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Abstract

The main contribution of this dissertation is the development of a method to train a

Support Vector Regression (SVR) model for the large-scale case where the number

of training samples supersedes the computational resources. The proposed scheme

consists of posing the SVR problem entirely as a Linear Programming (LP) prob-

lem and on the development of a sequential optimization method based on variables

decomposition, constraints decomposition, and the use of primal-dual interior point

methods. Experimental results demonstrate that the proposed approach has compa-

rable performance with other SV-based classifiers. Particularly, experiments demon-

strate that as the problem size increases, the sparser the solution becomes, and more

computational efficiency can be gained in comparison with other methods. To reduce

the LP-SVR training time, a method is developed that takes advantage of the fact

that the support vectors (SVs) are likely to lie on the convex hull of each class. The

algorithm uses the Mahalanobis distance from the class sample mean in order to

rank each sample in the training set; then the samples with the largest distances are

used as part of the initial working set. Experimental results show a reduction in the

total training time as well as a significant decrease in the total iterations percent-

age. Results also suggest that using the speedup strategy, the SVs are found earlier

in the learning process. Also, this research introduces a method to find the set of

LP-SVR hyper-parameters; experimental results show that the algorithm provides

hyper-parameters that minimize an estimate of the true test generalization error.

Finally, the SVR scheme shows state-of-the-art performance in various applica-

tions such as power load prediction forecasting, texture-based image segmentation,

and classification of remotely sensed imagery. This demonstrates that the proposed

learning scheme and the LP-SVR model are robust and efficient when compared with

other methodologies for large-scale problems.
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Chapter 1

General Introduction

This dissertation focuses on some open issues in Support Vector Regression (SVR).

The objective is to contribute and advance the machine learning area within the so

called “statistical pattern recognition” community with original ideas to solve com-

mon problems. Throughout this document, the reader is driven to an understanding

of SVR, the research questions addressed, and their significance. In the following

paragraphs a general overview of SVR is given.

1.1 Statistical Pattern Recognition

From the typical pattern recognition process depicted in Figure 1.1, one can see

that the range of possible applications is very broad. Statistical pattern recognition

methods have focused mostly on the last two blocks: prediction and model selection.

Statistical pattern recognition methods based on optimization methods have

shifted the paradigm in the machine learning area. The reason is that most learning

algorithms proposed in the past 20 years focused on heuristics or on analogies with

natural learning systems, such as evolutionary algorithms (EA) or neural networks

(NN). EAs and NNs were mostly the result of biological findings and experimental

tuning of parameters. However, the underlying reasons for their performance was not

fully understood. Most of the work was based on designing heuristics to avoid local

minima trapping in the training (design) process. In contrast, recent statistical pat-

tern recognition algorithms overcome many of these disadvantages by using known

theories in the mathematical sciences, e.g., Mercer kernels [129], Hilbert spaces [41],

1



Figure 1.1: Overview of a general pattern recognition process.

and Kernel expansion [171].

In the last decade, a theoretical basis for learning machines has been developed

to explicitly maximize their performance [43].

The combination of learning machines with kernel functions has led to novel pat-

tern recognition algorithms characterized by their formulation as convex optimization

problems. Convex optimization problems have the advantage of being free from lo-

cal minima. In particular, it is now possible to model non-linear pattern recognition

systems under the convenience of a linear representation using kernel functions [171].

Support vector machines (SVMs) are arguably the best known example among

kernel learning algorithms. Since their introduction in 1992 [20], SVMs have been

studied, generalized, and applied to a number of problems.

Currently, SVMs hold records in performance benchmarks for handwritten digit

recognition [109], text categorization [5, 110, 115, 140, 166], information retrieval [19,

58, 61, 182, 204], and time-series prediction [42, 169, 172, 196, 220] and are commonly

used in the analysis of DNA micro-array data [34, 70, 145, 146, 192]. Due to its

novelty and potential, there are many areas of improvement, particularly in the

numerical methods for problem posing [168] (e.g., vectorial calculus and algebra)

and optimization [38, 214] (e.g., quadratic and linear programming). The following

section explains the general concept of support vector learning and the clever idea

of using kernel functions for non-linear problems.
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1.2 Support Vector Learning and Kernel Func-

tions

SVMs are a set of two-class supervised learning methods that are used for classifica-

tion [197,198]. The main idea of an SVM is to construct a hyperplane as the decision

surface, based on data points called support vectors: this the reason for the name.

SVMs aim to find the separation margin that maximizes its distance to positive and

negative examples (shown as black and white dots in Figure 1.2 respectively). Figure

1.2 shows three different separating hyperplanes (or lines for this case), wT
Axi+b = 0

does not accurately separates the two groups of examples, in contrast wT
Bxi + b = 0

and wT
Cxi+b = 0 do. However, the plane wT

Cxi+b = 0 clearly maximizes the margin

between the two groups of examples, which in turn maximizes generalization, i.e. the

ability of the algorithm to learn the true model from the training set.

Figure 1.2: Different separating hyperplanes. The hyperplane denoted as wT
Bxi +

b = 0 correctly separates the two classes; however, wT
Cxi + b = 0

maximizes the separation margin between classes. In contrast, wT
Axi +

b = 0 is a poor separating hyperplane.
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Figure 1.3: The hyperplane is defined by wTxi + b = 0, and the support vectors
are those that satisfy the condition wTxi + b = di.

Figure 1.4: The data points (input space) are projected to a higher dimension (fea-
ture space) using a kernel function.

Each instance in the training set contains one “target output” (class labels) d,

and an input feature vector x. The goal of SVM is to produce a model that predicts

target values of unlabeled data instances, given only their features.
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Formally, the SVM principle for the linear case (Figure 1.2 - Figure 1.3) is to find

the w’s and b that form the hyperplane denoted as wTxi + b = 0 between any given

data-points such that the data-points are separated with maximum margin. For

the non-linear case, the aim is to find the same hyperplane that separates the two

groups in a higher dimension space induced by a particular kernel function k(·, ·)
that maps x into k(xi,x) as illustrated in Figure 1.4). The figure portraits the

case of two groups of data that are non-linearly separable in the input space, which

becomes linearly separable in the kernel-induced feature space. Therefore, both SVM

and kernel functions together represented a tremendous breakthrough for supervised

learning classifiers since the appearance of neural networks appearance.

In 1995, Vapnik, et al. [197, 198] and later Smola, et al. [54, 178] explored and

developed the SVM approach for regression problems. This approach is commonly

known as Support Vector Regression (SVR), which increased the application range of

SVMs since SVRs can also perform multi-class pattern recognition [86]. This type of

machine is typically formulated using quadratic optimization under the umbrella of

convex optimization. In return, the solution is always global and is easy to compute

for very small problems.

1.3 Large-Scale Support Vector Regression Train-

ing

The original training of an SVM [197, 198] was only valid for small data sets and

was designed to find the solution of a QP problem using a constrained conjugate

gradient algorithm. The size of the problem is directly proportional to the number

of training vectors, making its solution computationally intractable even for moderate

size training sets.

Later Vapnik, et al. [197, 198] improved this method by considering only those
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variables associated to support vectors lying on the boundaries, whose gradient take

them out of the feasible region. This modification allowed computational tractability

of a limited number of large-scale problems (less than 5, 000 samples).

In 1997, Osuna, et al. [139] proposed a decomposition method that achieves

optimality by solving a sequence of smaller sub-problems from randomly selected

samples out of a training dataset (see Appendix A.2.1). The algorithm selects the

support vector coefficients that are active on either side of the optimal hyperplane (in

a two class problem), then proceeds iteratively until the completion of the problem

size. This algorithm performs satisfactory in applications of up to 110, 000 data

points.

Later in 1999, Joachims introduced the concept of “shrinking” under the SVM

training context and named it “SVMlight” [98]. The idea is to get rid of points that

have less probability of becoming support vectors, thereby saving time in the opti-

mization problem solution (see Appendix A.2.2). Joachims’ method demonstrated to

be faster than Osuna’s method. The author reported results for as many as 49, 749

data points.

Also in 1999, Platt extended Osuna’s work with an algorithm called “sequential

minimal optimization” (SMO) [148]. This is a famous algorithm implemented in

several commercial and open-source software applications. The key idea behind

Platt’s method is to decompose the large QP problem into a series of very small QP

sub-problems. These sub-problems are as small as they can be solved without a QP

solver, thus much faster (see Appendix A.2.3). Platt reported as many as 60, 000

data points.

Collobert, et al. [39] reported in 2001 an adaptation of Joachims’ method for

SVR problems named “SVMTorch” (see Section 2.3). The authors show the imple-

mentation of reduction algorithms and give mathematical proof of convergence. The

authors also reported using as many as 60, 000 data points.

Rifkin presented the “SVMFu” algorithm in 2002 [155]. This work reviews and
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synthesizes Osuna’s, Platt’s and Joachims’ work (see Appendix A.2.4). The key idea

is to divide the large problem into sub-problems such that their Hessian matrices fit

within memory limitations. In QP, Hessian matrices are useful since they describe

the second partial derivatives of an n-dimensional function. Rifkin reports as many

as 60, 000 data points.

Mangasarian, et al. in 2002 [127], explored the very first linear programming (LP)

approach to kernel-based regression. The authors proposed a linear programming

chunking (LPC) algorithm with guaranteed termination (see Algorithm B.2). The

method demonstrated efficiency, but slow convergence solving linear programs with

commercial optimization software. The authors report solving linear programs with

as many as 16, 000 data points in a total of 19 days.

In 2005, Drineas, et al. [53] developed an algorithm to approximate a low rank

kernel matrix in the form of (A.21). The computational time is reduced (see Ap-

pendix A.2.5). The authors report an interesting derivation of their ideas based on

the Nystron method.

Continuing with QP-based methods, in 2006, Hush, et al. [90] proposed an algo-

rithm that produces approximate solutions without compromising accuracy in a QP

SVM problem. The authors propose a first stage where the algorithm provides an

approximate solution for the QP dual, and a second stage that maps the QP-dual

problem to the QP-primal problem, based on the duality theorem. The authors

report over a 100, 000 samples data-set.

In 2006, Sra [180] proposed an algorithm that explicitly takes advantage of the LP

formulation for SVMs to produce an efficient training method for large-scale prob-

lems. The method converts the LP problem into a QP problem, applies Bregman [27]

and Hildreth [81] decomposition, and then the QP problem is solved (See Appendix

A.2.7). The author report solving a problem with as many as 20, 000, 000 samples.

For some time, no new LP approaches for SVR were developed until 2009, when

Lu, et al. [123] reported an SVR method based on a novel LP formulation. The
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authors present an alternative of the typical kernels and use wavelet-based kernels

instead. The paper shows an application to nonlinear dynamical systems identifica-

tion, but the authors do not elaborate on the data-set size.

In 2010, by the time this dissertation was already in progress, Torii, et al. [187]

published work on a novel LP formulation along with three decomposition methods

for training an LP-SVM approach. The authors report as many as 60, 000 data

points.

The development found up to date does not report any advances of sub-problem-

based SVR approaches entirely motivated and aimed for large-scale LP-SVR formu-

lations since Mangasarian, et al. [127]. Even the idea from Sra [180] that seems to

work for up to 20, 000, 000 samples, fails to take advantage of the efficiency of LP

solvers and still works for only a limited number of samples.

In spite of all these advances in SVMs and SVR, training schemes for large-scale

applications are still required. It is of high importance to address the problem of

large-scale training as technology advances and large amounts of data is being stored

for further analysis. For example, consider a typical case in engineering when one

has a five-minute remotely sensed multispectral multidimensional image of 36 bands

of 2030 × 1053 pixels. For one single five-minute measurement, we have a sample

space of 2, 137, 590 pixels at 36 variables occupying 587Mb of memory (in double

precision format). Now consider having at least 50 observations; this accounts for

106, 879, 500 pixels and about 28Gb of memory. This represents a dramatic quantity

that clearly illustrates the complexity of the problem addressed in this dissertation.

1.4 Scope of This Dissertation

The statistical learning theory developed by Vapnik, et al. [197,198] led to the SVMs,

derived from the concept of structural risk minimization instead of empirical risk

minimization. The training of an SVM is equivalent to solving a Quadratic Program
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(QP) with linear constraints [139]. The number of data points is equivalent to the

number of variables for the QP problem. The problem arises as the training data set

size grows to thousands, as is typical of real-life applications.

A number of training methods have been proposed [53,90,98,139,148,155]. Many

of these algorithms assume that the following conditions are satisfied: (i) the number

relevant data points required to build the pattern recognition model (i.e. the number

of support vectors) is manageable; and (ii) the total number of support vectors is

smaller than the number of training data points. However, these conditions do not

hold in most engineering applications for a large number of reasons.

This research proposes a training algorithm that is not based on the previous

assumptions and that is more efficient. This is achieved by taking advantage of the

efficiency of Linear Programming (LP) methods and by posing the problem as an

LP problem rather than a QP problem.

1.4.1 Problems to be Addressed

In this dissertation an improved SVR formulation is developed which can be im-

plemented directly with most primal-dual numerical solvers for linear programming

(LP). It has been demonstrated that LP is more computationally efficient, faster,

and more robust than QP [62,78]. Moreover, recent works [22,123,187] have demon-

strated efficient LP formulations for SVMs.

Since in SVMs and SVR the complexity of the pattern recognition problem is pro-

portional to the number and space-dimension of the training samples, this research

presents a more efficient and faster training algorithm for SVR able to operate under

these conditions. More objectively, this document presents a method for solving the

optimization problem in the presence of large training sets.
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1.4.2 Research Questions

This dissertation addressed the following research questions:

• Can any real-valued, large-scale training data set in the order of millions of

data points be divided in smaller datasets, such that the support vectors of the

large-scale problem are found from these small datasets by using a sequential

linear programming support vector regression approach?

• Is it possible to use statistical properties of the large-scale data to reduce the

sample size without losing the support vectors of the large-scale problem and

then let the sequential approach find the solution of LP sub-problems?

1.4.3 Dissertation Statement

Training a Linear Programming Support Vector Machine for Regression (LP-SVR)

in the presence of a large number of training samples is very difficult, and computa-

tionally expensive with state of the art methods. This research demonstrates that a

real-valued large-scale training data set can be decomposed in smaller size data sets,

such that the support vectors of the large-scale problem are found sequentially from

these small blocks to find the optimal solution to the large-scale LP-SVR problem.

1.5 Summary of Contributions

The development of a training methodology specialized for large-scale data-sets based

on linear programming methods for support vector regression problems contributes

to the areas of statistical pattern recognition, machine learning, and its derived ar-

eas. This research provides a method for training LP-SVR machines specialized for

large-scale problems. The key problem formulation for the LP primal optimization

problem guarantees convex solutions, reliable models, and efficient computations.
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The proposed research performs more efficiently than the SVMTorch method pro-

posed by Collobert, et al. [39] and Torii, et al. [187]. The latter, to the best of our

knowledge, is the only similar idea reported to date. In contrast to Collobert et al.

this research proposes the usage of pure LP methods. And in contrast to Torii et al.

this research uses a different LP-based SVR formulation.

The second key contribution is that this dissertation provides numerical evidence

of the relationship between the statistical sense of distance and the number of support

vectors. Thus, statistical distance-based sample ranking is utilized to accelerate the

learning process.

A third contribution is the development of a model selection algorithm for LP-

SVR. This approach uses an inexact quasi-Newton approach to find the best set of

hyper-parameters.

Since the SVM has quite a large number of applications, these can also be ex-

tended to the SVR solution. This document shows applications to i) remote sensing

dust storm detection, ii) power load prediction, iii) image texture segmentation, and

iv) sonar mine detection.

1.6 Overview of Remaining Chapters

Chapter 2, shows the development of the fundamental concepts behind support vector

regression. The chapter also presents a comprehensive literature review on training

methods, specifically for large datasets. Then the chapter reviews the linear pro-

gramming formulations for support vector regression and their training methods.

Finally, a brief introduction to primal-dual interior point methods is given as back-

ground material; as well as information about the datasets and performance metrics

used in this dissertation.

Chapter 3 reveals the proposed large-scale linear programming support vector

regression formulation, as well as the proposed learning method. Chapter 3 outlines
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the complete learning algorithm and Chapter 4 describes a method to find the hyper-

parameters of the proposed LP-SVR formulation. Finally, the chapter explains a

method that accelerates convergence of the learning process. The method uses the

statistical concept of distance to pre-rank the data set. Experimental results are

shown to demonstrate the claims of fast rate of convergence and efficiency.

Applications of the methods explained in Chapter 3 and Chapter 4 are discussed

in Chapters 5 through 7.

Chapter 5 addresses an important issue regarding traditional power systems: load

forecasting. In this chapter, a new electricity price and load prediction method is

introduced. The proposed large-scale LP-SVR approach is applied to the real-life

problem in the smart grid. The experimental results show significant improvement

in short-term power load forecasting when compared with binary trees and neural

network regressors.

Chapter 6 considers the application of a set of directional filter banks (DFBs) to

the problem of texture classification. The DFB is used to provide a compact and effi-

cient representation in which fast classification can be performed using the proposed

LP-SVR approach. The resulting method is shown to yield higher performance than

feature-based techniques reported previously.

Chapter 7 analyzes statistical and neural approaches to alleviate the lack of spe-

cialized remote sensing-based dust aerosol detection methods. Chapter 7 highlights

the effectiveness of the proposed LP-SVR model in understanding dust storm phe-

nomena.

Finally, Chapter 8 concludes this dissertation with a summary of the findings and

relevance of all the analysis mentioned above.
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Chapter 2

A Review of Support Vector

Regression

This chapter summarizes the theory of support vector regression (SVR). After a brief

introduction, notation, and some definitions, the fundamental principle of SVRs

and its training is addressed. This leads to a better understanding of the Linear

Programming (LP) formulation of SVRs.

If the reader is not familiar with the fundamental principle of Support Vector

Machines (SVMs) or SVMs learning methods, it is suggested to consult Appendix

A.

2.1 Introduction

In supervised learning methods, one is provided with a dataset that comprises a

number of samples from an M-dimensional data vector x ∈ RM , and a desired

output class value d ∈ Z. In the case of regression, the desired output value is

d ∈ R. This dataset is typically divided in three datasets: “training set,” “validation

set,” and “testing set”. In this dissertation, the training set is used to train the

pattern recognition models, and the validation set is used to adjust parameters during

training. Later, the testing set is used to determine the true performance of the

trained model. The testing set is not to be used at any stage of the training process.

Let T = {xi, di}Ni=1 define the training set, where N is the number of samples

available for training. Let V = {xi, di}Nv

i=1 define the validation set, where Nv is the
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number of samples available for validation. Let D = {xi, di}Nt

i=1 denote the testing

set, where Nt is the number of samples available for testing. This dissertation focuses

on the case when N is very large, with N | Nt ≥ Nv.

In this dissertation the ℓ1-norm of the vector x is denoted as follows:

||x||1 =
M∑

i=1

|xi|, (2.1)

and the ℓ2-norm (a.k.a. as Euclidean norm) is defined as follows:

||x||2 =
(

M∑

i=1

x2i

) 1
2

≡
(
xTx

) 1
2 , (2.2)

where xT indicates the transpose of the vector x; and the operation xTy may be

regarded as the “inner product” between vectors x and y.

The notation xi refers to the i−th vector x for all i = {1, 2, . . . , N}; while the

notation xj refers to the j−th component of the vector x for all j = {1, 2, . . . ,M}.
Matrices will appear in capital bold letters. For instance, a matrix X with i rows and

j columns, has elements that will be regarded as Xij. Matrices or vectors can also

be represented with bold Greek symbols as appropriate. Non-bold Greek symbols

and italic font will be used for variables; e.g., α, β, γ, x, y, z, Φ, Σ, Ω, P , S, O. The

vector 1 is equivalent to a vector of ones with the appropriate size, 1 = [1, 1, . . . , 1]T .

Similarly, the vector 0 is denoted as 0 = [0, 0, . . . , 0]T .

The sets (i.e., sets of data, sets of variables, sets of sets, and sets of indices)

will be regarded with calligraphic font, e.g., A, B, C. The sets of numbers will be

regarded with double-barred font, e.g., D, E, F.

For probability, the notation of Duda, et al. [77] will be followed. Let x be a dis-

crete random variable. Then, x can take on any value in the set X = {v1, v2, . . . , vm}.
The probability of x being equal to some value vi will be denoted as P (vi) ≡ Pr[x =

vi]. Since x is discrete, its probability mass function (PMF) will be regarded as P (x);
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if x is continuous, its probability density function (PDF) has the notation p(x). The

expected value of x will be denoted as E [x] ≡ µ; while the variance is denoted as

Var[x] ≡ σ2 = E [(x− µ)2].
With this notation in mind, let us start with the fundamentals of support vector

regression.

