries, looking for relevant
academic publications. We were able to construct a comprehen-
sive collection of pertinent literature as a result of our thorough
search across numerous academic archives. The digital library
database what we used are - Scopus, IEEE Explorer, Springer
Link, ACM Digital Library and Semantic Scholar. For the
purpose of strategically locating relevant scholarly works, we
used a broad range of keywords such as - multimodality, deep
learning, machine learning, neural network, image, text.
We created this set of keywords to cover all the topics we want
to address in this study. These carefully selected keywords
were then used as search queries in the mentioned databases.
The search queries I used are given in Table 1.

C. Selection Criteria

We produced inclusion and exclusion criteria after getting
research papers from the databases through search queries.
The inclusion criteria covered research publications specifically
discussing MMML models in various applications that worked
with image and text data. Research papers unrelated to MMML
or worked with modalities other than image and text are
excluded from our process.

For the literature review, the inclusion criteria were care-
fully defined to narrow the scope of the papers considered.
Specifically, the focus was on papers that worked with both text
and image data, discussed multimodal machine learning models
based on neural networks, and evaluated the performance of
these multimodal models. Additionally, only papers written in
English were included to ensure a coherent and accessible body
of work. Conversely, the exclusion criteria were established to

eliminate papers that did not meet certain quality and relevance
standards. Papers shorter than five pages were excluded to
ensure depth of content. Non-English papers were also omitted,
as were papers that had not undergone peer review, to maintain
academic rigor. Articles with full text not available in the
specified database were disregarded, as were opinion papers
and papers that worked with data types other than image and
text, to maintain focus on the subject matter.

Prior to applying the selection criteria, Scopus yielded 57
papers, which were reduced to 14 after selection. Similarly,
IEEE Explorer had 114 papers initially, but only 34 met the
criteria. Springer Link had 32 papers before and 12 after
selection, while ACM Digital Library produced 108 papers
before and 20 after. Lastly, Semantic Scholar contributed 30
papers initially, but only 9 remained after applying the criteria.
These figures illustrate the substantial reduction in the number
of papers after the rigorous application of selection criteria
across the different databases.

After using the search queries mentioned in Table 1, we got
total 341 research papers. We applied inclusion and exclusion
criteria to those papers and finalized 89 papers that helped us
answer the research questions we wanted to address.

III. RQ1 - DOES MULTIMODAL MACHINE LEARNING
MODELS USE WELL KNOWN PREVIOUSLY ESTABLISHED

ARCHITECTURES?

We seek to investigate the various architectures employed
for MMML models in this research subject. We need to know
which architectures to utilize to obtain information through
multiple modalities. We discovered that MMML models extract
image and text characteristics using pre-trained architectures
that have been well-established in the past after carefully
reading the papers we gathered.

A. RQ1.1 What are the most used pre-trained architectures for
extracting and training image and text data?

This research question will help researchers find which
architectures to use while developing MMML models with text
and image data.

1) Text Feature Extractor: In Fig. 1 we showed the pre-
trained architectures mostly used to extract and train text data.
Fig. 1 shows that BERT (Bidirectional Encoder Representations



Fig. 1: Most used pre-trained models for text feature extraction

from Transformers) is used most to train text data. It is a
pre-trained language representation model. Palani et al. [20]
mentioned that BERT works by masking word tokens at random
and expressing each mask with a vector; it can extract the
underlying semantic and contextual meaning from the input
words and sentences. Table 2 briefly mentions neural network
architectures used in MMML models to extract text features
in different articles.

The BERT paradigm for text representation and interpretation
has gained prominence in natural language processing. For
multimodal review helpfulness prediction the authors [27]
converted each text into sequential embedding using BERT,
with each row vector serving as a word. Gao et al. [23] created a
word dictionary with BERT utilizing the subword tokenization
algorithm WordPiece, which selects the value with the highest
likelihood of merging to produce word segmentation. Agarwal
et al. [32] also used the WordPiece tokenizer to tokenize clinical
data and send it to BERT as input. To make the connection
between review comments [25] proposes a new attention
mechanism using BERT. Sahoo et al. [37] implemented BERT
to extract text features since it can handle long sentences as
input data and has no set input size requirements. Xu et al.
[39] used BERT to extract deep semantic information from
sentences as BERT uses a multi-head attention mechanism to
calculate the connection between words. The authors of [26],
[38], [34] and [36] also used BERT for text embedding.
Another most used architecture for text feature extraction is
LSTM(Long short-term memory). It is one type of recurrent
neural network(RNN) that deals with the vanishing gradient
issue that is not solvable for RNN [65]. Chen et al. [56]
used LSTM to extract text features from a visual log and
generate answers. Yadav et al. [44] used LSTM to optimize
the pre-trained word embedding matrix and make high-level
text features. Alsan et al. [45] used LSTM as a text encoder to
convert text into a feature vector. To consider various emotional
states, sentiments, and previous opinions for detecting polarity,
Ange et al., [46] utilized LSTM.

2) Image Feature Extractor: Like texts, there are neural
network architectures to extract features and train images.

