
A CLASSIC AND NEURAL PROBABILISTIC APPROACH TO THE DUST STORM
DETECTION PROBLEM

P. Rivas-Perea, J. G. Rosiles∗

The University of Texas El Paso
Dept. of Electrical and Computer Eng

500 W University Ave. El Paso, TX 79968

M. I. Chacon M.†

Graduate Studies Department
Chihuahua Institute of Technology
Ave. Tecnologico 2909, Chih. Mex.

ABSTRACT

This paper address the problem of dust storm detection based
on multispectral image analysis from a probabilistic point of
view. Two classifiers are designed, one based on classic prob-
ability theory and other based on a probabilistic computa-
tional intelligence approach. The first classifier is designed
under the Maximum Likelihood Estimation (MLE) model,
and the second with a Probabilistic Neural Network (PNN)
model. The data set used in this work consists of MODIS
instrument at the NASAs Terra satellite data, generating 75
millions of samples used in the design and validation of the
classifiers. Findings indicated that the PNN presents a bet-
ter classification performance than the MLE classifier. The
proposed models are suitable for near real-time applications,
and provide with an output at a resolution of 1km, which is
an improvement over the methods based on the MODIS AOT
product which has a 10km resolution.

Index Terms— Maximum likelihood estimation, Neural
network architecture, Image processing, Stochastic approxi-
mation, Remote sensing.

1. INTRODUCTION

Nowadays the advances in remote sensing technology make
possible the study of different phenomena in order to under-
stand and learn to live with natural phenomena. In our planet
there exist natural events that are hazardous for the human be-
ing. Most of these events are currently under study. It is well
known that the dust storm event air-borne particles (aerosols)
are a major cause of several physical, environmental and eco-
nomical hazards. Air pollution from dust storms is a signif-
icant health hazard for people with respiratory diseases and
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can adversely impact urban areas [1]. Therefore, the study of
dust storms events is of big concern in the scientific commu-
nity.

In spite of the fact that several methods for detecting dust
storms exist, there are still open questions in the detection
process and in dust storm feature extraction [2]. Current dust
storm analysis systems in the state of the art are based in the
Moderate Resolution Spectroradiometer (MODIS) Aerosol
Optical Thickness (AOT) product from NASA Terra satellite,
which typically is available after two days of the observa-
tion since its production requires several steps and time.
Furthermore, there are no machine learning approaches on
image processing techniques that effectively address the dust
storm detection problem. Therefore, in this paper we present
two models for remote sensing image processing based on
probabilistic methods. These methods have a high perfor-
mance of accuracy and are suitable for dust storm real-time
detection applications. These models are based on spectral
bands feature extraction on the Moderate Resolution Imaging
Spectroradiometer (MODIS) data. The models are based
on: Maximum Likelihood Estimation (MLE) model, and
the Probabilistic Neural Network (PNN) model. When the
models are compared, the neural approach show the best
numerical results compared to ground truths from examples
found in the literature.

Section 2 of the paper introduces the spectral analysis of
dust storms. The MLE and PNN models are explained in
Section 3 and 4. Section 5 presents the results of the exper-
imentation followed by a brief discussion of the results and
findings. Finally, conclusions are drawn in Section 6.

2. SELECTION OF SPECTRAL BANDS FOR
ANALYSIS

The MODIS instrument at the NASA’s Terra satellite, is re-
motely sensing the earth providing information in 36 spectral
bands, which allow the analysis of a wide variety of phenom-
ena such as: atmospheric, sea temperature, surface reflectiv-
ity, to name only a few. All this data makes possible the anal-
ysis of the dust particles suspended in the atmosphere (dust



aerosols). These 36 bands are available in Level 1B of the
MODIS file organization. It is intuitive that bands B1, B3,
and B4 can be utilized effectively for visual assessment of the
dust storms since these bands correspond to the human visual
spectra. We can map such bands to an RGB image and pro-
duce a true color image given by the following relationship:
R = B1, G = B4, B = B3. Besides the visual inspection,
Hao et al.[3] have demonstrated that bands B20, B29, B31,
and B32 can be utilized effectively for visual enhancement
of dust storms. In previous work from Ackerman et al.[4]
demonstrated that the subtraction of bands B32 and B31 im-
proves contrast of dust storm images. Based on these findings
we selected the following features to design a classification
system: B20, B29, B31, B32 and B32 − B31.