2.2 Support Vector Regression Fundamental Prin-

ciple

To begin with, let us consider the linear regression case where the dependency of a

scalar observable d on a regressor x is denoted as follows:

d = wTx+ b, (2.3)

where the parameter vector w and the bias b are the unknowns. The problem is

to estimate w and b given the training samples T = {(xi, di)}Ni=1 where the vector

elements xi are assumed to be statistically independent and identically distributed

(iid). The problem formulated by Vapnik is aimed to minimize, on the variables w

and b, the structural risk functional

R =
1

2
||w||22 + C

N∑

i=1

|di − yi|ǫ (2.4)

where the variable yi is the estimator output produced in response to the input xi,

that is f(xi) ≡ wTxi + b = yi; the function | · |ǫ describes the ǫ-insensitive loss

function:

Lǫ (d, f(x)) ≡ |d− f(x)|ǫ =




|d− f(x)| − ǫ for |d− f(x)| ≥ ǫ

0 otherwise,
(2.5)
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where ǫ is a prescribed parameter (see Figure 2.1).

Figure 2.1: Illustration of the ǫ-insensitive loss function.

The structural functional (2.4) can be expressed as an optimization problem in

its primal form as follows [78]:

min
w,b,Lǫ

1
2
||w||22 + C

∑N
i=1 |di − yi|ǫ

s.t.





di − yi ≤ ǫ+ ξi

yi − di ≤ ǫ+ ξ∗i

ξi, ξ
∗
i ≥ 0

for i = 1, 2, . . . , N.

where the summation in the cost function accounts for the ǫ-insensitive training error,

which forms a tube where the solution is allowed to be defined without penalization,

as shown in Figure 2.2 for the linear case, and in Figure 2.3 for the non-linear

regression case. The constant C > 0 describes the trade off between the training

error and the penalizing term ||w||22. The term ||w||22 is penalized to enforce a sparse

solution on w. The variables ξi and ξ∗i are two sets of nonnegative slack variables

that describe the ǫ−insensitive loss function.

The objective function in the primal can be rewritten in terms of the slack vari-
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Figure 2.2: Linear regression: illustration of an ǫ-insensitive tube, fitted to the data
points shown as circles.

Figure 2.3: Illustration of an SVM for non-linear regression, showing the regression
curve together with the ǫ-insensitive tube.

ables ξ and ξ∗, by observing the restrictions of the primal and the definition of the

ǫ-insensitive function, and thus defining ξ = di − yi − ǫ and ξ∗ = yi − di − ǫ. Then
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one obtains another common version of the primal problem as follows:

min
w,b,ξ,ξ∗

1
2
||w||22 + C

∑N
i=1 (ξi + ξ∗i )

s.t.





di −wTxi − b ≤ ǫ+ ξi

wTxi + b− di ≤ ǫ+ ξ∗i

ξ, ξ∗ ≥ 0

for i = 1, 2, . . . , N.

(2.6)

Next, we define the dual problem using the Lagrange multipliers method, where the

following Lagrangian function is defined:

L(w, b, ξ, ξ∗,α,α∗,γ,γ∗) =
1

2
||w||22 + C

N∑

i=1

(ξi + ξ∗i )−
N∑

i=1

(γiξi + γ∗i ξ
∗
i )

−
N∑

i=1

αi

(
wTxi + b− di + ǫ+ ξi

)
(2.7)

−
N∑

i=1

α∗
i

(
di −wTxi − b+ ǫ+ ξ∗i

)

where γi, γ
∗
i , αi, and α

∗
i denote the Lagrange multipliers associated with the objective

function and constraints respectively. The associated stationary points are defined

by the following partial derivatives:

∂L(w, b, ξ, ξ∗,α,α∗,γ,γ∗)

∂w
= w −

N∑

i=1

(αi − α∗
i )xi = 0, (2.8a)

∂L(w, b, ξ, ξ∗,α,α∗,γ,γ∗)

∂b
=

N∑

i=1

(α∗
i − αi) = 0, (2.8b)

∂L(w, b, ξ, ξ∗,α,α∗,γ,γ∗)

∂ξ
= C1−α− γ = 0, (2.8c)

∂L(w, b, ξ, ξ∗,α,α∗,γ,γ∗)

∂ξ∗ = C1−α∗ − γ∗ = 0. (2.8d)
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Then, the dual problem using the method of Lagrange multipliers is stated as follows:

max
w,b,ξ,ξ∗,α,α∗,γ,γ∗

L(w, b, ξ, ξ∗,α,α∗,γ,γ∗)

s.t.





∂L(w,b,ξ,ξ∗,α,α∗,γ,γ∗)
∂w

= 0

∂L(w,b,ξ,ξ∗,α,α∗,γ,γ∗)
∂b

= 0

∂L(w,b,ξ,ξ∗,α,α∗,γ,γ∗)
∂ξ

= 0

∂L(w,b,ξ,ξ∗,α,α∗,γ,γ∗)
∂ξ∗

= 0

ξ, ξ∗,α,α∗,γ,γ∗ ≥ 0

(2.9)

and the following problem is the expanded version of problem (2.9) above:

max
w,b,ξ,ξ∗,α,α∗,γ,γ∗

1
2
||w||22 + C

∑N
i=1 (ξi + ξ∗i )−

∑N
i=1 (γiξi + γ∗i ξ

∗
i )

−∑N
i=1 αi

(
wTxi + b− di + ǫ+ ξi

)

−∑N
i=1 α

∗
i

(
di −wTxi − b+ ǫ+ ξ∗i

)

s.t.





w −∑N
i=1(αi − α∗

i )xi = 0
∑N

i=1(α
∗
i − αi) = 0

C1−α− γ = 0

C1−α∗ − γ∗ = 0

ξ, ξ∗,α,α∗,γ,γ∗ ≥ 0

for i = 1, 2, . . . , N.

(2.10)

However, it is possible to remove three constraints by noticing from (2.8a) that one

can solve for w as follows

w =
N∑

i=1

(αi − α∗
i )xi (2.11a)
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and also one can solve for both γ, and γ∗ from (2.8c) and (2.8d) as

γ = C1−α (2.11b)

γ∗ = C1−α∗ (2.11c)

which also yields the boundary condition 0 ≤ α,α∗ ≤ C1. If we substitute the

equalities (2.11a)-(2.11c) into the objective function, and perform some analytic op-

erations, we arrive to the following well known reduced dual problem [78]:

max
α,α∗

−1
2

∑N
i=1

∑N
j=1(αi − α∗

i )(αj − α∗
j )x

T
i xj

−ǫ∑N
i=1(αi + α∗

i ) +
∑N

i=1 di(αi − α∗
i )

s.t.





∑N
i=1(αi − α∗

i ) = 0

αi, α
∗
i ≤ C

αi, α
∗
i ≥ 0

for i = 1, 2, . . . , N.

(2.12)

Problems (2.6) and (2.12) solve the linear regression problems, and for the non-

linear regression case one just introduce a kernel function formulation. For the primal

case, the sole modification is on the restrictions which are redefined as follows

wTk(xi, ·) + b− di ≤ ǫ+ ξi (2.13a)

di −wTk(xi, ·)− b ≤ ǫ+ ξ∗i (2.13b)

for i, j = 1, 2, . . . , N . For the dual problem the objective function is redefined as

max
α,α∗

−1
2

∑N
i=1

∑N
j=1(αi − α∗

i )(αj − α∗
j )k(xi,xj)

−ǫ∑N
i=1(αi + α∗

i ) +
∑N

i=1 di(αi − α∗
i ).

(2.14)

This formulation is used to implement learning methods discussed next.
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2.3 Support Vector Regression Learning Methods

Support Vector Machines for Regression (SVRs) share the same advantages and

disadvantages as SVMs. That means, SVMs training methods can be extended to

SVRs whenever they are not directly dependent on the particularities of the SVM

problem. Since most SVM training methods depend on the particular mathematical

formulation of SVM, very few of them can be extended to SVR.

Collobert et. al. reported in 2001 an adaptation of Joachims’ SVM method for

SVR problems [39]. The authors start with the primal problem in (2.6), and then

they reformulate the dual (2.12) with a vector-matrix notation in order to have the

following Quadratic Programming (QP) minimization problem:

min
α,α∗

Q(αi,α
∗
i ) =

1
2
(α∗ −α)T K (α∗ −α)

− (α∗ −α)T d+ ǫ (α∗ −α)T 1

s.t.





(α−α∗)T 1 = 0

αi, α
∗
i ≤ C

−αi,−α∗
i ≤ 0

for i = 1, 2, . . . , N

(2.15)

where K is the kernel matrix described in (A.21).

Next, the authors perform the same decomposition proposed by Osuna (see Sec-

tion A.2.1) defining the working set B and the fixed set M, where the size of the

working set is |B|. Also, the authors extend Joachims’ idea of the steepest descent

direction p to select the working set at each iteration of the SVR dual problem (see
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Section A.2.2). That is, problem described in (A.30) is reformulated as follows:

min ∇Q(αi,α
∗
i )

Tp

s.t.





∑N
i=1 pi − p∗i = 0

pi ≥ 0 for i : αi = 0

p∗i ≥ 0 for i : α∗
i = 0

pi ≤ 0 for i : αi = C

p∗i ≤ 0 for i : α∗
i = C

p ≤ 1

p ≥ −1

(2.16)

where p = (p1, . . . , pN , p
∗
1, . . . , p

∗
N), and the size of the working set is given the by

|B| ≡ |pi| for all pi 6= 0. The complete process is shown in Algorithm B.1.

Finally, the authors give proof of convergence following Platt’s SMO idea select-

ing a working set size of 2 samples. The problems with this implementation are

inherited from Joachims’ and augmented due to the complexity of the SVR defini-

tion. Particularly, the issues with this algorithm are the inherent QP solution process

and the additional steepest descent process. Furthermore, they introduced the con-

cept of shrinking, that is, to permanently remove from the working set the bounded

support vectors after a number of iterations. Although the heuristic of shrinking

dramatically speeds up the training process, convergence is not guaranteed anymore.

However, Collobert’s et. al. shrinking method is still the most popular large-scale

SVR training strategy.

22



2.4 Linear Programming Support Vector Regres-

sion

Linear Programing (LP) problems can be stated in the standard form

max
z∈Rn

cTz

s.t.





Az ≤ b

z ≥ 0

(2.17)

where z ∈ Rn is a vector containing the unknowns, c ∈ Rn and b ∈ Rm are vectors

of known parameters, and A ∈ Rm×n is a matrix of known coefficients associated to

z through a linear relationship. However, there is also the canonical form

min
z∈Rn

cTz

s.t.





Az = b

z ≥ 0.

(2.18)

In fact, there is currently no agreement as to which of the previous problems is the

canonical or standard form. In this dissertation, problem (2.18) will be regarded as

the LP primal in its canonical form.

By introducing the Lagrange multipliers (λ, s) into the primal problem above,

one obtains the following dual

max
λ

bTλ

s.t.





ATλ+ s = c

s ≥ 0.

(2.19)

where λ is a vector of dual variables defined over Rm, and s is a slack vector variable

in Rn.
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The solution to the primal problem is denoted as z∗, and the solution to the dual

problem is denoted as (λ∗, s∗). The duality theorem states that cTz∗ = bTλ∗, which

means that the solution z∗ also solves the dual, and the solution of the dual (λ∗, s∗)

also solves the primal [203].

The idea of Linear Programming Support Vector Regression (LP-SVR) is to pose

the SVR problem (2.6) as a linear program either in its canonical (2.18) or standard

(2.17) forms.

2.4.1 SVR Learning

Let n and m be the number of variables and constraints respectively in an SVR-

based optimization problem. To solve such optimization problems, there are three

known strategies. First, if the problem can fit within system memory, the strategy

is to directly use interior point methods which have memory consumption of O(n2).

Second, if the problem is medium size, active-set methods are proven to be more

appropriate [201]. They need O(n2
SV s) memory, where nSV s is characterized by the

number of support vectors of the problem. That is, active-set methods deal with the

complete set of support vectors only. Third, for very large datasets, one currently uses

working set methods (i.e., decomposition methods). Among these are Collobert’s [39]

or Mangasarian’s [22]. These methods have memory consumption of O(n).
The training strategies are summarized in Figure 2.4. Particularly, this disserta-

tion will introduce a working set algorithm for LP-SVR learning later in Chapter 3.

But before that, let us review some LP-SVR formulations that will get the reader in

the appropriate context of this dissertation.

24



Figure 2.4: Depending on the problem size, one may find three different strategies
for SVR training.

2.4.2 ν−LPR

Smola, et al. in 1999 [177], first introduced a linear programming approach for SVR.

Their formulation uses the following ν−SVR model:

min
α+,α−,b,ξ,ξ∗,ε

∑N
i

1
N

(
α+
i + α−

i

)
+ C

N
(ξi + ξ∗i ) + Cνǫ

s.t.





∑N
j

(
α+
j − α−

j

)
k(xj ,xi) + b− di ≤ ǫ+ ξi

di −
∑N

j

(
α+
j − α−

j

)
k(xj ,xi)− b ≤ ǫ+ ξ∗i

α−
i , α

+
i , ξi, ξ

∗
i , ǫ ≥ 0

for i = 1, 2, . . . , N.

(2.20)

where ν ∈ [0, 1] can be used to control the number of errors in ǫ. In this way, the

value of ǫ is automatically estimated. The ν−SVR comes from a special type of

SVM called ν−SVM [201]. The authors named their formulation as “ν−LPR,” as in

“nu-linear programming regression.” Smola, et al. poses problem (2.20) as a linear
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program in the following form:

min
z

cTz

s.t.





Az+Br+ b− u = 0

z,u ≥ 0.
,

(2.21)

where z ∈ R4N+1, r ∈ R, u ∈ R2N , and the matrices A ∈ R2N×4N+1, B,b ∈ R2N ,

c ∈ R4N+1 are denoted as follows:

c =
(

1 1 C1 C1 CνN
)
, (2.22a)

z =
(

α+ α− ξ+ ξ− ǫ
)
, (2.22b)

A =


 −K K 1 0 1

K −K 0 1 1


 , (2.22c)

B =


 −1

1


 , and b =


 d

−d


 . (2.22d)

The dual problem is derived in order to use a primal-dual interior point solver

with a predictor-corrector strategy. In doing this, they also derive the corresponding

Karush-Kuhn-Tucker (KKT) conditions.

Smola, et al. [177] suggest that the parameter ν is proportional to the number

of support vectors. Although the main contribution is to show the efficiency of an

SVR using LP, a critique is that the authors eliminated one parameter by adding

another, i.e., ν instead of ǫ. Moreover, the problems with LP-SVR models is that the

program dimension is very large, i.e., 4N + 2. As a consequence, the authors report
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performing regression with training sets consisting of only 50 and 80 data points.

2.4.3 LP-SVR with Modified LPC

Mangasarian, et al. [127] in 2002 pioneered the linear programming formulations

for large-scale SVRs. The authors analyzed the ν−LPR [177] method and provided

means for training with large-scale datasets. The SVR formulation they use is the

following

min
α+,α−,b,t,ε

∑N
i

1
N

(
α+
i + α−

i

)
+ C

N
ti + C(1− µ)ǫ

s.t.





∑N
j

(
α+
j − α−

j

)
k(xj ,xi) + b− di ≤ ǫ+ ti

di −
∑N

j

(
α+
j − α−

j

)
k(xj ,xi)− b ≤ ǫ+ ti

α−
i , α

+
i , ti, ǫ ≥ 0

for i = 1, 2, . . . , N.

(2.23)

where µ ∈ [0, 1] is a positive parameter that drives the tolerance error ǫ: if µ → 1

the errors are highly penalized.

If one take a closer look to problems (2.20) and (2.23), one notices that ti =

(ξi + ξ∗i ). In fact, the authors show that problems (2.20) and (2.23) are equivalent.

The significance of this formulation is the use of a modified version of the Linear

Programming Chunking (LPC) algorithm [22]. The LPC algorithm was originally

utilized to solve the problem with a subset of the constraints. However, Mangasarian,

et al. also proposed a modified version that constrains the variables as well. This

modification promotes a smaller version of the problem, hence faster computations

in terms of memory allocation.

The original LPC algorithm is listed in Algorithm B.2 in Appendix B. The al-

gorithm assumes that every sub-problem has a vertex solution. LPC also considers

that the matrix-vector block
(

A0 b0

)
is empty and that the set of active con-

straints at iteration j is
(

Āj b̄j

)
. Bradley and Mangasarian [22] give proof of
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finite termination.

2.4.4 Wavelet Kernel-based LP-SVR

In 2009, Lu, et al. [123], reported an SVR method based entirely in the LP primal

in its standard form. The authors present an alternative to the typical kernels and

use wavelet-based kernels instead. The paper shows an application to nonlinear dy-

namical systems identification [123]. The authors start by changing the ℓ22−norm by

the ℓ1−norm, and also use the notion of the kernel functions for nonlinear problems;

and they reformulate problem (2.6) as follows:

min 1
2
||α||1 + C

∑N
i=1 (ξi + ξ∗i )

s.t.





di −
∑N

j=1 αjk(xj,xi) ≤ ǫ+ ξi
∑N

j=1 αjk(xj ,xi)− di ≤ ǫ+ ξ∗i

ξ, ξ∗ ≥ 0

for i = 1, 2, . . . , N,

(2.24)

where α comes from the Representer Theorem notation [170]. Then, the authors

arrive at the following LP problem in its primal standard form:

minα+,α−,ξ

(
1 1 2C

)



α+

α−

ξ




s.t.






 K −K −I
−K K −I







α+

α−

ξ


 ≤


 d+ ǫ1

ǫ1− d




(2.25)

where αi = α+
i − α−

i ; that is, the decomposition of the positive α+
i and the negative

α−
i part of αi. Then, the authors show that this formulation performs around 25

times faster than the QP-SVR. No details were given with respect to the solver
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used, and no proof of convergence was addressed. The authors also show that in

measuring the root mean squared error (RMSE), the QP-SVR performs better than

their LP-SVR approach. However, they also report that this formulation requires

fewer support vectors. Hence, a sparser solution is obtained, having the advantage of

a reduced number of support vectors, which also represents computationally efficient

solutions.

2.4.5 ℓ1−norm LP-SVR

In 2010, Zhang, et al. [214], performed a study in regard to the sparseness of

ℓ1−norm-based SVMs and SVRs. The authors reported the following formulation of

an ℓ1−norm SVR

max
α±,b±,ξ(∗),u±

−∑N
i

1
N

(
α+
i + α−

i

)
− δ (b+ + b−)− C∑N

i (ξi + ξ∗i )

s.t.





−∑N
j

(
α+
j − α−

j

)
k(xj ,xi)− (b+ − b−) + di + ui = ǫ+ ξi

−di +
∑N

j

(
α+
j − α−

j

)
k(xj,xi) + (b+ − b−) + ui = ǫ+ ξ∗i

α−
i , α

+
i , ξi, ξ

∗
i , ǫ, b

+, b−, u+i , u
−
i ≥ 0

for i = 1, 2, . . . , N.

(2.26)

where δ ∈ R (typically small: δ = 1×10−11) is used to avoid possible infinite optimal

solutions, and ui is a slack variable. Then, defining

A =


 −K K −1 1 −I 0 I 0

K −K 1 −1 0 −I 0 I


 , b =


 1ǫ− d

1ǫ− d


 , (2.27a)

z =
(

α+ α− b+ b− ξ ξ∗ u+ u−
)T

, (2.27b)

c =
(
−1 −1 −δ −δ −C1 −C1 0 0

)T
(2.27c)
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the authors proceeded to solve the following linear programming variation

max
z

cTz

s.t.





Az = b

z ≥ 0.

(2.28)

The evident problem with this formulation is the size of the problem: 6N + 2

variables and 2N constraints. Therefore, the author only reports experiments for

small size problems; e.g., 351, 297, and 345 data points, using an RBF kernel. The

poor formulation makes the size problem more evident since the authors used the

simplex method. As a consequence very large training times will be experienced.

One obvious critique is the inclusion of δ, making the set of hyper-parameters

[ǫ, C, σ, δ] to be chosen more heuristically.

2.5 Current Trends and Open Problems

The Support Vector learning field is very active (see [3, 18, 25, 33, 37, 38, 69, 73, 85,

117, 118, 126, 134, 142, 173, 174, 185, 202, 207, 212]). As a consequence, the treatment

of large-scale SVM is of interest to researchers in the field (see [30, 31, 50, 54, 55, 68,

79,87,96,99,116,122,135,139,141,151,170,181,199,205,208–210,213,215–217,222]).

However, a number of open issues that have to be addressed still exist.