Fig. 2: Most commonly used pre-trained models for image
feature extraction

Among them, Convolutional Neural Networks (CNNs), are
crucial for computer vision and image analysis. In Fig. 2, we
can see that VGG-16 is the most used architecture. VGG,
ResNet, AlexNet, InceptionV3, DenseNet, and SqueezeNet
are CNN architectures, which are deep learning models used
for image-related tasks. For sentiment analysis from images,
Shirzad et al. [61] used VGG-16, which is pre-trained on a
Twitter dataset. They took the pre-trained model trained on
the ImageNet dataset, fine-tuned it, and retrained on a Twitter
dataset. Huang et al. [33] trained VGG-16 on the MNIST
dataset consisting of microscopic images. Kim et al., [64] also
worked with pre-trained VGG-16 but changed the last layer with
a single sigmoid activation function. Babu et al. [53] combined
two pre-trained models - VGG-16 and Xception for image
feature extraction. Both of these models are pre-trained on the
ImageNet dataset. VGG-16 consists of 16 convolutional layers,
and Xception has 71 layers. Apart from CNN architectures,
Faster-RCNN is another popular pre-trained architecture for
image feature extraction. [29] extracted the bounding box and
features of every object from each image using Faster-RCNN.
Other than convolutional neural networks, transformers is also
used for image feature encoding. [54] split the images into
sequence patches of 16X16 pixels as a visual transformer is
used for sequence processing.

B. RQ1.2 What datasets are used to compare the architectures?

We searched the chosen articles for the datasets used in
multimodal applications to answer this research question. While
gathering information about datasets, we learned about some
common data sources researchers use to create datasets for their
research. Twitter, Flicker, IMDB, COCO(Common Objects
in Context). In Fig 3, we summarized all the datasets we
encountered in the articles. The authors of [52], [22], [57], [61]
[55], used a Twitter dataset which consists of tweets and images.
However, each employed a different kind of Twitter dataset to
help them do their tasks. Fig 3 shows that the Flickr30k dataset
has been used the most. Yu et al. used Flickr30k Entities, an
extension of Flickr30k [38]. This dataset consists of 31,783
images with 44,518 object categories and 158k captions. For



TABLE II: Architectures used to train text features in MMML

Architecture Name Article Architecture Name Article
BERT [21], [22], [23], [24], [25], [26], [20], [27], [28], [29], [30],

[31], [32], [33], [34], [35], [36], [37], [38], [39]
LSTM [40], [41], [42], [24], [43], [44], [31], [34], [45], [46]

Bi-LSTM [47], [48], [49], [39] Residual Bi-LSTM [50]
TF-IDF [51] GRU [52], [34], [53]
GREEK BERT [54] RoBERTa [22], [55]
Text CNN [56], [57], [58], [39] CLIP ViT-L/14 [59]
Bi-GRU [60] VADER [61]
Doc2Vec [62] VD-CNN [63]
LinearSVC [62] GloVe [64]

TABLE III: Architectures used to train image features in MMML

Architecture Name Article Architecture Name Article
VGG-16 [48], [27], [31], [66], [63], [61], [62], [33], [67], [62], [64], [53] VGG-19 [68], [57]
ResNet-50 [69], [23], [47] ResNet-101 [70]
ResNet-152 [34], [52], [22] ResNet-18 [26], [54]
Xception [53] SqueezeNet [25], [66]
DenseNet-161 [22] Visual Transformer [54]
InceptionV3 [21] Faster RCNN [29], [56]
Recurrent CNN [50] Image-CNN [58]

modeling image-text data, Wang et al. created a dataset named
MIR-Flickr using the Flicker website [57]. Another commonly
used dataset is MSCOCO. Alsan et al. [45] used MSCOCO
dataset for multimodal data retrival. MSCOCO dataset has
image and text pairs and is trained on a dual encoder deep
neural network. MSCOCO dataset has 80 object categories
330k images with five descriptions per image [53].

IV. RQ2- WHAT FUSION STRATEGIES USUALLY USED IN
MMML?

After reviewing the articles, we found different fusion
techniques used in MMML models. Based on their structure
and methods, we have categorized them into different categories
such as the following:

• Concatenation Technique - concatenates textual and
visual vectors.

• Attention Technique - calculates attention between text
and image features, attention mechanism.

• Weight-based Technique - Early fusion, Late fusion,
Intermediate fusion with different weights.

• Multimodal Deep Learning Architectures - Multimodal
Compact Bilinear (MCB), Multimodal Deep Boltzmann
Machine (DBM), Efficient attention with Transformer,
Stacked Autoencoder Multimodal Data Fusion, Bi-LSTM.

A. Concatenation Technique

Concatenation implies concatenating multiple feature vectors
together to get information from the features. Palani et al. [20]
concatenated text and image feature vectors to get multimodal
feature vectors to leverage information from both modalities.
Paraskevopoulos et al. [54] used the concatenation technique
to assemble text and visual encoders into a classifier model.