2.1. Dust Storm Data Set

We have selected 31 different events for our experiments.
Only 8 out of the 31, were selected for validation. The
data was downloaded using NASA’s WIST online tool, and
the selected events correspond to the south-western US and
north-western Mexico area. The selection of which events
belong to the modeling or validation set was performed ran-
domly. This data set provides approximately 75 millions
feature vectors.

3. PROBABILISTIC MODELING: MULTIVARIATE
MAXIMUM LIKELIHOOD CLASSIFIER
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density function of the n−th pixel of the m-th spectral band to
have a value of x given the probability that the j-th class occur
with a value of c. This might be referred to as the ”a priori”
probability. The Maximum Likelihood Classifier (Maximum
Likelihood Estimator, MLE), is based on the prior probabil-
ities assuming that the posterior probabilities are unknown.
The MLE is an accepted measure for classification and anal-
ysis of remotely sensed data [5]. Therefore we modeled an
MLE classifier specialized on classification of dust and back-
ground. Our model uses four classes: C0 for land/sea back-
ground, SM for smoke, BLDU for blowing dust, and DS for
dust storm. The probability mass functions are expressed as
density functions for convenience and will be estimated from
the collected samples.

The MLE can be derived from Bayes theorem. Since we
are interested on finding the maximum likelihood between the
observed data and the prior probability for all classes, we can
state a decision rule as follows
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. Then, if we assume that the

prior probability is normally distributed we can rewrite the
above terms by defining

ψ(m)
k,n (x) = f

X
(m)
n |Ck

fCk
(2)

that allows restating the decision rule as follows
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which is more convenient to handle. In MLE, the functions
ψ(m)

k,n (x) are commonly referred to as discriminant functions.

The discriminant functions ψ(m)
k,n (x) can be reduced be-

cause of the Gaussianity assumption by removing the factor
−d

2 ln (2π) which adds no discriminant information to the
classification [6], and also since the uncertainty is high for
the true PMF fCk

(Ck = c), it is removed from (2), as well as
the common factor 1

2 , leading to a commonly used simpler
discriminant function
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where det (·) is the determinant function, Σ
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3.1. Features for Recovered Radiance Analysis

We use the term ”Recovered” to refer 16 bit MODIS data
that is recovered to its original scale (W/m2/µm/sr). The
recovery process is given by

L(m)
n

= κ(m)(ι(m)
n

− η(m)) (5)

where L(m)
n denotes the recovered radiances, κ(m) are the ra-

diance scales, η(m) are the radiance offsets, and ι(m)
n are the

scaled intensities (raw data). A feature vector F ∈ ℜn×5 is
constructed from the recovered radiances as follows

F =
[
LB20, LB29, LB31, LB32,

(
LB32 − LB31

)]
. (6)

The feature LB32 − LB31 emphasizes that the subtraction of
B31 from B32 is performed after the recovery process.

3.2. Estimation of the Conditional PDF f
X

(m)
n |Cj

Considering Gaussianity, the goal is to estimate the follow-
ing parameters: the vector of expected values µ̂F |Cj

and the

covariance matrix Σ̂F |Cj
. In order to perform the estima-

tion, we performed segmentation based on images that have
been already published on remote sensing research journal,
and from the images contained in these papers, we have iden-
tified the dust storm region and manually segmented the sam-
ple images containing dust storms, blowing dust, and smoke,



such that we can utilize the region of the segmented image
as a mask. This mask is associated with a particular class
Cj . Then having all the masks and the associated classes, we
extract and store the subset of pixels associated to the j−th
class. Finally, we compute the sample mean µ̂F |Cj

and the

covariance matrix Σ̂F |Cj
= which is clearly not ill-posed

since we have a large number of data samples available for
modeling as in most remote sensing applications.

4. NEURO-PROBABILISTIC MODELING: THE
PROBABILISTIC NEURAL NETWORK

The Probabilistic Neural Network (PNN) is a semi-supervised
neural network widely used in pattern recognition applica-
tions. One of the main advantages is that it does not require
training. Indeed, the PNN is inspired in the Bayesian clas-
sification. The basic operation of the PNN is to estimate the
PDF’s of the features assuming Gaussian distributions. The
general architecture of the PNN is composed of four layers.
The first layer is an input layer receiving the features F ∈ ℜn.
The second layer contains exponential functions ϕ (·) in each
nodes, and the number of nodes correspond to the k number
of samples available for training for the j−th class. This
nodes are called pattern units νF

jk, and are fully connected to
the input nodes. The output of the pattern layer is denoted by

ϕjk (F ) =
1

(2π)
d
2 σd

e−
1

2σ2 (F−νF
jk)

T (F−νF
jk). (7)

The third layer contains summation units to complete the
probability estimation. There are as many summation units
as classes. The j−th summation unit denoted as ϖj , re-
ceives input only from those pattern units belonging to the
j−th class. This layer computes the likelihood of F being
classified into Cj , by averaging and summarizing the output
of all neurons that belong to the same class as

Ωj (ϕjk (F )) =
1
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d
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1

Nj
× . . .