Recently, SVR algorithmic development seems to be at a more stable stage; in

spite of this, one issue is to find whether linear programming SVR approaches will

lead to more satisfactory results [178, 214].

The problem of empirical tunning [171,178] of SVR hyper-parameters (i.e., C, σ),

has to be devised to make SVRs less dependent on the skill of the experimenter

[16, 178].

Optimization techniques developed within the context of SVRs are also required

in order to improve treatment of large datasets [178]. This may be done in combina-
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tion with reduced set methods for speeding up the training phase for large datasets.

This topic is of huge importance as machine learning applications demand algorithms

that are capable of dealing with datasets that are at least larger than 1 million sam-

ples [178].

Other problems out of the scope of this dissertation are still considered open.

These include the following: more data dependent generalization bounds, efficient

training algorithms, and automatic kernel selection procedures.
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Chapter 3

Large-Scale Linear Programming

Support Vector Regression

In this chapter we develop a method to train a pattern recognition model in a

large-scale setting. This chapter presents the main theoretical development of this

research, consisting of four major points: (i) a Support Vector Regression (SVR)

problem posed entirely on Linear Programming (LP) techniques, which is modeled

on a primal and dual fashion followed by the definition of optimality conditions;

(ii) a sequential optimization method based on variables decomposition, constraints

decomposition, and primal-dual interior point methods for solving large-scale regres-

sion/classification problems; (iii) the convergence and optimality conditions of the

sequential optimization; and (iv) experimental results of the proposed sequential

optimization method over typical small-, medium-, and large-scale problems.

3.1 Introduction

In the following sections, we will explain Algorithm 3.1 which proposes a large-scale

model that involves three major parts that increases computational tractability of

large-scale problems.

First, the large-scale Linear Programming Support Vector Regression (LP-SVR)

problem is reduced by variable decomposition, which exploits LP-SVR structure to

produce a lower-dimensional representation of the decomposed LP sub-problem. The

finite termination of the decomposition strategy is guaranteed by an adaptation of
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Algorithm 3.1 Training Algorithm that uses a “Variables and Constraints Decom-
position” Strategy to for a Large Scale Training Set.

Require: B0, initial working set size.
Require: T = {xi, di}Ni=1, a training set with N samples.
Require: τ , number of blocks for block decomposition.
1: B ← randomly selected B0 indices as the initial working set.
2: M← those indices not in B, that denotes the initial fixed set.
3: Begin ⊲ Variables Decomposition.
4: W ← {xi, di}i∈B
5: Fix αj = 0 for all j ∈M. ⊲ Variables in problem (3.2) can be ignored.
6: Begin ⊲ Constraints Decomposition.
7: Pose the problem as an LP problem by defining A,b, c with (3.3a)-(3.3d).
8: AB,bB, cB ← A,b, c

9:




A1
R b1

R
A2

R b2
R

...
...

Aτ
R bτ

R


← BlockPartition(τ ,AB,bB) ⊲ Partition into τ blocks.

10: t = 0 ⊲ Iterations counter.
11: repeat

12: t = t + 1
13: z

(t)
R ← IPMSolveLP(cR,AR,bR) ⊲ Solves (3.19).

14: z
(t)
i,B =

{
z
(t)
j,R if j = i, for all j ∈ R
0 otherwise,

15: until
(
cTBz

(t)
B = cTBz

(t+4)
B

)
⊲ Stops if no change during four iterations.

16: zB ← z
(t)
B ⊲ Problem is solved for W.

17: End ⊲ End Constraint Decomposition.
18: for all j ∈ M do ⊲ To verify if problem is solved forM.
19: Reconstruct uj, ξj using (3.12)-(3.13) and verify the primal LP.
20: Fix λj = 0, reconstruct sj using (3.14), and verify the dual LP.

21: B̃ ← VerifyComplementarity(zj , sj, B0)
22: end for

23: if zjsj 6= 0 then ⊲ Problem (3.2) is not solved

24: B ← CreateNewWorkingSet(B,B0,B̃)
25: else

26: Stop Training

27: end if

28: End ⊲ End Variable Decomposition.

29:
(
α+ α− b+ b− ξ u

)T ← z

Ensure: (α+,α−, b+, b−), the SVR solution.
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Figure 3.1: Variable decomposition strategy from Torii, et al. [187], in which a
subset of the variables αi is considered for the solution of the LP-SVR
problem, for all i ∈ B. The shaded area corresponds to an arbitrary
selection of |B| indices.

Torii, et al. [187] infinite-loop prevention algorithm. This strategy is depicted in

Figure 3.1.

Second, we will design a constraint decomposition strategy that generates a num-

ber of smaller sub-problems by again exploiting LP-SVR structure. The resulting LP

problems are solved sequentially in a monotonically non-increasing objective function

fashion. Convergence is guaranteed by adapting Bradley’s, et al. [22, 23] theorems.

Bradley’s, et al. algorithm is known as Linear Programming Chunking (LPC), and

it is depicted in Figure 3.2. As shown in the figure, the algorithm consist on dividing

an LP into blocks of smaller LPs without taking any advantage of the SVR structure.

Third, the two-way-reduced LP-SVR sub-problems (i.e., variables and constraint

reduction) are solved using interior point methods, which have a very fast rate of

convergence. This is the key that balances the total computational time of performing

two decompositions and solving several LPs. Using any other approach (i.e., simplex

methods) would dramatically increase computational efforts. We use the method by

Argaez et al. [9].
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Figure 3.2: LP-SVR constraints decomposition strategy. This figure shows an ex-
ample of the decomposition of the LP constraints. Here the coefficients
matrixA and vector b are divided in τ blocks. This figure shows the lin-
ear programming chunking (LPC) approach by Bradley’s, et al. [22,23].

In this work, we train large-scale datasets and at the same time produce sparser

solutions in terms of the number of support vectors. This results in a more efficient

model in terms of future kernel evaluations which can be made faster.

We will show that the proposed model is sparser than the regular SVR and

other SV-based classifiers. Although this was studied by Zhang, et al. [214], we

will demonstrate that as the problem size increases, the more sparser the solution

becomes. The proposed approach is comparable with other formulations in terms of

performance, which is desirable.
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3.2 Large-Scale LP-SVR Formulation

Let us assume we have training samples {(xi, di)}Ni=1, where x ∈ X ⊆ RM is a regres-

sor and d is the desired output. Then, one can define a non-linear SVR prediction

function:

dj ≡ f(xj) =

N∑

i=1

(α+
i − α−

i )k(xi,xj) + (b+ − b−), (3.1)

where α+,α− ∈ RN
+ ; b

+, b− ∈ R+; k(·, ·) is a valid kernel function [41, 129] in

the form of (A.18)-(A.20); α+ = max{α, 0}, α− = max{−α, 0}; b+ = max{b, 0},
b− = max{−b, 0}; α ∈ RN ; and b ∈ R. Kernel functions map the input feature vec-

tors to the kernel-induced feature space denoted H since these kernel functions follow

the properties of Hilbert spaces [129]. The kernel-induced feature space for non-linear

SVR can be defined asH =
{
f(xj) : f(xj) =

∑N
i=1(α

+
i − α−

i )k(xi,xj) + (b+ − b−)
}
,

for all xj ∈ RM and j = {1, 2, . . . , N}.
The objective is to find the set of parameters α and b. One can find these

parameters via constrained optimization. Section 2.4 demonstrates that the primal

SVR problem (2.6) eases the formulation and training. Therefore, the proposed

model will be derived from problem (2.6).

3.2.1 Primal, Dual, and KKT Conditions

First, let us assume the mapping k(xi,xj) : X (N×M)×(M×N) 7→ HN×N . Then,

assume that the slack variables ξi, ξ
∗
i can be expressed as simply 2ξi (see Section 2.4,

ξiξ
∗
i = 0). Then, let us introduce a slack variable u to get rid of the inequalities

in the original SVR formulation (2.6). As a consequence of these assumptions, the
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following optimization problem is proposed:

min
α+,α−,b+,b−,ξ,u

∑N
i=1

(
α+
i + α−

i + 2Cξi
)

s.t.





−∑N
i=1(α

+
i − α−

i )k(xj ,xi) . . .

−b+ + b− − ξj + uj = ǫ− dj
∑N

i=1(α
+
i − α−

i )k(xj ,xi) . . .

+b+ − b− − ξj + uj = ǫ+ dj

α+
j , α

−
j , b

+, b−, ξj, uj ≥ 0

for j = 1, 2, . . . , N.

(3.2)

Problem (3.2) can be posed as the linear programming problem in (2.18). To do

so, one can define the following equalities:

A =


 −K K −1 1 −I I

K −K 1 −1 −I I


 , (3.3a)

b =


 1ǫ− d

1ǫ+ d


 , (3.3b)

z =
(

α+ α− b+ b− ξ u

)T
, (3.3c)

c =
(

1 1 0 0 2C 0

)T
, (3.3d)

where A ∈ R(2N)×(4N+2), b ∈ R2N , z, c ∈ R4N+2. If we use the above equalities, then

problems (2.18) and (3.2) are identical, and we can claim that the problem has been

posed as an LP problem.
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We claim that problem (3.2) is an original formulation for LP-SVR. In compar-

ison with the ν−LPR formulation by Smola, et al. [177] problem (3.2) (i) uses the

canonical formulation, (ii) computes b, and u implicitly, (iii) does not compute ǫ

implicitly, (iv) does not require the parameter ν, (v) promotes efficiency in the sense

of using only one ξ, and (vi) is a lower dimensional problem.

In comparison with Mangasarian, et al. [127], problem (3.2) (i) uses the canonical

formulation, (ii) computes b implicitly, (iii) does not compute ǫ implicitly, and (iv)

does not require the parameter µ. By (iii) and (iv) we provide the experimenter with

more control of the sparseness of the solution [214]. In this case sparseness means

fewer number of support vectors.

Similarly, Problem (3.2) in comparison to Lu, et al. [123] our LP-SVR formulation

(3.2) (i) uses the canonical formulation and (ii) computes b implicitly. By (ii) the

linear program (LP) size is reduced by a factor of N2 +N .

In comparison with the ℓ1−norm LP-SVR formulation by Zhang, et al. [214]

problem (3.2) does not require parameter δ and is more efficient in several ways: (i)

uses only one ξ, (ii) avoids penalization of b, (iii) reduces computational efforts by

forcing positivity in u which reduces the LP problem size by 2N2 + 2N , and (iv) is

a smaller problem.

Using equalities (3.3a)-(3.3d), we can obtain the dual problem of (3.2) as follows:

max
λ

bTλ

s.t.





ATλ+ s = c

s ≥ 0,

(3.4)

which is equivalent to (2.19), where λ is a vector of dual variables defined over R2N ,

and s is a slack vector variable in R4N+2.

Similarly, for the primal (3.2) and dual (3.4), the KKT conditions are defined as
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follows:

ATλ+ s = c, (3.5a)

Az = b, (3.5b)

zisi = 0, (3.5c)

(z, s) ≥ 0, (3.5d)

for i = 1, 2, . . . , n,

where the equality zisi implies that one of both variables must be zero. This equality

will be referred to as the complementarity condition. Note that the KKT conditions

depend on the variables (z,λ, s), and if the set of solutions (z∗,λ∗, s∗) satisfy all

the conditions, the problem is said to be solved. The set (z∗,λ∗, s∗) is known as a

primal-dual solution.

3.2.2 Optimality and Sparseness

Let z∗ be the solution to the primal problem (3.2), and let (λ∗, s∗) be the solution to

the dual problem (3.4). The proposed LP-SVR exhibits two important properties.

First, that it has a global solution. That is, if z∗ is a minimum for problem (3.2),

then z∗ is a global minimum since problem (3.2) is a convex problem (i.e., a linear

programming problem) [45, 46, 51, 62].

Second, its optimality conditions are well defined. That is, for problem (3.2),

the KKT conditions (3.5a)-(3.5d) are necessary and sufficient for optimality since

(z∗,λ∗, s∗) is a solution to the primal (3.2) and dual (3.4), then it follows that the

KKT conditions (3.5a)-(3.5d) are necessary and sufficient for optimality [45, 46, 62,

133].

One concern of the work presented here is to demonstrate that the solution of the

proposed LP-SVR is better than that of SVRs in the sense of solution sparseness.
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Sparseness in a solution is desired because any SV-based model relies on actual

feature vectors xi to define the optimal set of model parameters (αi, b) for all i :

αi 6= 0. Especially since the feature vectors xi are required for kernel distances as

shown in (3.1).

Zhang, et al. [214] performed a comprehensive study in regard to SVM sparseness.

Zhang, et al. explains that sparseness of a learning machine depends on the problem

and the precision of the solution. Then, the authors prove (see [214] Theorems 1

and 2) that, for their proposed LP-SVR, the solution is always sparser than regular

SVRs. In fact, Zhang’s theorems also hold for our formulation. To demonstrate this,

the following definitions are given.

Definition 3.1 (Support Vectors). Let T = {xi, di}Ni=1 be a training set; let z be a

solution to problem (3.2); and let (3.1) be the regression function for problem (3.2).

Then,

1. VS = {xi : di − ǫ < f(xi) < di + ǫ} defines the set of Saturated Support

Vectors (SSVs).

2. VE = {xi : f(xi) = di + ǫ, or f(xi) = di− ǫ} defines the set of Exact Support

Vectors (ESVs).

3. VN = {xi : f(xi) < di + ǫ, or f(xi) > di − ǫ} defines the set of Non-Support

Vectors (NSVs).

4. Vα = {xi : αi 6= 0} defines the set of Sparse Vectors (SPVs).

5. N = |VS|+ |VE|+ |VN |.

6. S = VS ∪ VE, means that the union of the SSVs and the ESVs is the set of

Support Vectors (SVs).

7. A = {αi : αi 6= 0} denotes the set of Non-zero Coefficients of the decision

function (3.1) and of problem (3.2).
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Then, since Definition 3.1 is equivalent to Definition 2 in [214] by Zhang, et al.,

then we can say that given an optimal solution z∗ to (3.2), the number of nonzero

αi coefficients of (3.2) has the following upper bound:

|A| ≤ |VE |, (3.6)

for all i : αi 6= 0. This property states that ESVs characterize the sparseness of

problem (3.2) just as SVs characterize the sparseness of any SVR formulation, such

as (2.6), (2.12), or (2.15). The above property points out that the proposed LP-SVR

problem (3.2) possess better sparseness than that of standard SVRs, since there are

always several SSVs in standard SVRs, especially for practical noisy datasets used

in recognition or regression problems [214].

Similarly, from Definition 2 in [214] by Zhang, et al., we have that the number of

nonzero coefficients of (3.2) has the following upper bound:

|A| ≤ rank(K), (3.7)

and the column vectors k(xj ,x1), k(xj ,x2), . . . , k(xj,xi), are linearly independent

for all j ∈ A. This means that the LP-SVR regression function (3.1) can be exactly

reproduced using only those samples that are SVs, without affecting performance.

This property also indicates that vectors k(xj ,x1), k(xj ,x2), ..., k(xj ,xi), for all

j ∈ A, in the decision function f(x) =
∑

i∈A(α
+
i − α−

i )k(xi,x) + (b+ − b−), are

linearly independent. This means one cannot further reduce the number of basis

functions in the regression function, and also indicates that the proposed LP-SVR

(3.2) may lead to a sparser model representation.

Up to now, the properties of the proposed model have been explained. However, it

is important to remark that problem (3.2) was designed to maximize computational

efficiency without sacrificing accuracy. This has been achieved by not introducing

unnecessary parameters into the problem and by posing a problem that minimizes
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the number of SVs without affecting performance. In spite of this, the training phase

(i.e., learning process) still may be computationally expensive for applications with

N larger than a few thousands. In the following section, a learning process for the

case when N is very large is introduced.

3.3 LP-SVR Variable Decomposition

Let us consider the proposed Linear Program (3.2). In order to deal with large N

problems, an idea is to divide the training set T = {xi, di}Ni=1 in two subsets: a

working set W = {xi, di}i∈B and a fixed set F = {xi, di}i∈M; where we identify the

members of each set with two index sets B andM respectively. These two sets are

disjoint: B ∩M = ∅; and their union contains all the training set indices: B ∪M =

{1, 2, . . . , N}. The initial size of B is given by a parameter B0, (2 ≤ B0 ≤ N), chosen

heuristically. Note that for classification problems with q number of classes, B0 is

bounded as q ≤ B0 ≤ N .

Under these definitions, a method is proposed, in which problem (3.2) is solved

using only a subset of the variables z ≥ 0 from (3.3c), and a subset of the constraints

Az = b from (3.3a and 3.3b). This approach is known as variables decomposition

and constraints decomposition [187].

The variable decomposition strategy presented in this dissertation is an adapta-

tion of the work by Torii, et al. [187], in which the author decomposes the variables of

a linear program (LP). However, instead of simply decomposing variables of the LP,

we exploit the properties of the LP-SVR to make the LP smaller. The constraints

decomposition strategy is an adaptation of the linear programming chunking (LPC)

algorithm introduced by Bradley, et al. [22, 23] but modified for LP-SVR efficiency.

Section 3.4 presents the strategy for solving an LP-SVR using a subset of the

constraints Az = b from (3.3a and 3.3b). But first, let us address the problem of

solving an LP-SVR using only a subset of the variables z ≥ 0 from (3.3c), which is
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Algorithm 3.2 Variable Decomposition Strategy for Large-Scale LP-SVR Training.
Modification of Torii, et al. [187] Algorithm.

1: Set B with the first B0 indices from T .
2: For all indices in B Solve LP sub-problem.
3: Verify if the current solution satisfies the KKT conditions for the indices inM.

If so, then Stop.
4: If |B|+1+ ⌈log |B|⌉ ≤ Bmax, move the worst 1+ ⌈log |B|⌉ violating indices from
M into B. Go to Step 2. Else, Stop.

5: Those indices that have been at least l times in and out of the working set B are
moved permanently into B.

summarized in Algorithm 3.2. Each step is explained in the following paragraphs.

In Step 1, a subset of the variables is chosen according to the indices in B as

illustrated in Figure 3.1 which follow the ideas of widely accepted QP-SVM methods

presented in Chapter 2. Then we proceed to fix αM = α+
i − α−

i = 0, for all i ∈ M.

The problem is to find the variables αB = α+
i − α−

i , for all i ∈ B; and then, since

every fixed variable is associated with two constraints, these can be ignored under the

assumption they are not support vectors, which results in the following sub-problem:

min
α+

B
,α−

B
,b+,b−,ξB,uB

∑
i∈B
(
α+
i − α−

i + 2Cξi
)

s.t.





−∑i∈B(α
+
i − α−

i )k(xj ,xi)

−b+ + b− − ξj + uj = ǫ− dj
∑

i∈B(α
+
i − α−

i )k(xj ,xi)

+b+ − b− − ξj + uj = ǫ+ dj

α+
j , α

−
j , b

+, b−, ξj, uj ≥ 0

for all j ∈ B.

(3.8)

Let z∗B = (α+∗
B ,α−∗

B , b+∗, b−∗, ξ∗
B,u

∗
B), denote the solution to linear programming

problem (3.8). Problem (3.8) is a size-reduced version of problem (3.2), for which

a comparison between LP problems is illustrated in Figure 3.3. The figure shows

problem (3.2) in the left, and the reduced problem (3.8) is shown on the right.
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Figure 3.3: LP-SVR variable decomposition strategy. This illustrates a decompo-
sition of the LP variables vector z and coefficients matrix A in which a
subset of the variables αi is considered for the solution of the LP-SVR
problem, for all i ∈ B. The shaded area corresponds to an arbitrary
selection of |B| indices that produce a reduced LP: zB and AB.

Figure 3.3 shows the LP-SVR structure being exploited to reduce problem (3.2).

To derive the optimality conditions at a later stage, we obtain the following dual:

min
λ,s

∑
i∈B λi (ǫ− di) +

∑
i∈B λi+|B| (ǫ+ di)

s.t.