B. Attention Technique

To get relevant parts of each modality, the authors [48]
used the attention mechanism as a fusion technique to detect
appropriateness in scholarly submission. The authors mentioned
that not all modalities contain equal importance. They added

an attention layer and calculated the attention score to get
important modalities. Important modalities contain higher
attention scores. Zhang et al. [71] used a multi-head attention
mechanism for the joint representation of image and text
features. The authors calculate the attention score of text
and image features to integrate two modalities. They used
the sigmoid function to calculate the weight of importance
of images for source words. Xu et al. [39] used an attention
mechanism to find a relation between each word in the sentence
and the corresponding region on an image and calculated the
weighted sum to ensure multimodal feature association.

C. Weight based Technique

One of the weight-based techniques is Early fusion, which
is a feature-level fusion technique. It concatenates image
and text feature vectors into one single vector representation,
which provides heterogeneity in data [9]. To have joint
representation of image and text features, [69] utilized Early
fusion technique. The authors take same number of nodes from
each modality’s last hidden layer to give same importance
to each modality. For sentiment analysis in multimodal data,
to integrate two modalities, [63] applied the late fusion for
sentiment analysis. Late fusion, also known as decision fusion,
aggregates classifying features from each modality. Thus, each
modality contributes individually to the final prediction.

D. Multimodal Deep Learning Architectures

Many deep learning architectures have been developed to
accommodate multimodal feature representation, offering better
information fusion and interpretation across different input
modalities. One such model is Bi-LSTM, which the authors [21]
used to integrate image and text features. To fuse data, Yue
et al. [28] first introduced a knowledge-based network called
ConceptNet. This model uses semantic similarity to calculate
the similarity between image and text. In their paper, Chandra et
al. [22] used the MCB pooling fusion technique. MCB performs
the outer product between vector representation of image and
text modality more efficiently than other techniques [72].



Fig. 3: Mostly used dataset in MMML applications

V. RQ3- WHAT ARE THE LIMITATIONS OR CHALLENGES TO
FACE USING THESE ARCHITECTURES?

In this research question we explore the limitations or chal-
lenges occur using MMML architectures. Here we categorized
the limitations and challenges that are commonly seen in
MMML models.

• Dataset Size. One of the main challenges in MMML mod-
els is determining the ideal size for the dataset. The dataset
size must be huge as MMML models work with multiple
modalities’ data. Data preprocessing for this huge number
of data is expensive and computationally inefficient [73].
Image and text datasets vary in size and difficulty. So
training them together is also challenging [74]

• Data Annotation. The publicly available datasets for text
and images are mostly task-specific. Researchers need to
make their dataset for other applications, which requires
data annotation. However, large-scale data annotation is
not widely available [75].

• Noisy Data. The noisy data in multimodality causes
misclassification, as Chandra et al. [22] stated in their
article. According to the authors’ research, the outcome
becomes inaccurate if one of the modalities is noisy.

• Task Specific Image Feature Extractor - For online
review extraction on the multimodal features, Meng Li
[25] used SqueezeNet for image feature extraction but did

not get the expected results as, according to the authors,
the image feature extraction method was not appropriate
for their specified task. The authors did not have their
dataset trained on SqueezeNet, so image features were not
fully utilized. Most pre-trained models for image feature
extraction are task-specific. So, utilizing them in different
tasks does not give the expected result. Jiatong Liu [35]
described that for machine translation, they used ResNet-
50, which is pre-trained on classification tasks. The image
representation they got from using ResNet-50 needed to
be more accurate.

VI. DISCUSSION AND CONCLUSION

Our scoping literature review identifies the most common
methods for utilizing data from image and text modalities.
We deduced from our RQ1 that the most popular pre-trained
architectures for text embedding are BERT and LSTM. We
observed that most researchers used various VGG and ResNet
architectures for picture embedding. Furthermore, our research
showed that MMML practitioners regularly use benchmark
datasets like Twitter, Flickr, and the Common Objects in
Context (COCO) dataset to train and assess their models.
These datasets provide extensive, varied, and multimodal data
sources, strengthening and broadening MMML models. As we
turn our attention to the fusion methods, it becomes clear
that the MMML community uses a wide range of fusion



methods, from concatenation to attention processes and neural
networks. Every technique has a different set of benefits,
which reflects the changing context of multimodal fusion.
However, we discovered several important factors throughout
our investigation of MMML’s limitations and difficulties. These
include computational complexity, data limitations, real-time
processing difficulties, noise robustness, and the demand for
bigger datasets. Researchers and practitioners must know these
constraints pertaining MMML.

This literature review has illuminated the architectural
preferences and dataset selections in MMML and the adaptable
fusion strategies that the community has accepted. We have
given an overall overview of the state of the field today
by addressing the MMML’s inherent limits and difficulties.
This study acts as a useful compass, directing academics
and practitioners toward informed judgments and creative
solutions as MMML continues to develop and broaden its
applications into various disciplines. As they delve farther into
the multimodal data arena, researchers and practitioners seek to
deepen our understanding of the world through connected data
modalities. This journey has the power to transform industries,
improve decision-making, and broaden our perspective on the
world. In our future work, we want to explore the behavior of
MMML models under adversarial conditions. Analyzing how
these models react to adversarial attacks can provide crucial
insights into their security and robustness, revealing tactics to
defend them from malicious manipulation.
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