Nj∑

i=1

e−
1

2σ2 (ϕik(F )−ϖi)
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The last layer is the decision layer. It classifies the pattern
of F according to the Bayesian decision rule given by

F ∈ Cj if, Cj (Ωj (ϕjk (F ))) = max
1≤i≤j

Ωi (ϕik (F )) .

(9)
Thus, the maximum of the summation node outputs can be
expressed as a function of Cj (·) characterizing the output of
this layer.

4.1. Features and Estimation of the Spread Parameter σ

The input to the PNN model is F in (6). The parameter σF

is estimated by the method proposed by Srinivasan et al.[7],

which requires a phase of pre-normalization of the data con-
sisting on subtracting the mean µF from the training feature
vector F , and dividing it by its standard deviation σF . The
value of σF is defined as the absolute difference between the
two smallest normalized variances. This completes the model
of the PNN since there is no training phase involved.

4.2. The problem of the large sample size in modeling the
PNN

In order to avoid the overwhelming processing of millions of
training samples, we decided to limit the number of samples
selected for training in the case of PNN. We based our reduc-
tion method on the criteria that establishes that the number of
samples required for training the networks must be at least 3
times the number of bands used as features [8]. Therefore, in
the PNN design, we decided to use at least 3 times the size of
the feature vector F . The selection of which feature vectors
to keep will not be addressed in this paper.

5. RESULTS AND DISCUSSION

The selected performance metrics are considering all samples
used in the different methods. These metrics are:

Precision =

∑
TP

∑
TP + FP

, (10)

Accuracy =

∑
TP + TN

∑
TP + FN + FP + TN

, (11)

as well as the area under the receiver operating characteris-
tics (ROC) curve (AUC). AUC is widely used metric because
its superiority in reflecting the true performance of a classi-
fication system. The numerical results were concentrated
and averaged to produce Table 1, showing that the neuro-
probabilistic approach is better than the MLE. Table 1 also
include the processing time per feature vector in milliseconds.
Visual results of the classification are illustrated in Figure 1.
Figure 1 a) is a true color image obtained with the traditional
Mercator approach. Figure 1 b) shows the probability of pres-
ence of dust storm. Figure 1 c) is a segmentation image,
showing the actual mapping. DS is mapped to red, BLDU
to green, SM is blue, and C0 is black.

6. CONCLUSION

The problem of dust storm detection has been addressed in
this paper. We have modeled probabilistic approaches for
dust storm detection and classification. These models are
specialized on measuring the probability of the presence of
dust storm data given MODIS Level 1B data. Novel tech-
niques in Machine Learning were utilized to design a neural
architecture to model dust storms. To the best of the knowl-
edge of the authors, the presented models are the first in its



kind that can actually perform classification of dust storms
pixels based on soft computing methods. We compared the
probabilistic models such as the Maximum Likelihood, MLE,
and the Probabilistic Neural Network, PNN. The PNN show
a strong ability in inferring the relationship between spectral
bands to classify dust, and discriminate from other classes,
such as clouds, smoke, etc. Moreover, the proposed prob-
abilistic models are suitable for near real-time applications,
such as direct broadcast, rapid response analysis, emergency
alerts, etc. The work reported in this document is suitable for
the study of the dust storm problem since the algorithms can
show the dust presence to a resolution of 1km. This repre-
sents an improvement over the methods based on the Aerosol
Optical Thickness index (AOT) which lack of resolution and
its results are generated after two days of the satellite pass.
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Table 1. Classifiers Performance.
Precision Accuracy AUC P. Time

MLE 0.5255 0.6779 0.4884 0.0141
PNN 0.7664 0.8412 0.6293 0.2393

(a) True color image R=B1, G=B4, and B=B3

(b) Dust probability MLE (c) Dust probability PNN

(d) Segmentation MLE (e) Segmentation PNN

Fig. 1. Dust storm event on April 6th 2001.