∑
i∈B λi+|B|k(xj ,xi)−

∑
i∈B λik(xj,xi) + sj = 1j

∑
i∈B λik(xj,xi)−

∑
i∈B λi+|B|k(xj ,xi)

+sj+|B| = −1j
∑

i∈B λi+|B| − λi + s2|B|+1 = 1
∑

i∈B λi − λi+|B| + s2|B|+2 = −1
−λi − λi+|B| + sj+2|B|+2 = 2Ci

λi + λi+|B| + sj+3|B|+2 = 1i

s ≥ 0

for all j ∈ B

(3.9)
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and the KKT conditions (3.5a)-(3.5d) are rewritten as follows:

∑

i∈B
λi+|B|k(xj,xi)−

∑

i∈B
λik(xj,xi) + sj = 1j (3.10a)

∑

i∈B
λik(xj,xi)−

∑

i∈B
λi+|B|k(xj,xi) + sj+|B| = −1j (3.10b)

∑

i∈B
λi+|B| − λi + s2|B|+1 = 1 (3.10c)

∑

i∈B
λi − λi+|B| + s2|B|+2 = −1 (3.10d)

−λj − λj+|B| + sj+2|B|+2 = 2Cj (3.10e)

λj + λj+|B| + sj+3|B|+2 = 1j (3.10f)

−
∑

i∈B
(α+

i − α−
i )k(xj ,xi)− b+ + b− − ξj + uj = ǫ− dj (3.10g)

∑

i∈B
(α+

i − α−
i )k(xj ,xi) + b+ − b− − ξj + uj = ǫ+ dj (3.10h)

sjα
+
j + sj+|B|α

−
j + s2|B|+1b

+ + s2|B|+2b
−

+sj+2|B|+2ξi + sj+3|B|+2uj = 0 (3.10i)

si, α
+
j , α

−
j , b

+, b−, ξj, uj ≥ 0 (3.10j)

for all i, j ∈ B.

The primal sub-problem (3.8) has 4|B| + 2 variables and 2|B| constraints; the

dual sub-problem (3.9) has 2|B| variables and 4|B| + 2 constraints; and the sub-

problem KKT conditions (3.10a)-(3.10j) are necessary and sufficient for optimality

as explained before.

In Step 2, we solve the sub-problem (3.8), (3.9), (3.10a)-(3.10j), e.g., using LP

interior point methods (IPM). In Step 3, we determine if problem (3.2),(3.4),(3.5a)-

(3.5d) has been solved successfully. To do this, one needs to check the KKT condi-

tions of the original problem. Since variables α+
i , α

−
i = 0, for all i ∈ M, and since

we have a sub-problem solution, then, the values for the primal variables ξi and ui
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for i ∈M can be estimated according to the following cases:

Case 1: When the following inequalities holds true for j ∈M:

−
∑

i∈B
(α+

i − α−
i )k(xj,xi)− b+ + b− − ǫ+ dj ≥ 0 (3.11a)

∑

i∈B
(α+

i − α−
i )k(xj ,xi) + b+ − b− − ǫ− dj ≥ 0, (3.11b)

then, the values for the j-th index can be computed from (3.5b) as follows:

uj = 2

(
∑

i∈B
(α+

i − α−
i )k(xj,xi) + b+ − b− − dj

)
, (3.12a)

ξj = 0. (3.12b)

where u is the vector of slacks that preserves the equality in the constraints. This

means that if (3.11) are satisfied as equalities, the solution given by the sub-problem

make the fixed set samples lie over the ǫ-tube. However, if (3.11) are not satisfied as

equalities this means that the fixed set samples are outside the ǫ-tube region. The

next case is the converse, which is desired: all the fixed set samples are within the

ǫ-tube.

Case 2: When the inequalities (3.11) hold false, then the values for the j-th index

are computed as follows:

uj = 0, (3.13a)
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ξj = −2
(
∑

i∈B
(α+

i − α−
i )k(xj ,xi) + b+ − b− − dj

)
. (3.13b)

Next, the values for the dual variable are fixed λi = 0 for all i ∈ M. Then, the

values for the dual slack si for i = 1, 2, ..., 4|M| + 2 are estimated from (3.5a) as

follows:

sj = 1j −
∑

i∈B
λi+|B|k(xj,xi) +

∑

i∈B
λik(xj ,xi) (3.14a)

sj+|B| = −1j −
∑

i∈B
λik(xj ,xi) +

∑

i∈B
λi+|B|k(xj,xi) (3.14b)

s2|B|+1 = 1−
∑

i∈B
λi+|B| + λi (3.14c)

s2|B|+2 = −1−
∑

i∈B
λi + λi+|B| (3.14d)

sj+2|B|+2 = 2Cj + λj + λj+|B| (3.14e)

sj+3|B|+2 = 1j − λj − λj+|B| (3.14f)

for all j ∈M.

Note that KKT primal and dual conditions (3.5a)-(3.5d) have been already satis-

fied by (3.12),(3.13), and (3.14); however, the complementarity conditions have not.

Then, we verify if the following conditions hold:

zisi = 0 (3.15a)

z, s ≥ 0 (3.15b)

for all i = 1, 2, . . . , 4|M|+2. If there were no violations to (3.15), the global problem

is said to be solved, and the method has converged for the set of parameters given.

The global LP-SVR support vectors xi are those whose (α+
i − α−

i ) 6= 0 for all i ∈ B.
In Step 4, we verify if there were any violations to (3.15); in such case, a new
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working set is created. To do this, we look for inactive constraint indices (i.e., those

(α+
i − α−

i ) = 0 for all i ∈ B) and move them into M and then, we replace those

indices with the indices that most violate the complementarity conditions (3.15) from

M into B. By “most violation” we mean that the the complementarity condition

(3.15) has been sorted and we chose the largest violations first.

For practical purposes, a record is kept indicating which indices have been moved

from M into B. In the case that all the constraints in B are active (i.e., all are

support vectors), then, the size of B is incremented by a scaling exponent as follows:

|B|(t+1) =




|B|(t) + 1 + ⌈log |B|(t)⌉, if |B|(t) + 1 + ⌈log |B|(t)⌉ ≤ Bmax

Bmax, otherwise
(3.16)

where Bmax is the maximum working set size allowed by the researcher, which is

bounded to B0 < Bmax ≤ |M|, and t is the current iteration at the variable decom-

position strategy. Equation (3.16) is proposed here to smooth the increments in the

working set size.

Steps 1-4 complete one iteration. These steps should be repeated until con-

vergence. However, if after l iterations, the method has not converged, a check is

performed to see if there are any indices that have been moving fromM into B for

at least l times. The constant l is an arbitrary parameter given by the researcher:

typically l = 10.

Finally, in Step 5, we check if the condition t > l holds true, if it does, the

indices will be added to B permanently, thus, preventing infinite loops.

The fact that our algorithm stops when the KKT conditions are satisfied guar-

antees the convergence to an optimal solution. Furthermore, our algorithm avoids a

possible infinite loop by limiting indices from going in and out of the set B for an

undefined number of iterations. This guarantees that the algorithm will converge

in a finite number of iterations. Of course, the solution will be sub-optimal if the

algorithm stops when the maximum number of iterations tmax is reached, or if the

48



Algorithm 3.3 Constraints Decomposition Strategy for Large-Scale LP-SVR Train-
ing: a modification of the algorithm introduced by Bradley and Mangasarian [22].

Require: LP-SVR with subset of variables: cB,bB,AB.
Require: Parameters: tmax, and τ .
1: Partition

(
AB bB

)
into τ blocks with (3.21), where 1 < τ < |B|. Then obtain

constraint-sub-blocks
(
AR bR

)
.

2: For all indices in R, Solve LP sub-sub-problem (3.22).
3: If t ≤ tmax, then go to Step 2 with a new block.
4: With (3.23) obtain cTz(t) for B.
5: If cTz(t) = cTz(t+tmax), then Stop. Else, go to Step 2 with a new block.

Ensure: z(t).

maximum working set size Bmax has been reached without a solution.

The next section explains the method for chunking the constraints.

3.4 LP-SVR Constraints Decomposition

Although the variable decomposition approach reduces the complexity of the linear

program (LP) solution, the problem is likely to be increasing in size until it reaches

the maximum working set size Bmax. As the LP size increases at each iterate the

problem will become much slower proportionally to the current working set size |B|.
To overcome this difficulty, we present a modification of the constraint decomposition

algorithm originally introduced by Bradley and Mangasarian [22]. In this algorithm

which an LP-SVR sub-problem is solved using a subset of the constraints. This can

be achieved by dividing the LP-sub-problem into blocks of smaller size and then we

modify it such that the LP-SVR properties can be exploited one more time to further

reduce the sub-problem.

The process of decomposing the constraints is illustrated in Figure 3.4 and sum-

marized in Algorithm 3.3. The steps of Algorithm 3.3 will be explained in the

following paragraphs, after we propose some definitions and equivalences.

We can pose problem (3.8) as an LP problem in the form of (2.18), by defining
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Figure 3.4: Proposed LP-SVR constraints decomposition strategy. The proposed
decomposition strategy exploits the LP-SVR structure to further re-
duce the problem size. Note that the reduced problem size is inversely
proportional to τ . The notation Aij refers to an element of the matrix
A at the i-row and j-th column.

the following equalities:

AB =


 −KB KB −1 1 −IB IB

KB −KB 1 −1 −IB IB


 , (3.17a)

bB =


 1Bǫ− dB

1Bǫ+ dB


 , (3.17b)

zB =
(

α+
B α−

B b+ b− ξB uB

)T
, (3.17c)
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cB =
(

1B 1B 0 0 2CB 0B

)T
, (3.17d)

where AB ∈ R(2|B|)×(4|B|+2), bB ∈ R2|B|, zB, cB ∈ R4|B|+2. In this manner, problems

(2.18) and (3.8) are identical, that is, we posed (3.8) as an LP problem.

Let zB be the unknown in the linear program given by minzB

{
cTBzB

}
subject

to {ABzB = bB, zB ≥ 0}; which is equivalent to (3.8). Then, allow the augmented

matrix
(

AB bB

)
to be decomposed into the following τ blocks:

(
AB bB

)
=




A
(1)
B b

(1)
B

A
(2)
B b

(2)
B

...
...

A
(τ)
B b

(τ)
B



, (3.18)

for all 1 < τ < |B|.
Let t = 1, 2, . . . , denote the current iteration and let z

(t)
B be the solution to the

following linear program:

z
(t)
B = argmin

zB



cTBzB

∣∣∣∣∣
A

(t mod τ)
B zB − b

(t mod τ)
B = ep

Ā
(t mod τ)−1
B zB − b̄

(t mod τ)−1
B = ēp



 (3.19)

where ep, and ēp are errors for the LP primal (3.19),
(

A
(0)
B b

(0)
B

)
= ∅, and(

A
(t)
B b

(t)
B

)
is the set of active constraints (i.e., those equalities in (3.19) with

ep, ēp = 0 for z
(t)
B ) with positive Lagrange multipliers. When cTBz

(t)
B is equal to

cTBz
(t+tmax)
B , then stop. Typically, the integer tmax, controlling the stopping criteria,

is set to tmax = 4 or any small integer strictly positive [22].

As an example, let us consider t = 1, τ = 4; at this point, (1 mod 4) = 1 and

(1 mod 4)− 1 = 0, therefore, the LP in (3.19) only requires to satisfy the first part

and not the second since it is empty by definition. In the next iteration t = 2, τ = 4,

(2 mod 4) = 2 and (1 mod 4)− 1 = 1, therefore, the LP in (3.19) requires both the
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first and the second part to be satisfied; however, recall that in the previous iterations

only active constraints were preserved for that block. Bradley and Mangasarian [22]

demonstrated that this problem converges iteratively to the solution zB (See Theorem

3.2 in [22]).

However, for the proposed LP-SVR it is obvious that if the decomposition τ is

carefully chosen, variables can be further reduced without affecting the solution at

all. The key is for constraints associated with the same variable to be within the same

block; when they are, all other variables can be omitted. Consider the constraints

(3.17a) and consider the block-decomposition choosing the first
⌈
2N
τ

⌉
rows; then, the

variables in the first
⌈
2N
τ

⌉
rows may have constraints related to the same variable in a

different block. Therefore, it makes more sense (to our problem) to choose the blocks

(3.18) in such a way that the properties of the proposed LP-SVR are exploited.

Clearly, if one uses (3.18) to select the elements of the τ−th block, the block

itself can be further reduced by taking into account that variables associated with

constraints that do no appear in the τ−th block do not play any role in the problem

solution. To do so, define R as the set of indices of variables associated with the

τ−th block, where R * B and |R| < |B|. Then, redefine (3.18) as follows:

(
AB bB

)
≡




A
(1)
R b

(1)
R

A
(2)
R b

(2)
R

...
...

A
(τ)
R b

(τ)
R



, (3.20)

for all 1 < τ < |B|, where

(
A

(τ)
R b

(τ)
R

)
=


 −Ki,j,B Ki,j,B −1 1 −Ii,j,B Ii,j,B

Ki,j,B −Ki,j,B 1 −1 −Ii,j,B Ii,j,B

∣∣∣∣∣∣
1i,Bǫ− di,B

1i,Bǫ+ di,B


 ,

(3.21)
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for all i, j ∈ R, where A
(τ)
R ∈ R(2|R|)×(4|R|+2), b

(τ)
R ∈ R2|R|, and consequently

z
(τ)
R , c

(τ)
R ∈ R4|R|+2. This can greatly reduce the size of the problem since |R| < |B|.

Next, the LP solution needs to be redefined. At iteration t = 1, 2, . . . , let z
(t)
R be

the solution to the following linear program:

z
(t)
R = argmin

zR



cTRzR

∣∣∣∣∣
A

(t mod τ)
R zR − b

(t mod τ)
R = ep

Ā
(t mod τ)−1
R zR − b̄

(t mod τ)−1
R = ēp



 (3.22)

where ep, ēp are errors for the LP primal (3.22),
(

A
(0)
R b

(0)
R

)
= ∅, and

(
A

(t)
R b

(t)
R

)

is the set of active constraints (i.e., those equalities in (3.22) with ep, ēp = 0 for z
(t)
R )

with positive Lagrange multipliers. Then, for the linear program (3.19), the solution

z
(t)
B at iteration t is given by

z
(t)
i,B =





z
(t)
j,R if j = i, for all j ∈ R
0 otherwise,

(3.23)

for all i ∈ B.
One of the main advantages is that the problem size can be very small, especially if

the number of blocks is large. However, the size may increase as iterations progress.

In the worst case scenario the size will be the same as in the traditional linear

programming chunking (LPC) algorithm in which no SVR properties are exploited.

3.5 Convergence and Optimality Conditions

Algorithm 3.4 proposes the complete final algorithm that includes the combination

of both variable and constraint decomposition.

As Algorithm 3.4 shows, the process of solving problem (3.2) involves the iterative

sequential application of Algorithm 3.3, and Algorithm 3.2, until the KKT conditions

(3.5a)-(3.5d) or a stopping criteria are satisfied. Clearly, if the KKT conditions are
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Algorithm 3.4 Large-Scale LP-SVR Sequential Optimization

Require: LP-SVR problem data: T .
Require: Parameters: ǫ, σ, C,B0, Bmax, tmax, and τ .
1: For the initial and maximum working set size B0 and Bmax, given a training set
T , execute Algorithm 3.2 to obtain a working set B and a fixed setM.

• Initialize t = 0.

• For each LP problem given by the working set B, divide in τ blocks executing
Algorithm 3.3, 1 < τ < |B|. Solve LPs zR.

• If solution z
(t)
B is steady for tmax iterations, then go to Step 2. Else, solve

with the next block.

2: If solution z(t) satisfies KKT conditions (3.5a)-(3.5d) at iteration t, then Stop.
Else, repeat Step 1 and update the working set B and the fixed setM.

Ensure: (xi, αi, b) for all i such that αi 6= 0.

satisfied, the solution is guaranteed to be the optimal solution. Therefore, as long

as Algorithms 3.3 and 3.2 terminate at an optimal solution, the complete process

(Algorithm 3.4) also converges to an optimal solution.

To explain convergence and optimality of the decomposition algorithms, first, we

discuss how Algorithm 3.3 terminates in a finite number of iterations; second, it

follows to discuss how Algorithm 3.2 terminates in a finite number of iterations; and

third, we discuss global convergence.

Finite Number of Iterations for Constraints Decomposition Algorithm

First, assume that the linear program minz

{
cTz
}
subject to {Az = b, z ≥ 0} has

a solution and all the sub-problems given by (3.19) and (3.22) also have solutions.

Second, assume they satisfy the KKT conditions. Then, under these assumptions,

Theorem 3.2 and Lemma 3.3 in [22] (see also Theorem 4 and Lemma 5 in [23]) hold

true. This means that the sequence z(t) generated by Algorithm 3.3 has the following

properties:

1. The sequence cTz(t) of the objective function values is non-increasing and is

bounded by the global minimum of minz

{
cTz
}
subject to {Az = b, z ≥ 0}.
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2. The sequence cTz(t) of the objective function values becomes constant: cTz(t) =

cTzt+1 for all t ≥ j for some j ≥ 1.

3. For t ≥ j, the active constraints in (3.19) at z(t) with positive multipliers remain

active for iteration t + 1.

4. For all t ≥ tmax, for some tmax ≥ j, z(t) is a solution of the linear program

minz

{
cTz
}
subject to {Az = b, z ≥ 0}, provided all active constraints at z(t)

have positive multipliers remain for t ≥ j.

Finite Number of Iterations for Variables Decomposition Algorithm

Let T = {xi, di}Ni=1 define a training with N samples. Then the number of variables

and constraints in problem (3.2) is 4N+2 and 2N respectively. Now, following Torii,

et al. algorithm in [187], we can define B(t) as the working set at iteration t. Then,

we let the following sequence

B(t) = B(t+k+1), B(t+1) = B(t+k+2), . . . , B(t+k) = B(t+2k+1),

denote an infinite loop, since the same working set it is being repeated every k

iterations. Now, suppose we use Algorithm 3.2, Step 5, to permanently add to the

working set those constraints entering and leaving the working set for a number of

iterations. Then, if for any reason, e.g., the properties of the dataset samples, an

infinite loop exists, it would be prevented at Step 5, since the constraints entering

and exiting the working set by at least l times are added permanently to the working

set, which implies that the infinite loop is broken. That is, the infinite loop will not

occur at current (t, t + k) or further iterations (t + 1, t + k + 1). Moreover, since

the number of both constraints and variables is finite, the number of infinite loops

is also finite. Therefore, infinite loops are handled in finite steps. Hence, Algorithm

3.2 terminates in a finite number of iterations.
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3.6 Interior Points Convergence and Optimality

Part of the computational robustness of the proposed decomposition methods rely

on the usage of interior point methods (IPM) for linear programming (see Appendix

C for a brief introduction to IPM, or the text [203] for a comprehensive review).

Here we want to discuss shortly how the linear programs are being solved at the end.

First, let us consider the KKT conditions (3.5a)-(3.5d) established for our problem

(3.2). Let us recall that the problem (2.18) is equivalent to (3.2) and that the KKT

conditions (3.5a)-(3.5d) are also equivalent to (3.5a)-(3.5d). IPM considers the KKT

conditions as the following function

F(z,λ, s) =




ATλ+ s− c

Az− b

XS1


 = 0, (3.24a)

z, s ≥ 0 (3.24b)

where X = diag(z1, z2, ..., zn), and S = diag(s1, s2, ..., sn). The IPM generates a set

of solutions F (t) = (z(t),λ(t), s(t)) at each iteration t. The key idea is to find solutions

(z(t),λ(t), s(t)) that satisfy F(z(t),λ(t), s(t)) = 0 and more importantly z(t), s(t) being

strictly positive, except at the solution where z or s may be equal to zero.

IPM surrounds the current point in a linear model in order to obtain the step

direction (∆z,∆λ,∆s) as follows:

J(z,λ, s)




∆z

∆λ

∆s


 = −F(z,λ, s), (3.25)

where J(z,λ, s) is the Jacobian of F(z,λ, s). Then the step direction (using a
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predictor-corrector strategy) becomes




0 AT I

A 0 0

S 0 X







∆z

∆λ

∆s


 =




−rc
−rb

−XS1−∆Xaff∆Saff1+ σµ1


 , (3.26)

where rc = ATλ+ s− c and rb = Az− b are residuals, ∆Xaff,∆Saff are the affine-

scaling direction, µ is the duality gap, and σ is an adaptive line-search parameter

depending on µ. The new iterate is therefore

(z,λ, s) + α(∆z,∆λ,∆s), (3.27)

where α ∈ (0, 1] is appropriately chosen in order to maintain (z, s) strictly positive.

On The Convergence of IPM for LP

Let F (t) = (z(t),λ(t), s(t)) be the set of feasible solutions generated by Algorithm B.3

at iteration t. Under this definition, Zhang, Tapia, et al. [219], as well as [9, 95,

183, 218], demonstrate that IPM for LP exhibits the following properties: (i) F (t)

converges to F∗; (ii) the duality gap converges to zero z(t)
T
λ(t) → 0 with q-quadratic

behavior if all solutions are non-degenerate; and (iii) the duality gap converges to

zero z(t)
T
λ(t) → 0 with q-superlinear behavior if there is any degenerate solution.

