
Deployment and Hyper-Parameter Optimization of Chatbots

Michael Read and Pablo Rivas
Department of Computer Science, School of Computer Science and Mathematics
Marist College, 3399 North Road Poughkeepsie, New York 12601, United States

Abstract— Chatbots are a specific application of a set of
machine learning algorithms belonging to the family of nat-
ural language processing (NLP). Recently, NLP algorithms
have gained attention as we are closer to passing the Turing
test when they are applied to human-computer interaction-
based systems. In this thesis project we will model chatbots
using NLP-based machine learning algorithms based on
datasets of people. Based on sentences and text from a
specific person, we measure how well the chatbot models
such person’s writing. In theory, NLP algorithms of the
Long Short Term Memory (LSTM) type are capable of
remembering, summarizing, and learning patterns of speech,
style, and forms of any sequences of text. Results indicate
that an LSTMs is capable of generating novel sentences
using as a case study Donald Trump’s tweets.

Keywords: Sequence-to-Vector, Neural Networks, LSTM, Chat-
bots, Hyper-Parameter Optimization

1. Introduction and Background
LSTMs are a subset of Recursive Neural Networks

(RNNs) [1], and their recurrence can be visually explained as
sequential items until the model is made to stop, as depicted
in Figure 1.

LSTMs are capable of learning long-term dependencies,
as well as handling the vanishing gradient problem that
plagues non-LSTM RNNs [2]. The vanishing gradient prob-
lem refers to an issue in neural networks that utilize gradient-
based methods of training, in addition to backwards propa-
gation. As the number of layers increase, the update to the
weights of the front layers gets compounded more and more,
sometimes to the point where training is no longer possible
for the front layers. LSTMs solve this problem by allowing
the gradient, instead of being compounded from layer to
layer, to flow unchanged through the LSTM.

In this paper we, thus, attempted to modeled a chatbot
using an LSTM, which has proven to be a challenging task
in machine learning [3]. In our experiments, we evaluated
the performance effects of changing three parameters: batch
size, model size, and dropout. The first parameter, batch
size, refers to the number of lines of the input the training
algorithm looks through at any given time, illustrated in
Figure 2. The best batch size would be the entire length
of the training input, however due to hardware limitations
it is incredibly unlikely to get to that batch size outside
of specially built machines dedicated to AI training. The

Fig. 1: Sequential representation of LSTM recurrences.

Fig. 2: Example of batch selection w. batch sizes of 2 & 5.

smaller the batch size, the easier the process is on the
hardware, but the more time it will take per pass, and
the worse the results will be. However, overstressing the
hardware with batch sizes that are too large will also result
in poor results, so it is important to find the batch size that
best suits the hardware that training is being performed on.

The second parameter we have tested is model size, which
refers to the length of the word vector encodings. When
performing NLP, it is common to convert the words from the
input into vectors, to help the algorithm better understand the
relationship between words [4], described by Figure 3. When
two vectors end up close to one another, this represents
some sort of relationship between those words, that there is
some similarity between the words. The longer these vectors
are, the more information there is that can be encoded
into these vectors, allowing for more, better relationships
between words. The trade-off between model sizes is that
with larger model sizes, more information can be encoded
yielding better results, while taking more time to train these
word vector encodings.

The third parameter we have tested thus far is dropout.
Dropout refers to the random dropping of a number of nodes
in the network, signified by a percentage, depicted in Figure
4. We utilize dropout in neural networks to mimic the way
our own brains work, as we constantly have brain cells dying
and being created. This causes us to forget the less important
pieces of information, while still remembering the important



Fig. 3: Example of word encoding into a vector of size 10

Fig. 4: Example of dropout applied to a neural network. (A)
shows the network before dropout, (B) shows the network
after dropout.

information. The theory of dropout is that, by randomly
dropping a certain percentage of nodes, we will be likely
to lose the less important patterns that may only come up a
few times in the inputs, while being less likely to lose the
big patterns that consistently show up in the input [5].

2. Methods
2.1 Dataset

Our first step in getting our dataset ready for our chatbot
was to acquire the data. We did this through the website
trumptwitterarchive.com, which contains all of the tweets
from Donald Trumps twitter account from 2016 and earlier
that have not been deleted, as well as almost all of his tweets
after 2016.

The next step was to perform the preprocessing, to make
sure that we didn’t have any characters that might mess with
the chatbot, while keeping emojis, and making sure that the
data we got was in the format we wanted it in. We did
this by first running the data we received through a python
script which replaced symbols such as ‘%’ and ‘&’ with the
words ‘percent’ and ‘and’, and removing quotes and other
similar special characters, as well as hyperlinks. While this
python script worked for most of the unwanted symbols,
some symbols were not able to be removed by the python
script so we removed the rest by hand.