The above properties demonstrate that LP-IPM is q-quadratically convergent to

a feasible solution, i.e., it is equivalent to the Newton method. Even in case of

degeneracy, IPM is q-superlinearly convergent. In contrast, the simplex method is

of exponential complexity. In spite of this, the simplex is typically used in most

decomposition strategies for large-scale SVM.

Figure 3.5 shows the behavior of Primal, Dual, and Complementarity Condition

using IPM for an arbitrarily three-class non-separable classification problem. The

solution can easily be found in very few iterations.
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Figure 3.5: Behavior of the KKT conditions as the number of iterations progress.
The primal, dual, and complementarity condition must converge to
zero. The results shown represent the average value over several exper-
iments on arbitrarily three-class non-separable classification problems.

3.7 Experimental Evaluation of LS LP-SVR

To show the effectiveness and efficiency of the proposed algorithms, simulations were

performed over different datasets. The summary of the properties of these datasets

are shown in Table 3.1. Note that the simulations include classification in two and

multiple classes, as well as regression problems.

The well-known Ripley dataset problem [138,156] consists of two classes where the

data for each class have been generated by a mixture of two Gaussian distributions.

The Wine dataset [64, 107] contains results of wine chemical analysis within the
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Table 3.1: Summary of the Dimensions and Properties of the Datasets.
Dataset Classes Features Training Testing Reference

M N N⋆

Ripley 2 2 250 1, 000 [138]
Wine 2 13 110 20 [107]
ADA 2 48 4, 147 415 [98, 148]
GINA 2 970 3, 153 315 [39, 148]
HIVA 2 1, 617 3, 845 384 [26]
NOVA 2 16, 969 1, 754 175 [26]
SYLVA 2 216 13, 086 1, 308 [26, 39]
Iris 3 4 130 20 [128]

Spiral 2 2 200 101 [206]
Synthetic S 3 2 3 million 3 million −
Synthetic NS 3 2 3 million 3 million −
f(x) =sinc(x) R 1 200 200 [144]

f(x) =sinc(x) × π R 1 1 million 1 million −

Italy region but was derived from three different vines. The analysis consists of 13

attributes of two different groups of wine. This dataset is part of the UCI machine-

learning repository [65].

ADA is a marketing-related dataset [108]. The goal of ADA is to discover high

revenue people from census data. This is a two-class classification problem. The raw

data from the census bureau is known as the Adult database [98, 148] in the UCI

machine-learning repository [65]. The 48 features include age, workclass, education,

education, marital status, occupation, native country, etc.

GINA is a digit recognition-related dataset that is commonly known as the

MNIST database of handwritten digits [112]. GINA aims to provide features for

handwritten digit recognition [39,148]. The problem consists of separating two-digit

odd numbers from two-digit even numbers. Only the unit digit is informative for

that task; therefore, at least one half of the features are distractors. Additionally,

the pixels that are almost always blank were removed and the pixel order was ran-

domized to hide the feature identity. This is a two class classification problem with
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non-sparse continuous input variables, in which each class is composed of several

clusters. It is a problem with heterogeneous classes.

HIVA is a dataset related to HIV infections. The goal of HIVA is to provide

features for prediction of active compounds within an AIDS HIV infection. The

dataset represents a two-class classification problem (active vs. inactive) consisting

of 2000 sparse binary input variables. The variables represent properties of the

molecule inferred from its structure. The problem is to relate structure to activity

i.e., a quantitative structure-activity relationship (QSAR) problem, to screen new

compounds before actually testing them, i.e., a high-throughput screening (HTS)

problem. The data is made available by the National Cancer Institute (NCI), and

has been used in [26].

NOVA is a text classification dataset. The data of NOVA come from the UCI

repository [65] which is also known as Twenty-Newsgroup dataset [97]. Each text to

classify corresponds to email text. The features consist of a sparse binary represen-

tation of a vocabulary of approximately 17, 000 words.

SYLVA is an ecology-related dataset that is part of the UCI repository [65] under

the name of Covertype Data Set [17,39]. The SYLVA dataset aims to provide features

for forest cover type classification. The data is obtained from 30×30 meter cells by the

US Forest Service (USFS) Region 2 Resource Information System (RIS). It represents

a two-class classification problem, that classifies Ponderosa pine against everything

else. The features consists of 216 input variables. Each pattern is composed of four

records: two records matching the target and two records chosen at random. Thus

one half of the features are distractors.

The Iris dataset is perhaps the best known database to be found in the pattern

recognition literature and is also part of the UCI dataset [65]. The dataset contains

three classes of 50 instances each, where each class refers to a type of Iris plant. One of

the classes is linearly separable from the rest, which are not linearly separable [63,77].

The Spiral dataset is a synthetic dataset that consist of a two class problem with
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an extremely non-linear decision surface, and is typically used to test the ability of

classifiers in finding such difficult decision functions [206].

Similarly, the remaining datasets are synthetic. The Synthetic S is a non-linearly

separable three-class problem whose classes are normally distributed. The Synthetic

NS is identical, however, the classes are non-separable.

The two last examples are for regression purposes. The datasets objective is

to fit the “sinc” function, which is a typical function to approximate [144]. The

f(x) =sinc(x) consists of unevenly sampled points from the sinc function. Similarly,

f(x) =sinc(x)× π consists of unevenly spaced points from the sinc function that are

affected by multiplicative white Gaussian noise (WGN); this makes it a very difficult

function to fit.

The results of training and testing with the above datasets will be explained in

the following paragraphs. The kernel choice in this dissertation is only the radial

basis function (RBF) kernel. This choice is justified since RBF kernels are the most

discriminant kernels [15,73] and since RBF kernels produce very large datasets, fitting

perfectly with what we intend to demonstrate in this research.

This section is divided in two different analysis: The first part analyzes the

performance metrics of the proposed model against state of the art models using

benchmarking datasets; while the second part analyzes the sparseness of the proposed

model against state of the art models using benchmarking datasets.

These experiments show results using a testing set D = {xi, di}N⋆

i=1, where N
⋆ is

the number of samples available for testing. The testing set D has never been shown

to the LP-SVR model before.

3.7.1 Large-Scale Learning

Figure 3.6 shows how the total training time (in minutes) varies as the problem size

increases. The figure shows that the proposed approach is slower at smaller problems,

and seems to be comparable to medium size problems; however, it is faster at larger
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Figure 3.6: Training Time as a Function of the Problem Size.

problems.

Figure 3.7 shows the total number of iterations in relationship with the problem

size. It is important to observe that at larger scale problems, the proposed model has

a very consistent number of iterations. The reason is, that the majority of the itera-

tions are made within the constraints decomposition strategy. Although the number

of iterations seems to be constant, the effect of larger constraint decompositions is

clearly expressed as an increase in total CPU time, as shown in Figure 3.6.

Figure 3.8 shows the monotonic non-increasing behavior of the objective function

as iterations progress. As explained before, the proposed sequential optimization has

the property of a never increasing objective function. Clearly, most small size and

small number of classes are solved in very few iterates. As problem size and number
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Figure 3.7: Total Number of Iterations as a Function of the Problem Size.

of classes increase the model takes more iterations to solve the problem. However,

the objective function is always monotonically decreasing.

Table 3.2 shows a comparison of the accuracy. It can be observed that the

proposed approach has comparable results to other SV-based and neural approaches.

As problem size increases, a slight increase in accuracy can be observed. In average,

the proposed approach posses a slightly higher accuracy.

In the other hand, Table 3.3 shows a comparison of the balanced error rate.

Whereas the overall accuracy can be biased if classes are unbalanced, the BER metric

offers a “fair” estimate of error. It can be seen that the proposed LP-SVR learning

model does not affect dramatically the performance of the classifier. On the contrary,

we can observe that the error has no significant difference as compared to others in
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Table 3.2: Accuracy
Classifiers

Dataset LS SVM LS LPSVR IncSVM LSSVM
FFNN
[5, 20, 2]

Ripley 0.916 0.915 0.91 0.906 0.908
Wine 1 1 1 1 0.99
ADA 0.841 0.851 − 0.843 0.839
GINA 0.997 0.997 − 0.99 0.997
HIVA 0.87 0.87 − − −
NOVA 1 1 1 − −
SYLVA 0.998 0.999 − − 0.996
Iris 1 1 0.998 0.998 0.998

Spiral 1 1 1 1 0.99
Synthetic S 0.989 0.99 − − −
Synthetic NS 0.984 0.985 − − −

Avg. 0.963 0.964 − − −
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Table 3.3: Balanced Error Rate
Classifiers

Dataset LS SVM LS LPSVR IncSVM LSSVM
FFNN
[5, 20, 2]

Ripley 0.084 0.085 0.09 0.094 0.092
Wine 0 0 0 0 0.008
ADA 0.135 0.148 − 0.15 0.15
GINA 0.003 0.003 − 0.009 0.003
HIVA 0.171 0.171 − − −
NOVA 0 0 0 − −
SYLVA 0.001 0.006 − − 0.014
Iris 0 0 0.001 0.001 0.001

Spiral 0 0 0 0 0.01
Synthetic S 0.011 0.01 − − −
Synthetic NS 0.016 0.015 − − −

Avg. 0.038 0.039 − − −

the average case.

For regression cases, Table 3.4 is presented, which shows a comparison of the

mean absolute error among neural, binary, and SV-based learning methods. The

Table 3.4: Mean Absolute Error.
Classifiers

Dataset LS SVR LS LPSVR
B. Dec. FFNN
Trees [5, 20, 2]

Mean Absolute Error

f(x) = sinc(x) 0.000938 0.000938 0.000948 0.000808
f(x) = sinc(x)× π 0.093108 0.091457 0.093721 0.092401

table elucidates the idea that the proposed scheme produces results comparable to

other SV-based approaches. The proposed model shows smaller errors even when

compared with the neural network-based approach at a large-scale.

The proposed LP-SVR model with the large-scale training strategy was also eval-

uated using other performance metrics. The results lead to the same conclusions as

those tables shown in this section. However, those results with other performance
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metrics are included in Section C.4 as a reference.

3.7.2 Solution Sparseness

Figure 3.9 shows an analysis of the support vectors across iterations number. The
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Figure 3.9: Support Vectors as a Function of Iterations. SPV SSV ESV SV.

figure shows the number of: support vectors (SVs), sparse support vectors (SPVs),

saturated support vectors (SSV), and exact support vectors (ESV). The horizontal

axis indicates that the total number of iterations of each case was expressed as a

percentile in order to average all the cases; similarly, the vertical axis shows the

data set as a percentile for averaging purposes. The figure can be interpreted as the

proportion of the total dataset that is changing in proportion to the total number of

iterations. It can be seen that the SPVs are being progressively found as iteration

progress, and at final iterations the ESVs increase while the SSVs decrease.
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Table 3.5 shows a comparison of the number of support vectors. It can be con-

Table 3.5: Support Vectors
SV-Based Classifiers

Dataset LS SVM LS LPSVR IncSVM LSSVM

Ripley 0.31 0.14 0.31 1.00
Wine 0.29 0.34 0.29 1.00
ADA 0.36 0.18 − 1.00
GINA 0.14 0.14 − 1.00
HIVA 0.34 0.34 − −
NOVA 0.14 0.14 0.14 −
SYLVA 0.13 0.06 − −
Iris 0.26 0.24 0.26 1.00

Spiral 0.36 0.36 0.36 1.00
f(x) = sinc(x) 0.34 0.34 0.33 1.00

f(x) = sinc(x)× π 0.03613 0.00733 − −
Synthetic S 0.00004 0.00001 − −
Synthetic NS 0.00018 0.00004 − −

cluded from this table, that the proportion of the support vectors is less at larger

problems, as expected. However, in smaller problems the results are similar. In

the case of the Least-Squares SVM (LSSVM) [26, 199] the total number of support

vectors is equivalent to the total dataset, i.e., all samples are support vectors. Simi-

larly, the results shown in Table 3.6 compare the number of sparse support vectors,

{xi : di−ǫ < f(xi) < di+ǫ}. In this case, we observe that as problem size increases,

we have much less proportion of SSVs, which is desired. At smaller problems, the

number of support vectors might be, sometimes, equivalent to the total training set,

depending on the separability of the data and the number of samples.

The appendix contains two more tables: Table C.22 that shows a comparison

of the number of exact support vectors and Table C.23 that compares the number

of saturated support vectors. The information in this tables is consistent with the

tables shown here.
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Table 3.6: Sparse Support Vectors
SV-Based Classifiers

Dataset LS SVM LS LPSVR IncSVM LSSVM

Ripley 0.84 0.37 0.84 1.00
Wine 0.77 0.78 0.81 1.00
ADA 0.99 0.50 − 1.00
GINA 0.38 0.38 − 1.00
HIVA 0.93 0.93 − −
NOVA 0.39 0.39 0.40 −
SYLVA 0.35 0.15 − −
Iris 0.65 0.68 0.65 1.00

Spiral 0.98 0.98 0.97 1.00
f(x) = sinc(x) 0.92 0.91 0.91 1.00

f(x) = sinc(x)× π 0.09906 0.02011 − −
Synthetic S 0.000099 0.000020 − −
Synthetic NS 0.000497 0.000109 − −

3.7.3 Computational Concerns

The experiments that support the theoretical development presented in this disser-

tation arose some important implementation considerations.

The first consideration is in regard to global convergence of the proposed algo-

rithms. In order to obtain a global solution, it is required that interior point methods

converge. Then, the constraints decomposition algorithm must also converge to the

optimal solution. Finally, the variable decomposition has to terminate in finite time.

The conditions that guarantee this, is that every sub-problem leads to a feasible

solution. In classification problems, the keys for a feasible solution are first to avoid

under-determined coefficient matrices A within any LP sub-problem, and second to

make sure that there exists at least one feature vector per class represented in any

LP-sub-problem [200]. In the case of regression, one needs to have at least three

feature vectors representing of the pattern to be fit; otherwise, the problem becomes

trivial, i.e., a non-linear regression model trying to solve a simple N -dimensional line

equation.
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In the experiments of this dissertation, the maximum number of samples we

worked with was N = 3, 000, 000 which leads to a problem size of (2N)× (4N +2) =

72, 000, 012, 000, 000 points. Computational limitations constrained the author of

this dissertation in performing more comparisons over larger datasets. However,

it is evident that the proposed scheme will still be able to handle larger datasets,

i.e., larger problems are still computationally tractable, unlike other large-scale ap-

proaches, such as the Incremental SVM (IncSVM) [209], the linear programming

chunking [22, 23], or the quadratic programming chunking (LS SVM) [39].

In this dissertation we only covered the radial basis function (RBF) kernel. There

are two main reasons for this: (i) RBF kernels are unarguably the most discriminant

kernels for problems for whose one has very little or no-prior information [15,73]; (ii)

RBF kernels produce very large datasets, thus, they fit perfectly within the scope of

this dissertation.

One final consideration we want to leave as future work is the usage of different

loss functions apart from the ǫ-insensitive loss function. This function was adopted

initially for computational cost reasons. However, other functions (e.g., Huber loss

function [88, 132] or quadratic loss function [83]) may improve the performance of

the regression model.

3.8 Conclusion

3.8.1 Large-Scale Learning

The proposed large-scale model involved three major parts that increases computa-

tional tractability of large-scale problems.

First, the large-scale LP-SVR problem is reduced by variable decomposition

a.k.a. column/variable chunking which exploits LP-SVR structure to produce a

lower-dimensional representation of the decomposed LP sub-problem. The proof of
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finite termination of the decomposition strategy is guaranteed by an infinite-loop

prevention algorithm and by previous work from Torii, et al. in [187].

Second, we take a constraint decomposition strategy a.k.a. row/constraint chunk-

ing that generates a number of smaller sub-problems by exploiting again LP-SVR

structure. The resulting LP problems are solved sequentially in a monotonically

non-increasing objective function fashion. Proof of convergence is given applying

Bradley’s [23] theorems under the correct assumptions.

Third, the two-way-reduced LP-SVR sub-problems are solved using interior point

methods, which have a very high rate of convergence. This is the key that balances

the total computational time of performing two decompositions and solving several

LPs. Using other approaches (e.g. the simplex method) would dramatically increase

computational efforts.

3.8.2 Model Performance and Sparseness

Finally, from the experiments results shown in this chapter we can conclude that the

proposed approach is comparable with other formulations in terms of performance,

which is desirable. However, in this work we are not looking for better performances,

instead, we want to train large-scale datasets and at the same time produce sparser

solutions in terms of the number of support vectors. As is known, if the solution is

sparser, the model is more efficient in testing phase. That is, a sparse solution implies

fewer number of support vectors and hence, future kernel evaluations can be made

faster. The point here is that experimental results shown that the model is sparser

than the regular SVR and other SV-based classifiers. Although this was studied by

Zhang, et al. [214], we have experimentally demonstrated that as the problem size

increases, the sparser the solution becomes.

The next chapter discusses the possibility of accelerating training time by pre-

selecting the feature vectors that may have a higher chance of becoming support

vectors, and also proposes a method for selecting model parameters.
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Chapter 4

LP-SVR Training Speedup and

Hyper-Parameters Estimation

4.1 Introduction

This chapter presents a learning speedup method based on the relationship between

the support vectors and the within-class Mahalanobis distances among the training

set. We explain how statistical properties of the data can be used to pre-rank the

training set. Then we explain the relationship among the pre-ranked training set

indices, convex hull indices, and the support vector indices. We will also explain how

this method has better efficiency than those approaches based on the convex hull,

especially, at large-scale problems.

This chapter also presents a method for estimating the Linear Programming

Support Vector Regression (LP-SVR) model hyper-parameters, θ = [C, σ]. We start

by defining error functions for classification and regression. Then we adapt the

Newton method for function minimization and use it to find a θ that minimizes

a vector of error functions. We show how the proposed model provides a better

estimate of the hyper-parameters than those approaches based on brute force search.

At the end of the chapter we conclude by explaining the findings of the experi-

mental results over both the speedup alternative an the hyper-parameter estimation

approach. Background material on the Newton method has been prepared for the

reader unfamiliar on this technique. Such material is located in Appendix D.
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4.2 Within-Class Distances for Learning Speed Up

Although the proposed algorithm for large-scale training of an LP-SVR has been

mathematically proven to converge, the complete process might take a large amount

of time to be resolved as N increases. This motivates, the exploration of alternatives

for speeding up the learning process. Here, it is proposed to use an distance measure

to rank the training set for speeding up the learning process.

It is known by the community [12,13,98,104,120,138,197,221] that in classification

tasks, those data points closer to the decision boundaries (i.e., convex hull of the data

class) are more likely to be support vectors, as illustrated in Figure 1.2 and 4.1 with

bold circles. Figure 4.1 depicts the relationship between convex hull and maximum

Mahalanobis distance (MD) for an arbitrary two class problem. The figure shows

the convex hull of each class, the support vectors (SVs) that define the separating

hyperplane, and the eight samples having the maximum MD from their class center.

Note that both SVs and convex hull match the eight samples with maximum MD.

Vapnik [197, 198] improved the speed of his learning method by considering

only those variables on the boundaries of the feasible region instead of consider-

ing all the data, which allowed computational tractability of some problems. Then

Joachims [98] defined a heuristic approach to identify variables at boundaries based

on Lagrange multiplier estimates. Later, Bennett, et al. [12,13] posed the problem of

finding the optimal separating hyperplane using the distance between class convex

hulls. A similar concept was followed by Keerthi, et al. [104] in 2002, by Osuna,

et al. [138] in 2003, and by Zhenbing, et al. [120] in 2010.

In this chapter we introduce a related approach which uses a probabilistic argu-

ment. In the following discussion we assume that our training data Tφ = {xi, di}Ni=1

has been taken to the kernel-induced feature space.

It is well known that SVR and support vector machines (SVM) formulations do

not make assumptions about the probability distribution of the data. Nonetheless,

72



−2 0 2 4 6

−2

0

2

4

6

x
1

x 2
Convex Hull, SVs, and Max Mahalanobis Distance

 

 
Class 1
Class 2
Convex Hull Class 1
Convex Hull Class 2
Support Vectors
k=8 Max. Mahalanobis Dist. |

Figure 4.1: Relationship between convex hull and maximum Mahalanobis distance
for the two class problem. Here it is shown the original separable two
class problem, class convex hull, support vectors, and k = 8 maximum
Mahalanobis distance samples. Note that both SVs and Convex Hull
match the k = 8 maximum Mahalanobis distance samples.

each class ωj, should have a conditional class distribution p(x|ωj), where x ∈ X ⊆
RM is defined as an M-dimensional random variable which could be be estimated if

enough data points were available. Estimating a multidimensional PDF is difficult

but we could make some basic assumptions. First, we could assume that the data

has a uni-modal distribution which implies that data-samples would cluster around

the class mean and the further a point is from its mean, the lower its probability

and could be expected to be located on the convex hull of the data sample we

are analyzing. A more strict assumption would be to consider that the p(x|ωj)

are multivariate Gaussian distributed. Under this assumption each p(x|ωj) could

be modeled using only the sample mean µx|ωj
and a covariance matrix Σx|ωj

, that

73



is p(x|ωj) ∼ N (µx|ωj
,Σx|ωj

). It is also well known that we can use the squared

Mahalanobis distance (MD)

D(xi) = (xi − µx|ωj
)TΣ−1

x|ωj
(xi − µx|ωj

), (4.1)

as a measure of the distance of a data point with respect to its mean.

Based on these assumptions we propose a method for finding the SV candidates

by computing the D(xi) for all i = {1, 2, . . . , N}. Once all training vectors are sorted

by their MD to their respective mean, and saved into the sets Zj for the j-th class,

then we can form the initial working set B of size Bini using the procedure described

in Algorithm 4.1 (explained in the next section). We traverse elements of Zj,i into

to B until Bini elements are added.

Algorithm 4.1 Mahalanobis Distance-Based Working-Set Selection for Large-Scale
LP-SVR Training Speedup

Require: A training set Tφ = {xi, di}Ni=1.
Require: A desired number of samples per class v.
1: for j = 1 to |D| do
2: Estimate parameters (µx|ωj

,Σx|ωj
). ⊲ Sample mean and variance.

3: for i = 1 to N do

4: Compute Mahalanobis distance D(xi)j with (4.1).
5: end for

6: Obtain indices Zj corresponding to the sorted Dj . ⊲ Descending order.
7: for i = 1 to v do

8: Zj,i = Z(i)j . ⊲ In this case Bini = k ≡ v × |D|.
9: end for

10: end for

Ensure: Initial working set indices B ← Zj,i.
Ensure: Initial fixed set indicesM← {1, 2, . . . , N} /∈ Zj,i.

In this manner, the SVR could be trained faster if the first working-set B contains

those k samples, thereby, speeding up the training process. A similar approach to

ours is given by Zhou, et al. [221] in 2010; but again the authors approach is still

based on class and subclass convex hulls, which makes it computationally expensive.
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To explain the proposed approach, consider the following definitions: Let D =

{ω1, ω2, . . . , ωj} be the set of classes where j is the total number of classes. Let

C = {C1, C2, . . . , Cj} denote a set of indices, where Cj contains the indices of all those
samples associated with the j-th class, Ci∩Cj = ∅ for all i 6= j, and C ≡ {1, 2, . . . , N}.

4.2.1 Within-Class Mahalanobis distance and Class-Convex

Hull

To explain the ideas behind the procedure shown in Algorithm 4.1, we will be con-

sidering the case of all the samples xi belonging to the j-th class, that is, all i ∈ Cj .
The same principles will apply to all classes.

One of the first steps is to estimate the parameters (µx|ωj
,Σx|ωj

), i.e., from

observed events. Then the within-class MD from the i-th feature vector xi to the

center of the j-th class µx|ωj
is defined as D(xi) from (4.1). Next, we define Zj as

the set of indices corresponding to the ordered Mahalanobis distance samples of the

j−th class computed with (4.1). The indices in Zj correspond to ordered values in

descending form, as shown in Figure 4.2.

As mentioned before, we argument that the MD D(xi) is related to the support

vectors and the class convex hull (CCH), which is generally defined as follows:

Θ(ωj) =




∑

i∈Cj

βixi : i ∈ Cj , βi ∈ R, βi ≥ 0,
∑

i∈Cj

βi = 1



 , (4.2)

where a number of |Cj | points in the form of
∑

i∈Cj βixi are the boundaries of the

j-th class sample cloud. Then we can define the sets of indices corresponding to

the convex hull of the j-th as S = Θ(ωj). The algorithm that obtains the convex

hull has complexity of O(N M
2 ), where M is the dimensionality of the feature vector.

The complexity of the method proposed here mas a complexity of O(L), where

L = max
[
N logN,

(
M
2

)]
. This demonstrates that our model has lower complexity
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Figure 4.2: Mahalanobis distance-ranking of class indices using feature vectors in
either the input space or the kernel-induced feature space.

than those based on convex hulls. Now, we define a relationship between Z, S, and
SV in Proposition 4.1.

Proposition 4.1 (SVs and Within-Class Distances). Assume classes in D are lin-

early separable. Let Zv = {Z(1),Z(2), . . . ,Z(v)} denote the v maximum Maha-

lanobis distance indices. Similarly, let Zj,i = {Z1,v,Z2,v, . . . ,Zj,v} be the set of v

maximum Mahalanobis distance indices of all classes. Then

1. the maximum Mahalanobis distance samples indices contain the convex hull

indices: Zv ∈ S,

2. the maximum Mahalanobis distance samples indices contain the support vector

indices: Zj,i ∈ SV ,

where v is an integer stating how many samples per class should be considered.

Proposition 4.1 states that the first v ranked MD indices Zv contain the class

convex hull indices S and, thus, contain the support vector indices. The integer v

is bounded, |D| ≤ v ≤ |S|, and SV is as in Definition 3.1. Therefore, if the initial
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working-set is fixed to the indices in Zj,i, the training process will converge faster.

This is mainly because if the support vectors are found at the very first iterations,

the problem will be solved faster. Since Zj,i is more likely (based on Mahalanobis

distance information) to contain support vector indices, one can conclude that the

training will be faster. We have found that a good value for v is the quotient between

the initial working set size Bini and the total number of classes: v =
⌈
Bini

|D|

⌉
. This

value v is used as input in Algorithm 4.1.

As an example, let us consider a case of a random variable x ∈ R2. Then

draw 50 samples that follows a multivariate normal distribution with parameters

µ =
[
1 2

]T
and Σ =

[
2 0 ; 0 1

2

]
and assign these to class ω1; draw 50 more

from a multivariate copula [47] distribution with parameter ρ = 0.8, and assign these

to class ω2. The problem is shown in Figure 4.3 with the resulting convex hull. The

associated support vectors are also shown in Figure 4.3. Let us remark that the

Mahalanobis distance is associated with the spreadness of the class sample cloud,

such that the most uncertain samples have the highest Mahalanobis distance, as

shown in Figure 4.3. It is also important to remark that the highest Mahalanobis

distance correspond to the lowest probability samples, which is also correlated to the

support vectors as mentioned before.

The speedup quantification and other numerical testing of Algorithm 4.1 will be

given later in this chapter along with other experiments. The next section addresses

another important problem in SV-based learning machines: Model Selection.

4.3 Large-Scale LP-SVR Hyper-Parameter Esti-

mation

This section addresses the hyper-parameters estimation problem for the proposed

LP-SVR. The hyper-parameters, in the case of LP-SVR, are θ = [C, σ]. For other
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models, such as the ν-SVM, the hyper parameters are θ = [ν, σ, δ].

This is actually one of the general open problems in SV learning [178]. Broadly

speaking, one tries to find those hyper-parameters θ minimizing the generalization

error of an SV-based learning machine. In this regard, Anguita, et al. [6], comments

that “the estimation of the generalization error of a learning machine is still the holy

grail of the research community.” The significance of this problem is that, if we can

find a good generalization error estimate, then we can use a heuristic or mathematical
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technique to find the hyper-parameters θ via minimization of the generalization error

estimate.

Current efforts involve techniques of K−fold cross validation [56], leave-one-out

cross validation [6], bootstrapping [89], maximal discrepancy [7], and compression

bound [6, 201]. However, most algorithms are problem dependent [26]. This state-

ment is confirmed by Anguita, et al. [6]. The authors performed a comprehensive

study on the above techniques and they ranked such techniques according to their

ability to estimate the true test generalization error. Anguita, et al. [6], concluded

that most of the methods they evaluated either underestimate or overestimate the

true generalization error. Also, their research suggests that the K−fold cross valida-

tion technique is one of the less risky techniques for estimating the true generalization

error.

In this research we use the K-fold cross validation technique to estimate the true

test generalization error. Along with this technique, we define error functions as

measures of the training generalization error for both classification and regression

problems. We propose to minimize the estimated true generalization error by adapt-

ing the Newton method with line-search.

From the optimization point of view, the solution to the problem is non-trivial.

To illustrate this, Figure 4.4 shows the output root mean squared error of an LP-

SVR as a function of its hyper-parameters [C, σ] = θ. Note how the error surface is

non-smooth and has many local minima; therefore, it is non-convex. Our aim here is

to adapt Newton method to provide an acceptable solution to the problem of finding

the hyper-parameters.

We begin our discussion by defining the error functions that will measure the

training generalization error.
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Figure 4.4: Response of the root mean squared error as a function of θ = [C, σ].
Note, how the error surface is non-smooth and has many local minima.

4.4 Model Parameters Selection Criteria: Error

Functions

As mentioned before, we want to minimize the true test generalization error. The

kinds of generalization error measurements are, in fact, problem-type-dependent.

In the following subsection, error metrics particular to classification and regression
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problems for the LP-SVR model in (3.2) are chosen. To particularize, the objective

is to estimate the model vector of parameters θ = [C, σ].

4.4.1 Error Functions for Multi-Class and Two-Class Prob-

lems

The error functions we want to use for multi-class problems are two: a modified

estimate of scaled error rate (ESER) and the balanced error rate (BER). The ESER

metric is given by

f1(θ) =

N∑

i=1

ζΨ{(yi − di)− 0.5} (4.3)

where y is the actual output of the classifier LP-SVR when the input vector x is

presented at its input; ζ is a scaling factor used only to match the ESER to a desired

range of of values; and the Ψ{·} function is given by

Ψ{r} = 1

1 + e−γr
(4.4)

which is an approximation to the well known ideal unit step function. The quality

of the approximation is given by the parameter γ as illustrated in Figure 4.5. In all

of our experiments, ζ is fixed to 1
N
. If ζ = 1

N
, then the f1 has values only within the

interval f1 ∈ [0, 1], which is desired.

In some special cases, the ESER may become biased towards false positive counts,

especially if we have a large number of unbalanced class examples. Therefore, we use

the BER which is defined as follows:

f2(θ) =
1

2

(
FP

TN + FP
+

FN

FN + TP

)
(4.5)

where TP stands for “True Positive,” FP “False Positive,” TN “True Negative,”
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Figure 4.5: Unit step function approximation. A function Ψ{·} was used for con-
venience in easing computations.

and FN “False Negative.”

Clearly, the BER meets the classical misclassification rate if there are equal num-

ber of positive and negative examples; that is the case in which TN+FP = FN+TP

[26].

In a two class approach, it is more convenient to use the area under the receiver

operating characteristic (ROC) curve, as well as the BER metric. It is well known

that maximizing the area under the ROC curve (AUC) leads to better classifiers, and

therefore, it is desirable to find ways to maximize the AUC during the training step

in supervised classifiers. The AUC is estimated by means of adding successive areas

of trapezoids. For a complete treatment of the ROC concept and AUC algorithm,

see Appendix C or reference [60].
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Let us define the function f1 for the two class approach as follows:

f1(θ) = 1− AUC(·)θ, (4.6)

where the AUC(·) is computed using Algorithms 1, 2, and 3 from [60]. Let us

recall that ideally it is desired that f1(θ) = 0, which evidently in (4.6) means a

maximization of the AUC. The function f2 for the two-class approach is the same

BER as in (4.5).

4.4.2 Regression Problems

In regression one want to use a different measure of error. The error functions we

want to use for regression are two: Sum of Square Error (SSE), and STATistical

metrics (STAT). The SSE metric is given by

f1(θ) =

N∑

i=1

(yi − di)2 (4.7)

where y is the actual output of the classifier LP-SVR when the input vector x is

presented at its input.

The second metric is based on the statistical properties of the residual error given

by the difference yi − di. From estimation theory it is known that if we have the

residual error expected value equal to zero, and a unit variance, we have achieved the

least-squares solution to the regression problem, either linear or non-linear. Further-

more, it is understood that as the mean and variance of the residual error approach

zero, the regression problem is better solved. Let us denote the expected value of

the residual error as

µ = E [yi − di] =
1

N

N∑

i=1

yi − di, (4.8)
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and the variance of the residual error as follows

σ2 = E [yi − di − µ]2 =
1

N − 1

N∑

i=1

(yi − di − µ)2, (4.9)

from where it is desired that µ, σ2 → 0. Hence, the second error metric is defined as:

f2(θ) = σ2 +
√
µ2 (4.10)

where the term
√
µ2 has the meaning of the absolute value of the mean, since |µ| =

√
µ2 is easier to handle in optimization problems.

4.5 Adaptation of Newton Method

Different approaches to find the optimal set of parameters by minimizing some es-

timate of the true test generalization error [7, 56, 196]. Cawley [26], for example,

introduced a method that uses the PRESS statistic as an error function and the

simplex method as solver within the Least Squares SVM (LSSVM) context. How-

ever, Cawley method is not appropriate for large-scale applications since the LSSVM

works well only for small problems.

The most popular strategy to address the problem of finding the hyper-parameters

is the usage of a logarithmic grid [6,7,56]. This technique consists of varying C and

σ in a logarithmic fashion. The the intervals commonly used are the following:

C ∈ {2−5, 2−3, . . . , 213, 215}, (4.11)

σ ∈ {2−2, 2−1, . . . , 26, 27}. (4.12)

This is illustrated in Figure 4.6a. The figure shows a partial evaluation of the

logarithmic grid and the points of evaluation are shown in circles. This technique

requires 110 evaluations, i.e., number of trainings. Then the point θ with the lowest
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(a) Error surface as function of hyper-parameters and logarithmic grid
evaluation.

Figure 4.6: Comparison between a logarithmic grid refinement technique (a)-(c)
[6, 7] and the proposed adaptation of the newton method.

error is chosen to be refined around its center. This process is repeated as needed.

Figure 4.6b-c depicts this behavior only for two levels of refinement. One can observe

how the second level of refinement leaves the method at a close-to-optimal value.

Note also that for illustration purposes, the refinement grids in Figure 4.6a-c are

partially shown, there are many more actually.

In contrast, the proposed adaptation of the Newton method provides a better

solution in only two iterations, as shown in Figure 4.6d-e. Let us now explain how

Newton method can be adapted to find the LP-SVR hyper-parameters. In our dis-

cussion we use Newton method combined with the metrics on Section 4.4, to find

the model parameters of the proposed LP-SVR formulation (3.2). If the reader is

not familiar with the Newton method, it is recommended for the reader to revise the

development presented in Appendix D, particularly, in Section D.1.
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(b) Logarithmic grid. Refinement 1.

(c) Logarithmic grid. Refinement 2.

Figure 4.6: Continued... comparison between a logarithmic grid refinement tech-
nique (a)-(c) [6,7] and the proposed adaptation of the newton method.
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(d) Newton method Iteration 1

(e) Newton method Iteration 2

Figure 4.6: Continued... comparison between a logarithmic grid refinement tech-
nique (a)-(c) [6,7] and the proposed adaptation of the newton method.
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4.5.1 Newton Method Adaptation

Newton method for function minimization can be adapted for the cases presented in

Section 4.4. We start by defining a matrix of functions F as follows:

F(θ) =


 f1(θ)

f2(θ)




2×2

(4.13)

where clearly F : R2 7→ R2 and θ : R2 7→ R. The typical challenge is to compute

the Jacobian matrix JF(θ), since not all the error functions are differentiable, i.e.,

(4.5) or (4.6). Then the classical approach is to estimate JF(θ) via finite difference

approximation, or secant approximation. For convenience, is used a finite differ-

ence approximation. In this case, J̃F(θ) corresponds to a finite difference derivate

approximation which solves (D.2) using (D.3) where

∂fn
∂θ1

≅
fn(θ1 + h, θ2)− fn(θ1, θ2)

h
(4.14)

∂fn
∂θ2

≅
fn(θ1, θ2 + h)− fn(θ1, θ2)

h
(4.15)

allowing h to be sufficiently small, as appropriate.

Next, we proceed to use a popular and fast way of estimating the true test error,

given a vector of hyper parameters θ and a training set T : the K-fold cross validation

technique [16,77,78]. The idea is to partition the training set into a number of smaller

sets, then train the LPSVR model with the smaller dataset and the remaining data

is used as a validation set. The process is repeated switching partitions, and the

performance is averaged. The quality of the true test error approximation increases

along with the number of partitions.

In this research it has been defined the following rule for finding a “good” number
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of partitions in K:

|K| = max

{
10,

⌈
N

Bmax

⌉}
, (4.16)

where Bmax represents the maximum working-set size; the function ⌈·⌉ represents
a round up operation; and |K| is the number of partitions in K. In the case of a

small-scale implementation |K| will typically be the classic 10−fold cross validation

approach.

The partitions in the set K is denoted as

K = {P1,P2, . . . ,Pk} (4.17)

where k = |K|, and Pk denotes the k−th partition and contains the indices of those

training data points in T = {xi, di}Ni=1. Therefore, we say that K ≡ {1, 2, . . . , N}.
Formally, the training set T is partitioned in |K| groups of data (ideally of equal

size), then train the classifier with |K| − 1 and use the remaining data as validation

set. The process is repeated for all the partitions Pk and the error is averaged as

follows

F̃(θ) =
1

|K|

|K|∑

k=1

F(θPk
) (4.18)

where F(θPk
) is the error obtained for the k−th partition; F̃(θ) is an estimate of the

true test error; TPk
= {xi, di}i∈Pk

and TK = {xi, di}i∈K.

4.5.2 Algorithm Discussion

The final algorithm (shown as Algorithm 4.2) requires the cross validation indices,

K, and also the training set T from which the LP-SVR parameters producing the

minimum error θ⋆ will be estimated as θ̃
t
.
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Algorithm 4.2 Quasi-Newton method adaptation to find parameters θ⋆ for an LP-
SVR model.
Require: Cross validation indices K.
Require: Training set T .
1: Initial point θ0

K. ⊲ With logarithmic grid.
2: for t = 0, 1, 2, . . . , until convergence do

3: µλ ← min eig
(
J̃F(θ

t
K)
)

Solve for ∆θ0
K depending on the condition:

4: if µλ > 0 then

J̃F(θ
t
K)∆θt

K = −F̃(θt
K) (4.19)

5: else
(
J̃F(θ

t
K) + (µλ + δ) I

)
∆θt

K = −F̃(θt
K) (4.20)

6: end if

7: Sufficient decrease: ⊲ Armijo’s condition
Find β1 that satisfies:

||F̃(θt
K + β1∆θt

K)||2 ≤ ||F̃(θt
K)||2 +

√
1− 2β1β2

8: Update:

θt+1
K = θt

K + β1∆θt
K

9: end for

Ensure: Model parameters estimate θ̃
t
= θt

K.
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Then the algorithm proceeds using the approximation to the true Jacobian (4.13)-

(4.15). However, note that every single function evaluation of (4.13) requires cross

validation, as explained before. As a consequence, the Jacobian implies four function

calls. The remaining steps are the linear system solution, the Armijo’s condition,

and the update.

The linear system in (4.19) requires special attention: because if we use a large

number of error functions to minimize, then the linear systems becomes computa-

tionally expensive to solve. If this is the case, one possible approach is to use any well

known direct approach such as the LU -factorization [136] or an indirect approach

such as the classic conjugate gradient algorithm by Hestennes 1956 [80, 136]. How-

ever, in our case, since we use only two error functions, the linear system solution

represents no significant computational expense.

The other special consideration with the linear system is when the Jacobian

matrix is non invertible (i.e., singular or degenerate). There is an easy way to verify

if the Jacobian is singular: Look for the minimum eigenvalue and if it is less than

or equal to zero, then the Jacobian is singular. This idea leads to a trick that

consists of shifting the eigenvalues of the Jacobian so that it becomes non-singular

for computational purposes, as denoted in (4.20).

In Algorithm 4.2, µλ is the minimum eigenvalue of the Jacobian, δ > 0 is a

constant sufficiently small that cannot be interpreted as zero, and I is the identity

matrix of identical size to the Jacobian. In (4.20) we typically chose δ = 1× 10−8.

4.5.3 Stopping Criteria

The stopping criteria used in this algorithm includes three conditions. First, a con-

dition that monitors if the problem has reached an exact solution to the problem,
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which is expressed as follows:

F̃(θt
K) = ε (4.21)

where ε = [ε1, ε2]
T . Ideally, ε1 = 0, and ε2 = 0.

Second, the ℓ2−norm of the objective function is monitored, which measures the

distance to zero (or to a certain threshold) from an approximate solution at iteration

t. This can be expressed as follows:

||F̃(θt
K)||2 ≤ ε3 (4.22)

where ε3 is some threshold, ideally ε3 = 0.

Third, we set a condition that measures the change between solutions at each

iterate, as follows:

||θt+1 − θt||2 ≤ ε4 (4.23)

where ε4 is typically set to a very small value.