After dealing with the special characters, we then broke
the tweets down into sentences, as the goal of this project
was to generate sentences and not tweets. To break down
the tweets we ran the preprocessed tweets through another
python script which added new lines after each period,

Fig. 5: Depiction of our designed architecture. The dense
layer is a Softmax layer.

exclamation mark, and question mark. While this worked
for the most part, we did have a few issues in cases like
abbreviations where periods do not mark the end of a
sentence. These issues were difficult to attempt to handle,
however we tried to at least handle common cases such as
“Donald J. Trump" and “U.S.A.".

Finally, we performed basic sentence analysis on the
formatted dataset to determine what the average length
of Trumps sentences is, which we used as the length of
sentences our chatbot would form.

2.2 Architecture
After getting our dataset prepared and performing our

analysis, we began working on the chatbot itself. The first
step here was to construct and train our own word vector
encoding based on our dataset. While it is possible to find
already pretrained word vector encodings, we decided that
it would be best for our purposes to create our own. This
allows our encoding to best fit our dataset, as most pretrained
encodings that can be found will not include the hashtags,
twitter handles, and emojis that our dataset contains. For
our specific case of Donald Trump, this also allowed us to
include his common misspellings and nicknames to get an
even better fit for our chatbot.

The next step was to construct our neural network and
begin testing. We decided to go with a 32-layer, LSTM-
based neural network. We chose the Adam optimization
algorithm for our training, with a softmax-based sparse
categorical cross entropy loss function. We chose the Adam
optimization algorithm because it tends to yield extremely
fast results; however, it can sometimes get stuck in a loop
for a while, which slows down that particular run. While
this is not common, it is something that should be taken
into account when thinking about how you want to design
your architecture. A depiction of our architecture is shown
in Fig. 5.



Fig. 6: Batch Size test results mapping loss over time

We performed three tests for each parameter value, begin-
ning with batch size testing. Our starting parameters were a
batch size of 128, a model size of 50, and a dropout value
of 0%. We then changed our batch size to 512 and 1024. We
then chose the best batch size, and moved on to modifying
our model size. For model size testing, we used values of
50, 100, and 300. Choosing the best model size, we moved
on to dropout testing. We tested dropout values of 0%, 10%,
15%, and 20%.

3. Results and Conclusions
3.1 Batch Size

The first experiment was carried on batch size. Fig. 6
shows the Batch Size test results mapping loss over time.
As it can be seen, the batch size that performed the best
was 512, and the batch size that performed the worst was
1024. The batch size of 128 fell between the two. What we
would expect to see is an increase in batch size correlating
with better performance, however we found that the highest
batch size performed the worst. We believe that this is due
to hardware limitations, where our hardware was not able
to optimally use the larger batch size. Other than that, the
outcome is what we expected.

3.2 Model Size
The second experiment was with model size. Fig. 7 shows

the Model Size test results mapping loss over time. For these
tests, we continued with our batch size of 512. In our testing,
we found that a model size of 300 performed the best, with
the worst performance coming from the model size of 50.
The model size of 100 performed slightly worse than the
model size of 300, but better than a model size of 50. These
results line up with what we would expect from these tests.
The corner in the graph on the model size 300 line around
epoch 50 comes from one of the tests having the optimizer
get stuck in a loop, which happens to the Adam optimizer
from time to time, as evidenced by the flat line between
epochs 0 and 50 on one of the three tests. There is not a
huge difference between the model sizes of 100 and 300
compared to 100 and 50, so the decision between the two

Fig. 7: Model Size test results mapping loss over time

of them is a question of the increase in performance over
the added time to train the word to vector encoding. It is
important to note, however, that while the model sizes of
100 and 300 seemed to converge to a similar loss rate, the
model size of 300 was able to converge much faster than
the model size of 100.

3.3 Dropout Rate
The third experiment was on the proportion of dropout.

Fig. 8 shows the Dropout test results mapping loss over
time. For these tests, we continued with our batch size of
512 and model size of 300. In our testing, we found that
a 0% dropout produced the best results, with each increase
in dropout percentage producing worse results, meaning that
the worst results came from a 20% dropout. While we were
not sure what percentage would work best, we did not predict
that the 0% dropout would be the best. We believe that
this is due to either the size of the network not being large
enough to benefit from the dropout, or the size of the dataset
not being large enough to benefit from dropout. To better
optimize dropout, it may be best to increase the size of the
network, and add in more layers, to see if network size is the
parameter holding back dropout. The corners in this graph
are also produced by certain tests having their optimizer not
converging. This experiment elucidates the consequences of
selectively ignoring (dropping) neurons associated with spe-
cific vocabulary words; one might observe that, while the rest
(surviving) neurons become stronger, still the performance of
the network does not increase. This is especially interesting
if we consider that many words in the vocabulary consist of
hashtags and user names that may not contribute much to
the structure of sentences from a grammatical standpoint.