Condition (4.23) states an early stopping criteria if the algorithm has no variabil-

ity in terms of the updates at each iteration. However, it may happen that although

the algorithm is updating the solution θt at each iterate, no “significant” progress

is made towards a solution. In such case, another classical early stopping criteria is

used: maximum iterations. The criteria is simply

t ≤ ε5 (4.24)

where ε5 is the maximum number of iterations permitted. Experimental results for

this method are shown further in this chapter.
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4.6 Experimental Results

To show the effectiveness and efficiency of the proposed algorithms, simulations were

performed over different datasets. The summary of the properties of these datasets

are shown in Table C.1. Note that the simulations include classification in two and

multiple classes, as well as regression problems. The results will be explained in the

following paragraphs.

This section is divided in two different analysis. The first part analyzes the

speedup resulted of using the proposed sample selection algorithm using state of the

art models and using benchmarking datasets. The second part analyzes the model

selection algorithm using the proposed algorithm and state of the art models using

benchmarking datasets. In this experiments, D = {xi, di}N⋆

i=1 is defined as the testing

set, where N⋆ is the number of samples available for testing.

4.6.1 Learning Speedup

Figure 4.7 depicts the behavior of the support vectors across iterations using the

speedup strategy. The figure shows the number of support vectors, sparse support

vectors, saturated support vectors, and exact support vectors. Note how the support

vectors are found early in the learning process. If we compare Figure 4.7 to the

analysis presented in Figure 4.8 (which is repeated from Figure 3.9 by convenience),

we notice that most of the support vectors are found in earlier iterates, which is the

goal of the strategy. In Figure 3.9 it seems that in the average case, most of the

sparse support vectors (SPV) are found in around 40% of the total iterations. In the

other hand, Figure 4.7 tells that in around 20% of the total number of iterates.

Table 4.1 shows the total training time of the experiments described in Section

3.7.1 without speedup. Compare against Table 4.2 that shows the total training

time after using the speedup strategy. From these two tables we can observe that

if strategy is used the total training time decreases, particularly as the problem size
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Figure 4.7: Sample Selection. Support Vectors as a Function of Iterations. SSV,
ESV, SPV, and SV.

increases, as it was expected.

Besides a time reduction analysis, it is also important to observe if the total

number of iterations is reduced if the speedup strategy is applied. Table 4.3 shows

the total reduction of iterations, in percent, using the speedup strategy. Clearly, if

the problem size is large, the reduction in number of iterations is also larger. A great

benefit can be obtained of the the speedup strategy, especially, if the class cloud is

as close as possible to a multivariate Gaussian distribution within the kernel-induced

feature space.

Another interesting thing to notice is that the percentage of iterations reduction

seem to be superior in proportion to the learning time after speedup. This follows

from noticing that, even if the support vectors are found at early iterations, still, the
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Figure 4.8: Support Vectors as a Function of Iterations. SPV SSV ESV SV.

learning process has to perform several time-consuming decompositions and com-

parisons that might increment in size, specially, if the number of support vectors is

large. However, since support vectors are found early at the learning process, there

is no need to solve some of the subsequent sub-problems since the support vectors

found will satisfy the KKT conditions of many of the sub-problems.

4.6.2 Model Selection

Now, to illustrate the behavior of the proposed hyper-parameter selection approach,

we present the results of experimental cases. Figure 4.9 shows the time as a function

of the problem size as well as the total number of iterations as a function of problem

size. It can be seen that the total number of iterations is not affected by the problem

size. In spite of this, each iteration takes more time to be completed as problem size
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Table 4.1: Total Training Time without speedup
Classifiers

Dataset LS SVM LP-SVR IncSVM LSSVM
D. Reg. FFNN
Trees [1, 20, 1]

Ripley 9 16 8 4 − 4
Wine 6 4 6 3 − 5
ADA 75 174 − 4412 − 63
GINA 50 116 − 1403 − 48
HIVA 73 161 − − − −
NOVA 25 47 258 − − −
SYLVA 247 495 − − − 190
Iris 6 4 3 3 − 3

Spiral 10 10 14 8 − 10
f(x) = sinc(x) 28 41 − − 181 26

f(x) = sinc(x)× π 9376 806 − − 6933 602
Synthetic S 9349 794 − − − −
Synthetic NS 9180 817 − − − −

Avg. 2187 286 − − − −

Table 4.2: Total Training Time with Speedup.
Classifiers

Dataset LS SVM LP-SVR IncSVM LSSVM
D. Reg. FFNN
Trees [1, 20, 1]

Ripley 8 9 7 4 − 4
Wine 1 2 4 3 − 5
ADA 71 74 − 3533 − 63
GINA 38 63 − 1191 − 48
HIVA 57 115 − − − −
NOVA 17 19 234 − − −
SYLVA 246 230 − − − 190
Iris 2 2 2 2 − 3

Spiral 5 5 5 5 − 10
f(x) = sinc(x) 9 8 − − 15 26

f(x) = sinc(x)× π 5672 764 − − 5597 602
Synthetic S 7038 467 − − − −
Synthetic NS 8608 672 − − − −

Avg. 1674 187 − − − −
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Table 4.3: Iterations reduction percent after speedup.
Classifiers

Dataset LS SVM LP-SVR IncSVM LSSVM
D. Reg. FFNN
Trees [1, 20, 1]

Ripley 1 2 22 52 − 0
Wine 1 4 0 1 − 0
ADA 24 9 − 10 − 0
GINA 12 10 − 11 − 0
HIVA 39 9 − − − −
NOVA 7 1 4 − − −
SYLVA 30 1 − − − 0
Iris 1 1 8 5 − 0

Spiral 15 12 4 7 − 0
f(x) = sinc(x) 5 13 − − 1 0

f(x) = sinc(x)× π 59 57 − − 43 1
Synthetic S 23 51 − − − −
Synthetic NS 27 37 − − − −

Avg. 18.7 15.7 − − − −

increases, which was expected.

Figure 4.10 analyzes the balanced error rate and the area under the ROC curve

at each iterate; Figure 4.11 shows the root mean squared error and mean absolute

value as the algorithm progresses iteratively. It can be seen that error functions i.e.,

BER, RMSE, and MAE, decrease dramatically in the first iterations, and the quality

measure AUC increases also at the early iterations. The behavior can be classified

between quadratic and linear, as was expected. Note however, that this behavior is

directly dependent of a “good” initial point given by the logarithmic grid technique.

Finally, let us point out that the results shown in Figure 4.10 and Figure 4.11 is the

result of averaging individual behaviors across all experiments.

Let us consider the results shown in Table 4.4. The second column shows the

total number of iterations; in average we observe that the iterations are around eight,

which is one of the most important properties of the method. Column three and four

of Table 4.4 show the hyper-parameters found; while in the fifth column one see the
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Figure 4.9: Total Model Selection Time and Number of Iterations as a Function of
the Problem Size.

ℓ2−norm of the algorithm at the last iteration. Note how variable is this value

depending on the dataset. Finally, the sixth column shows the criteria that made

the algorithm stop; it is clear that the most common is the criteria ε4 described in

(4.23). This latter statement means that the algorithm stopped because no progress

was being made towards the solution. Note also that, in average, the total number

of iterations is expected to be around 8, as confirmed also in Figure 4.9.

The simulation results in Table 4.5 show fn(θ̃
⋆
) which represents the result of the

n−th function (or error criteria), evaluated at the approximated solution θ̃
⋆
using

only the testing set D. These results are shown in columns two through six. In

column number two is shown the modified estimate of scaled error rate (4.3), which

was used with parameters ζ = 1
N

and γ = 100. These parameter ζ was chosen by

convenience in order to have an error within the interval [0, 1]. The third column
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Figure 4.10: BER and AUC as a Function of Iterations Number.

displays results for when the balanced error rate (4.5) was utilized. The area under

the ROC curve (4.6) shown in the fourth column also produces a result within the

same interval as the BER. In contrast, regression error functions shown in the fifth

and sixth column have a wide interval, but is always positive. That is, sum of

squared error (4.7) and the statistical properties (4.10) fall into the interval [0,R+].

Note that classification error functions in average are zero for practical purposes,

which is desirable.

Moreover, in Table 4.5 columns six through seven we show statistical properties

of the residuals given by (y − d)D. This residual is acquired by showing the testing

set D to the LP-SVR model with hyper-parameters θ̃
⋆
and measuring the output y.

Ideally, we want the average of the residuals to be zero, as well as their standard

deviation. This desired property is achieved during our simulations.
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In Table 4.5 the average of the residuals µ ≡ E [(y−d)D] and the residuals variance

is given by σ2 ≡ E [((y − d)D − µ)2]. These parameters are approximated from the

traditional sample mean and unbiased sample variance estimators.

4.7 Computational Concerns

4.7.1 Speedup by Sample Selection

The primary concern of the speedup method is the computation of the covariance

matrix Σx|ωj
. In our implementation, the covariance matrix was estimated with the
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Table 4.4: Summary of Behavior.
ε1, ε2, ε3, ε4 = 1.1921× 10−7, and ε5 = 100

Dataset t Ct σt ||F̃(θt
K)||2

Stop
Crit.

Ripley 12 5.047 0.2501 0.0021 ε4
Wine 1 0.031 0.2500 0.0000 ε1, ε2
ADA 7 0.460 117.82 0.9813 ε4
GINA 8 0.125 157.49 0.1658 ε4
HIVA 11 0.500 8.0730 0.0954 ε4
NOVA 15 2.004 4.7045 0.0313 ε4
SYLVA 7 1.125 4096.1 0.1512 ε4
Iris 6 11.46 1.7726 0.0019 ε4

Spiral 5 8.287 0.2515 0.0001 ε1, ε2
Synthetic S 9 100.9 3.0403 0.0511 ε4
Synthetic NS 11 1.034 3.1623 0.1943 ε4

f(x) =sinc(x) 6 959.1 0.9978 0.0011 ε3
f(x) =sinc(x)× π 8 0.087 3.9101 0.1123 ε4

Avg. 8.2 − − 0.1502 ε4

sample covariance matrix

Σx|ωj
=

1

|Cj| − 1

∑

i∈Cj

(xi − µx|ωj
)(xi − µx|ωj

)T (4.25)

where xi ∈ RM is some random vector with |Cj| realizations, and µx|ωj
≡ E [xi] for

all i ∈ Cj . Clearly, Σx|ωj
∈ RM×M , thus, problems with a very large number of

variables e.g., the NOVA dataset, cannot be resolved under current computational

constraints. Therefore, some sort of feature reduction must be implemented to obtain

the covariance matrix. In the case of the NOVA dataset, a large number of features

are redundant or add no discriminant information and were eliminated without loss

of generality.

Moreover, for the speedup process only, the kernel choice was also limited. The

rule for selecting the kernel type is the following: If N ≥ 1000 a polynomial kernel

with degree p = 1000 is used, otherwise an RBF kernel is used. Since the purpose of
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Table 4.5: Summary of Testing Set Generalization Error Metrics and Statistical
Properties of Residual Errors.

fn(θ̃
⋆
) (y − d)D

Dataset ESER BER 1-AUC SSE STAT µ σ

Ripley − 0.0852 0.0261 − − −0.0660 0.4023
Wine − 0.0000 0.0000 − − 0.0008 0.0007
ADA − 0.1484 0.0669 − − 0.0012 0.2001
GINA − 0.0026 0.0000 − − 0.0069 0.0397
HIVA − 0.1710 0.0457 − − 0.0270 0.1609
NOVA − 0.0000 0.0000 − − 0.0003 0.0189
SYLVA − 0.0058 0.0000 − − −0.0016 0.1980
Iris 0.0009 0.0001 − − − −0.0001 0.0022

Spiral − 0.0000 0.0000 − − 0.0001 0.0008
Synthetic S 219.20 0.0104 − − − −0.0549 0.3958
Synthetic NS 328.79 0.0153 − − − 0.1997 0.5944

f(x) =sinc(x) − − − 0.0003 0.0012 0.0001 0.0008
f(x) =sinc(x)× π − − − 13138 0.1147 0.4379 0.7646

Avg. − − − − − 0.0525 0.2137

this dissertation is to deal with large-scale datasets most of the experiments used a

polynomial kernel. The polynomial kernel is our second choice since it is known to

be the second best after RBF kernels [130]. The degree of the polynomial kernel is

directly related to the amount of data that can be efficiently handled for covariance

matrix estimation purposes.

4.7.2 Model Selection

Although statistical properties of residuals based on the testing set demonstrate that

the approach has an acceptable behavior, the reader must be aware that this approach

has some characteristic properties that may lead to unexpected results. First, the

algorithm works with an approximation to first order information, that in the worst

case may also be singular. Second, the algorithm is not convergent to a global

minimum; however a “good” initial point can be obtained with the logarithmic grid
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technique. Third, the globalization strategy may become computationally expensive

if the first order information leads far away from the solution. A good way to reduce

the computational expense in finding a β1 that produces a sufficient decrease at each

iterate can be found in text books [51, 136].

Further research must be conducted in the three aspects mentioned above. In

addition, different or more error functions may also be studied we well as the case

when more LP-SVR parameters are being estimated, such as ǫ. Moreover, since the

concepts discussed in this research also apply (with little or no modification) to other

support vector (SV)-based learning machines, it will remain as future work to design

and perform experiments over different SVR flavors.

4.8 Conclusion

4.8.1 Speedup by Sample Selection

Within the context of kernel-induced feature space one can assume the data is (or

is close to be) linearly separable and then compute the distances from each point to

the center of the class cloud. This is done using the Mahalanobis distance. Since

the support vectors (SVs) most likely lie on the class cloud boundaries or within the

class convex hull, we can use the Mahalanobis distance to rank the training set, such

that, the samples with the largest distances are used first as part of the working set.

Experimental results suggest a reduction in the total training time, and a more

dramatic decrease in the total iterations percentage. Results also suggest that, using

the speedup strategy the support, the SVs are found early in the learning process.

Furthermore, the speedup strategy was tested with other methods with similar

results, suggesting that the proposed approach is not particular to LP-SVR but

rather useful for other SV-based methods.
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4.8.2 Model Selection

An algorithm for LP-SVR model selection has also been discussed in this chapter.

We discussed a quasi-Newton method with line-search that is applied to a function

minimization problem. The method’s Jacobian is computed via finite difference. We

have explored the case of two-class, multi-class, and regression problems.

The proposed approach uses a K-fold cross validation technique as a true test

generalization error estimator. Also, particular error functions were defined for each

type of problem: two, multi-class, and regression. The combination of a proper

selection of good error functions, stable true generalization error estimator, and

powerful optimization technique, resulted in a robust algorithm.

Simulation results suggest that the algorithm performs an estimation of hyper-

parameters that produce a good minimization of the true test generalization error.

The proposed model selection strategy was tested only with LP-SVR; however, there

is no evidence that the strategy is particular to LP-SVR but rather is a general-

ized approach to classification methods. The experimentation of estimating other

classifiers parameters remains as future work.
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Chapter 5

Power Load Prediction

This chapter presents an important application to short term electricity load predic-

tion with the proposed large-scale linear programming support vector regression (LP-

SVR) model. The LP-SVR is compared with other two non-linear regression models:

Feed Forward Neural Networks (FFNN) and Bagged Regression Trees (BRT). The

three models are trained to predict hourly day-ahead loads given temperature pre-

dictions, holiday information and historical loads. The models are trained on hourly

data from the New England Power Pool (NEPOOL) region (courtesy ISO New Eng-

land) from 2004 to 2007 and tested on out-of-sample data from 2008. The models are

shown to produce highly accurate day-ahead predictions with average errors around

1 − 2%. Note that in this chapter the term “load” refers to the electric power con-

sumed by the public electric network circuit.

5.1 Introduction

Accurate load predictions are critical for short term operations and long term utilities

planning. The load prediction impacts a number of decisions (e.g., which generators

to commit for a given period of time) and broadly affects wholesale electricity market

prices [193]. Load prediction algorithms also feature prominently in reduced-form

hybrid models for electricity price, which are some of the most accurate models for

simulating markets and modeling energy derivatives [211].

Traditionally, utilities and marketers have used commercial software packages for

performing load predictions. The main disadvantage of these is that they offer no
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transparency into how the load predict is calculated. They also ignore important in-

formation, e.g., regional loads and weather patterns. Therefore, they do not produce

an accurate prediction.

This study considers several variables to build a prediction model and compares

results among the Linear Programming Support Vector Regression (LP-SVR), Feed

Forward Neural Network (FFNN), and Bagged Regression Trees (BRT). It is shown

that the proposed LP-SVR model provides better forecasts than FFNN and BRT

approaches.

5.2 Dataset

The dataset used for this electricity load prediction problem includes historical hourly

temperatures and system loads from the New England Pool region. The original

dataset was obtained from the New England ISO. At the time of writing this disser-

tation, the direct link to Zonal load data was the one shown in [91]. Table 5.1 shows

the variables included for predicting the electricity load. These variables are called

Table 5.1: Variables Used for Prediction
Number Description Domain

1 Dry bulb temperature R
2 Dew point temperature R
3 Hour of day Z+

4 Day of the week Z+

5 Holiday/weekend flag {0, 1}
6 Previous 24-hr average load R+

7 24-hr lagged load R+

8 168-hr (previous week) lagged load R+

features. The features to consider are the bulb and dew temperature, the hour of

the given day, the day of the week, and whether it is a holiday or weekend. Also,

the features include the average load of the previous 24 hours, the lagged load of the

previous 24 hours, and the previous week lagged load.
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The training set T = {xi, di}Ntr

i=1 consists of input feature vectors xi ∈ R8 (con-

sistent with the variables listed in Table 5.1) and targets di corresponding to the

measured electricity load. The total number of training samples is Ntr = 35064. A

testing set D = {xi, di}Nte

i=1 was also used, consisting of Nte = 8784 samples.

Each feature vector xi corresponds to one hour reading, i.e., one complete day

would be equivalent to 24 sequential feature vectors {xi+1,xi+2, . . . ,xi+24}. Conse-

quently, the training set consists of 1461 days, or four years of data. The testing set

consists of one leap year of data or 366 days.

5.3 Training the Regression Models

The regression models will be constructed using the training set T . The training

procedure involves a training set partition into a new training set and a validation

set V, which is used to auto-adjust model parameters during the learning process.

Once the model is trained and internally validated a testing phase follows in order to

estimate the true performance errors of the models with unseen data. The complete

regression modeling framework is shown in Figure 5.1. The actual regression models

used in this study are briefly introduced in the following sections.

5.3.1 Feed-Forward Neural Network

The first regression model used was based on neural networks. In fact, this study

uses the Feed-Forward Neural Network architecture introduced in Section 7.5 with

very few modifications: the output is a single neuron, the activation function of the

output is linear, the network has 20 neurons in the hidden layer, and the network

uses the mean of absolute error (MAE) metric as the error function to minimize

during training.
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Figure 5.1: Framework to build regression models for power load prediction. Blocks
on the left indicate the input variables i.e., attributes used to build the
regression models.

5.3.2 Bagged Regression Trees

Bagging stands for “bootstrap aggregation,” which is a type of ensemble learning [14].

The algorithm in general works as follows. To bag a regression tree on a training set

T = {xi, di}Ntr

i=1, the algorithm generates several bootstrap clones of the training set

and grows regression trees on these clones. These clones are obtained by randomly

selecting Ntr samples out of Ntr with replacement. Then, the predicted response of

a trained ensemble corresponds to the average predictions of individual trees [44].

The process of drawing Ntr out of Ntr samples with replacement omits an average

of 37% samples for each regression tree. These are called “out-of-bag” observations.

These out-of-bag observations are used as a validation set V to estimate the predic-

tive power. The average out-of-bag error is computed by averaging the out-of-bag

predicted responses versus the true responses for all samples used for training. This
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average out-of-bag error is an unbiased estimator of the true ensemble error and can

be used to auto-adapt the learning process [14].

5.3.3 Large-Scale Support Vector Regression

Included in this study is the large-scale support vector regression (LS SVR) training

strategy by Collobert, et al. [39], considered the most popular LS-SVR training

strategy (see Section 2.3).

Collobert, et al. algorithm is an adaptation of Joachims’ SVM method for SVR

problems [39]. Also, the algorithm performs the same decomposition proposed by

Osuna (see Section A.2.1). In summary, this method uses a decomposition algorithm,

a chunking approach, and a shrinking strategy.

5.3.4 Linear Programming Support Vector Regression

Finally, this study also includes the LP-SVR formulation (3.2). Algorithm 3.4 was

used to train the LP-SVR for the complete training set. The LP-SVR parameters

used are σ = 0.125, C = 0.5, and ǫ = 0.1; these have been found with Algorithm 4.2

from Section 4.5.2.