3.4 Quality of Results
After selecting the optimal set of hyper-parameters, we

collected sample sentences of the model at different stages
of training. Table 1 shows some examples of these collected
sentences. As can be seen, the early results seem to be a
random string of words from the vocab with no meaning.
The late results, on the other hand, seem to make much more
sense. While they are not perfect results, they are much better



Fig. 8: Dropout test results mapping loss over time

Table 1: Performance comparison of LSTM during training

Ep Prompt Output

5 bad bad hp heroic contractor @dhsgov
#oscars @souperfan2013 @kevweezy5
worst-the @yewkalaylee lifetime

5 democrats democrats syria @buckleybro40
michael @greenerag @samanthaviner
@mstrbass2000 @pamplinfilmco
@business @thecccowanshow prison

100 crooked crooked hillary presidential
beyond belief approximately
hampshire packed house #potus7
#usa

100 fake fake source gov agree me
supporters @holzmdk radar better
off @garrett

than the early results. An issue that is brought forward by
these results is that the vocab contains an incredibly large
number of twitter handles, which causes them to show up a
lot even in the later sentences.

3.5 Discussion
While these results are not bad, there are a few things that

we believe may be having a negative impact on our model.
First, the vocab that we have is incredibly large. This is
somewhat due to a myriad of misspellings and typos in the
dataset, and also somewhat due to a large number of twitter
handles, some of which only appear a few times at most in
the corpus. Another issue that may be impacting the model
is the size of the model. It may be that to get the best results,
more layers are needed in our model. The problems also may
just be coming from the writing style of the dataset. It may
be that the tweets are too inconsistent to be able to pull any
meaningful data about how they are constructed.

However, we believe that these results are a good start.
While the sentences generated could be better, there is a
clear improvement between the early output and the late
output which is overall a success. Also, each parameter that
we optimized, provided an increase in performance, which
shows that we are moving in the right direction. Finally,

the fact that we were able to produce these results on a
machine that was not specifically designed to perform heavy
ML training shows how far technology has come in the last
few decades, and so theoretically even better results could
be produced on a machine built with ML in mind.

4. Conclusions
We conclude that it is possible to develop and deploy a

chatbot, when taking special care in the choice of dataset,
preprocessing, and architecture. We chose a dataset that
was both large and freely available, processed it to make
sure that there were no characters that would impede the
performance of the chatbot, and then chose the paramters
of the chatbot that would yield the best results we could
achieve. We determined that, for our setup, a batch size
of 512, combined with a model size of 300 and dropout
rate of 0%, gave us the best results. While our vocabulary
was too large to easily produce coherent sentences, it would
be a trivial task to remove uncommon handles and other
unwanted words from the vocab to help streamline the
model. Finally, while our results were not bad, we believe
that this process could be repeated on a dedicated ML
machine to produce even better results. The next steps for
this project are to look into different parameters to try and
better optimize our chatbot. The parameters that we are
currently looking into are network size, and optimizer. For
network size, we want to slowly add layers to see how that
affects the performance of the chatbot, as well as whether
or not a larger network changes the dropout curves. For the
optimizer, we are looking into whether changing the loss
function from the softmax-based sparse categorical cross-
entropy function that we are currently using to a sigmoid-
based binary cross-entropy function will yield better results.
If you would like more information about this project, we
have made the code available in a github repository which
can be found at:

github.com

/MichaelInAction/Senior_Thesis_LSTM_Chatbot

References
[1] M. Sundermeyer, R. Schlüter, and H. Ney, “Lstm neural networks for

language modeling,” in Thirteenth annual conference of the interna-
tional speech communication association, 2012.

[2] S. Hochreiter, “The vanishing gradient problem during learning re-
current neural nets and problem solutions,” International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 6, no. 02,
pp. 107–116, 1998.

[3] M.-H. Su, C.-H. Wu, K.-Y. Huang, Q.-B. Hong, and H.-M. Wang, “A
chatbot using lstm-based multi-layer embedding for elderly care,” in
2017 International Conference on Orange Technologies (ICOT). IEEE,
2017, pp. 70–74.

[4] Q. Zhou, N. Yang, F. Wei, and M. Zhou, “Selective encoding for
abstractive sentence summarization,” arXiv preprint arXiv:1704.07073,
2017.

[5] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from
overfitting,” The Journal of Machine Learning Research, vol. 15, no. 1,
pp. 1929–1958, 2014.


	Introduction and Background
	Methods
	Dataset
	Architecture

	Results and Conclusions
	Batch Size
	Model Size
	Dropout Rate
	Quality of Results
	Discussion

	Conclusions
	References