5.4 Experimental Results

5.4.1 Experiment Design and Procedure

The experiments consisted of training the four methods with a training dataset

T = {xi, di}Ntr

i=1 as explained in Section 5.2. Then the following six error metrics

were analyzed using the testing set D = {xi, di}Nte

i=1: Mean Absolute Percent Error

(MAPE), Mean Absolute Error (MAE), Daily Peak MAPE (DPM), Normalized Er-

ror (NE), Root Mean Squared Error (RMSE), and Normalized Root Mean Squared

Error (NRMSE).
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The mean absolute percent error can be computed with the following equation:

MAPE =
1

Nte

Nte∑

i=1

( |yi − di|
yi

× 100

)
, (5.1)

where yi is the i-th observed regression model output corresponding to the i-th input

vector xi. The Mean Absolute Error is estimated with (C.6). The Daily Peak MAPE

consists on analyzing the MAPE in a daily fashion. That is, within the testing set

D = {xi, di}Nte

i=1 choose segments corresponding to a complete day:

{xi+1, di+1}, {xi+2, di+2}, . . . , {xi+24, di+24}

and observe the predicted daily output {yi+1, yi+2, . . . , yi+24} then estimate the peak

MAPE of that day. Formally, the DPM can be defined as follows. Let a denote

the number of days available in the testing set. Let J be the set of sample indices

corresponding to the different number of days:

J = {J1,J2, . . . ,Ja}

where Ja denotes the set of indices corresponding to samples of a-th day. Then the

Daily Peak MAPE is obtained as follows:

DPM =
1

a

a∑

k=1

(
argmax

i∈Jk

[ |yi∈Jk
− di∈Jk

|
yi∈Jk

]
× 100

)
. (5.2)

The following equation is used to compute Normalized Error:

NE =
||yi − di||2
||yi||2

, (5.3)

while the Root Mean Squared Error and Normalized Root Mean Squared Error are

computed with (C.7) and (C.8) respectively.

110



5.4.2 Quantitative Results

Table 5.2 shows quantitative prediction errors using the metrics explained above:

MAPE, MAE, DPM, NE, RMSE, and NRMSE.

Table 5.2: Electricity Load Prediction Errors
Error Measure Units BRT FFNN LS SVM LP-SVR

MAPE % 2.18 1.61 3.52 1.58
MAE MWh 330.08 243.18 491.38 238.69
DPM % 2.21 1.63 2.62 1.58
NE − 0.030 0.022 0.040 0.021
RMSE − 459.115 335.048 608.583 326.468
NRMSE − 0.162 0.118 0.215 0.115

According to results in Table 5.2, the proposed LP-SVR model performs with

lower error than BRT, FFNN, and LS SVM. This result is consistent for all the

metrics. However, very small differences can be observed between the performance

of FFNN and LP-SVR. This can be confirmed by observation in Figure 5.2 and

Figure 5.3.

Figure 5.2 (top) shows a two-day window of true load compared with the predicted

load for the four different methods, and also (bottom) shows the error residuals for

the four methods. As expected, the results of FFNN and LP-SVR exhibit very

little difference. In general most methods predict the true model to a relative low

error. Figure 5.3 shows a particular two-day window for Christmas Eve. As for

many holidays, Christmas Eve is very difficult to predict due to the high variability

in electricity consumption. The figure demonstrates a considerable high prediction

error between 14:00-21:00 Hrs on 12/24/2008.

Figure 5.4 shows the error distribution for the different methods. It can be

concluded that FFNN and LP-SVR have smaller error variances. Similarly, Figure

5.5 illustrates the absolute error distribution, including the mean absolute error for

each of the four methods. It can be seen that both FFNN and LP-SVR have almost

the same MAEs.
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Figure 5.2: Two-day window of true data compared with predicted for the four
different methods (top). Error residuals for the four methods (bottom).

An interesting analysis is the average error visualization by hour of day, shown

in Figure 5.6. It can be seen that early morning hours (00:00-05:00) are the most

“easy” to predict, i.e., can be predicted with very small error. In contrast, the late

morning trough afternoon hours (06:00-22:00) are predicted with larger errors.

Figure 5.7 illustrates the average error by day of the week. Clearly, the days

that produce higher errors are those associated with Mondays trough Fridays, that

represent the work week. It is important to notice the error scale between Figure
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Figure 5.3: Christmas two-day window of true data compared with predicted for
the four different methods (top). Error residuals for the four methods
(bottom). Note the high prediction error between 14:00-21:00 Hrs.

5.6 and 5.7. In Figure 5.6 the largest error is below 1.8 × 104, while in Figure 5.7

the largest error is below 1.6 × 104. This implies that errors are expected to be

greater if the prediction is based on hourly data. From this one can conclude that

the prediction is more independent of the day of the week, and more dependent on

the hour of the day.

The final analysis is in regard to the statistical properties of the errors of the
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Figure 5.4: Error distribution for the LS SVM, BRT, FFNN, and LP-SVR regres-
sion methods. The methods with smallest variances are FFNN and
LP-SVR.

proposed LP-SVR model. Figures 5.8 through 5.10 show statistical plots known as

“box plots.” These plots provide the following information: on each box, the central

mark is the median, the edges of the box are the 25-th and 75-th percentiles, the

whiskers extend to the most extreme data points not considered outliers, and outliers

(+) are plotted individually. In terms of error measures, it is desired that the box

plots have a very small box close to zero on the error axis, the median should be

close to zero, the extrema points should be close to the box, and of course no outliers

are desired.
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Figure 5.5: Absolute error distribution of the LS SVM, BRT, FFNN, and LP-SVR
regression methods. The vertical lines indicate the mean absolute error
for each of the four methods as reported in Table 5.2.

An hourly breakdown of the LP-SVR mean absolute prediction error is shown in

Figure 5.8. It can be noticed that the early morning hours have smaller variability.

Then a daily breakdown of the LP-SVR mean absolute prediction error appears

in Figure 5.9, from which one can see that Mondays and Fridays have the largest

average errors and that Fridays have many outliers. Finally, a monthly breakdown

is shown in Figure 5.10. This figure clearly shows that the months of November and

December exhibit the largest average errors, have the largest variabilities, and show

many outliers.
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Figure 5.6: Average error by hour of day. Note the error proportional difference in
early morning hours and afternoon hours.

5.5 Conclusion

This chapter presents an application of the proposed LP-SVR model to electricity

load prediction. A number of eight different variables are utilized to construct re-

gression models. The study includes a comparison of the LP-SVR model against

other state of the art methods, such as FFNN, BRT and LS SVM.

Experimental results indicate that the proposed LP-SVR method gives the small-

est error when compared against the other approaches. The LP-SVR shows a mean

absolute percent error of 1.58% while the FFNN approach has a 1.61%. Similarly,
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Figure 5.7: Average error by day of week. Note the error proportional difference
in working and non-working days.

the FFNN method shows a 330MWh (Megawatts-hour) mean absolute error, whereas

the LP-SVR approach gives a 238MWh mean absolute error. This is a significant

difference in terms of the extra power that would need to be produced if FFNN was

used.

The proposed LP-SVR model can be utilized for predicting power loads to a very

low error, and it is comparable to FFNN and over-performs other state of the art

methods such as: Bagged Regression Trees, and Large-Scale SVRs.
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Figure 5.8: Hourly breakdown of the LP-SVR mean absolute prediction error. Note
that the early morning hours have smaller variability.
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Figure 5.9: Daily breakdown of the LP-SVR mean absolute prediction error. Note
that Mondays and Fridays have the largest average error.
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Figure 5.10: Monthly breakdown of the LP-SVR mean absolute prediction error.
Note that the month of December exhibits the largest average error,
and the largest variability.
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Chapter 6

Texture Classification with

LP-SVR and Biorthogonal

Directional Filter Banks

The main contribution of this chapter is the use of the Linear Programming Support

Vector Regression (LP-SVR) approach for texture segmentation using directional

image pyramids to compute input features. We will demonstrate that the proposed

classifier results are either superior or very competitive with respect to previously

reported work. Furthermore, we also introduce the usage of LP-SVR in a cascaded

and ensemble architectures to improve the performance of the single-instance LP-

SVR.

6.1 Introduction to Texture Analysis

In image analysis, texture is well recognized as an important attribute for the recog-

nition and interpretation of visual information. However, there is no uniformly ac-

cepted definition of texture. Generally speaking texture is related to the consistency

of graininess or patterning over a surface. The visual variations between textures

can go from random/stochastic to highly structured, with many textures containing

both elements at different degrees.

Image segmentation is one of the early mechanisms from our visual system. From

an image processing and computer vision perspective, the final outcome of segmen-
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tation is the partitioning of an image into a coherent map of labels. The criteria

for coherence can be tonal homogeneity, color and/or texture. Although our vision

system is able to perform segmentation effortlessly, computational segmentation has

remained an open area of research for a few decades.

Texture segmentation aims at partitioning an image in regions that display similar

textural properties. The goal is to define and extract discriminative features which

can be used to assign a texture class to each pixel on the image. Related problems

are the detection of boundaries among texture regions and determining the number

of textures composing an image.

Multichannel texture segmentation has been extensively studied in the literature.

The idea is to apply some type of 2-D filter bank to an image in order to separate

detail at different scales and orientation.

Intuition suggests that the textures composing the image will respond differently

to each filter. For instance, a structural texture will have most of its energy con-

centrated at certain channels, while stochastic textures will have their energy more

evenly distributed across bands. Measuring the local interaction of the subband

coefficients allows us to characterize the overall properties of the texture.

Multichannel texture segmentation was pioneered by Laws in [111] using 25 simple

2-D separable kernels. Subsequently, a lot of attention was placed on Gabor functions

because their spatial frequency response resembled the receptive fields of neurons on

the visual cortex from mammals. The work of Jain and Farrokhnia [93] explored

this relationship in detail from an engineering perspective. A drawback with Gabor

functions is that the implementation is computationally expensive because the 2-D

discretized filters are large and non-separable. To deal with complexity, other image

decompositions have been used as the front end of the segmentation system. For

instance, work with the DCT [153], wavelet transforms [119, 149], wavelet frames

[189], and complex wavelet transforms [106] has been reported with different degrees

of success.
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Figure 6.1: Classical segmentation system based on multichannel filtering.

A texture segmentation system based on multichannel filtering consist of three

stages as depicted in Figure 6.1. The contribution of this chapter is to introduce the

LP-SVR at the fifth stage which uses directional pyramids based on the Bamberger

Directional Filter Bank.

6.2 The Bamberger Directional Filter Bank

Directional filter banks (DFBs) were originally conceptualized by Bamberger and

Smith [11]. DFBs represented a relevant contribution within the image processing

community. The DFB concept was further improved and expanded by the work from

Park, et al. [143] and Rosiles and Smith [163–165] among others. Here we present

the version of the DFB developed by Rosiles and Smith [163] which was used as the

front end of a texture segmentation system reported in [164].

The DFB is a two-dimensional (2-D) filter bank that separates image detail (i.e.,

edges and textures) according to their orientation. The DFB implements wedge-

shaped filters that partition the 2-D frequency plane as depicted in Figure 6.2. These

filters are difficult to design and computationally expensive to implement if one ex-

pects good filter properties. Bamberger found an efficient implementation through

the wise use of 2-D multi-rate system properties. Figure 6.3 presents the implemen-

tation of the DFB as a tree structure, in which each stage is composed on a fan

filter bank (FFB). The structure of the FFB and the support of the fan filters is also

presented in Figure 6.4. As shown by Rosiles and Smith [161, 163, 165], the FFB
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Figure 6.2: Frequency band partitions obtained using Bamberger DFB.

can be efficiently implemented using the ladder structures [8] (a.k.a. lifting struc-

tures) depicted in Figure 6.5. It is relevant to note that the filtering operations are

implemented in row-column order using a one-dimensional (1-D) filter β(z). Ladder

structures represented a breakthrough for DFB theory. First, the 2-D filters are easy

to implement using 1-D filters designed by the Parks-McClellan algorithm or other

well known design methods. These filters are length L polynomials with an all-pass
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Figure 6.3: Eight-band DFB implementation with a tree structure with FFBs and
backsampling matrices.

behavior. Moreover, any biorthogonal wavelet can be generalized to a 2-D structure

for directional filtering purposes. Finally, the use of ladder structures, warranties

perfect reconstruction. For more details on the formulation of this DFB the reader

can consult [161, 165].

A key component of the DFB is the use of resampling matrices M, Ui, and Bi in

Figures 6.5 and 6.3. The M matrices are 2×2 quincunx matrices that can upsample

or downsample an image while inflicting a 2-D rotation by 45 degrees. The Ui and

Bi are unimodular matrices have the effect of changing the sampling lattice without

reducing the data rate. For a detailed explanation on 2-D sampling theory we refer

the reader to [191]. Hence, by combining these resampling operations, the data is

rotated and skewed in order to pose it in the correct orientation such that it can be
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Figure 6.4: Block diagram for the FFB showing the ideal support for the 2-D filters.

filtered with the typical row-column processing shown in the ladder structure. The

final unimodular matrices, Bi, are used to re-align the sampling lattice to the correct

row-column orientation (i.e., they undo all the rotation and skews performed by the

DFB).

Finally, another relevant contribution of the work in [163] is the derivation of the

undecimated DFB (UDFB). It was shown that using a careful choice of resampling

operations, the DFB downsampling operations could be removed to produce a UDFB

where each output subband had the same dimensions as the input while retaining

the same implementation efficiency. Hence for an N DFB, there is an expansion

on the data by a factor of N . As opposed to the maximally-decimated DFB, the

UDFB retains the shift invariance property which is important for pattern recognition
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Figure 6.5: Ladder structure implementation of a 2-D two-channel biorthogonal
filter bank.

problems, and simplifies the establishment of spatial relationships between pixels and

coefficient and across different bands. This was difficult to achieve on the original

DFB which produced subbands with non-uniform dimensions.

6.3 Multiresolution Directional Pyramids

The energy of most natural images is concentrated at low frequencies. If we decom-

posed a natural image directly with a DFB or a UDFB, the non-ideal wedge-shaped

passbands of the filters would introduce low frequency energy in the subbands. Since

directional information is related to mid and high frequency information, such as

edges and textures, lowpass information can hinder our ability to capture and an-

alyze these features. Moreover, the DFB is not capable of distinguishing between

structures and detail at different scales. Hence, this limits the DFB ability to perform

multiscale/multiresolution analysis.
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To deal with these issues, structures that combine the DFB and UDFB with image

pyramids have been proposed by Rosiles [165]. This concept is briefly introduced

next.

6.3.1 Simple Lowpass-Highpass decomposition

Even if we wanted lowpass energy on the directional subbands, the non-ideal nature

of the filters would preclude us to do so. This non-ideal nature becomes evident at the

origin. Figure 6.6 shows how some of the channels fall short at reaching the origin and

the vertex is blunt. Other magnitude responses straddle the origin and the passbands

are not sharp around the origin. Consequently, uneven DC information distribution

may be observed across bands. Since much of the directional information of interest

resides on the mid to high frequencies, DC energy absence is usually desired.

Figure 6.7 shows an approach to deal with this issue: a “lowpass-highpass” de-

composition structure. The image is first filtered with a lowpass filter Lωc
(z0, z1)

with cutoff frequency ωc. To ameliorate computational complexity, Lωc
(z0, z1) can

be computed with a row-column separable 2-D filter. A simple difference with the

original image produces the high frequency component used to perform the direc-

tional analysis. We note that in Figure 6.7, the residual is processed by the DFB,

however we can also use the UDFB. If the subbands require no further processing,

the decomposition is invertible.

6.3.2 Directional Pyramids

The 2-D discrete wavelet transform (DWT), the steerable pyramid [175], the complex-

valued wavelet transform [106], 2-D Gabor representations [21, 93], and other image

decomposition approaches have a multi-resolution (MR) or a pyramidal component.

This component could be an implicit part of the decomposition (e.g., the DWT), or

could be implemented as a separate structure (e.g., the steerable pyramid [175]). In
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Figure 6.6: Magnitude Response of the synthesis filters of an eight band biorthog-
onal ladder DFB.
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Figure 6.7: Lowpass-highpass analysis structure. The DFB or the UDFB can be
used to do a directional decomposition.

the latter case, we say that the decomposition is polar-separable, implying that a

radial frequency decomposition (i.e., a pyramid) is performed independently of its

directional decomposition. A comparison of the 2-D spectral partitioning between

the DWT and a polar-separable structure can be made by observing Figure 6.8 and

Figure 6.9 respectively.

Figure 6.8: Frequency plane partitioning of the 2-D separable DWT.

For image analysis and processing, and particularly for image segmentation and

classification, scale information has been used along with directional information to

distinguish objects or features of different sizes. These polar decompositions were

inspired by strong experimental evidence [48] pointing out that a similar kind of
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Figure 6.9: Frequency plane partitioning of the proposed directional pyramids.

processing takes place within the human visual system.

The Bamberger DFB is purely directional. Thus, we have the advantage to select

the radial decomposition of our choice. Next, we introduce UDFB-based pyramidal

structures. We will refer to these structures as Directional Pyramids (DPs) or Bam-

berger Pyramids [11]. We start by taking the output of a Laplacian or Laplacian-like

pyramid [28] structure and further decompose the detail subbands with the UDFB

producing large amounts of data. For the case where all radial bands are decomposed

into an N -band UDFB, the data increase is given by a factor of 4N
3
. We refer to this

structure as the Laplacian-UDFB pyramid.

A possible drawback of using a Laplacian-UDFB pyramid is that each detail

level Dj of the pyramid is one quarter the size of the previous level Dj−1. This may

produce accuracy problems and errors in the calculation of statistics.

To alleviate this drawback, we use structures in which the radial components are

not downsampled. These modification to the orignal systems is shown in Figure 6.10.

Similar to the undecimated DWT, we use one single lowpass prototype Lπ
2
(z0, z1)

which is modified for each resolution level as Lπ
2
(z2

j

0 , z
2j

1 ) where j = 0, 1, . . . , J − 1.
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Figure 6.10: Invertible Undecimated Laplacian-UDFB pyramid structure with no
decimation of the resolution components.

In the spatial domain this modification corresponds to inserting zeros in the impulse

response of Lπ
2
(z0, z1). When combined this with the UDFB, the data increases by

a factor of N(J − 1) + 1. We identify this DP as the ULap-UDFB.

If we use the same number of directional bands for all J pyramid levels, all

the subbands corresponding to the same orientation will have the same size. This

is a nice feature which allows us to establish a one-to-one correspondence between

subband coefficients at different resolutions, eliminating parent-child ambiguities for

inter-subband processing.

A comparison of the frequency plane partitioning obtained with the DP structures

and the traditional separable 2-D DWT can be made by observing Figure 6.8 and 6.9.

We see that the 2-D DWT has limited angular sensitivity (diagonal, horizontal and
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Figure 6.11: Test Image for UDBFs.

vertical directions), while the DP structures can be adapted to have 2n directional

subbands. However, it is important to note that the DWT is critically sampled,

while DPs are moderately to substantially overcomplete, depending on which DP

structure we select.

As an example, let us consider the test image shown in Figure 6.11 and its

Laplacian-UDFB pyramid with decimation in Figure 6.12. We let J = 3 and N = 4

(note that the coarsest level consists only of a lowpass subband).

6.4 Feature Extraction

Features derived from the DFB provide excellent discriminability [165]. In this sec-

tion, we perform texture segmentation using a well known multichannel system, and

compare it against other segmentation schemes. Multichannel approaches aim to

mimic our visual system to understand a scene according to its textural character-

istics. In signal processing terms, the image received by the eye is decomposed into

a representation whose partitioning of the 2-D frequency plane is similar to what is

shown in Figure 6.9.

The feature extraction stage consist of a set of pre-conditioning operations whose

objective is to reduce the variability within pixels of the same texture on channel
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Figure 6.12: Laplacian-UDFB pyramid example with J = 3 and N = 4.

sk[i, j] such that texture regions approach uniformly shaded blobs easy to recognize.

The feature extraction stage consists of the second, third, and fourth operations

depicted in Figure 6.1. First, each channel is passed through a non-linearity in

order to rectify the oscillatory nature of the channels. As discussed in [93], the non-

linearity acts as a “blob detector” which identifies primitive shapes and structures.

The absolute value f(x) = |x|, and the squaring function f(x) = x2, have been

popular non-linearity choices too [153, 190]. In order to obtain some information

about the interactions among these blobs, a measure of local energy is used. This

operation consists of doing spatial smoothing with 2-D filters gk[i, j]. The local

energy map for the k-th channel is given by the convolution

mk[i, j] = gk[i, j] ∗ f{sk[i, j]} (6.1)
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Intuitively, averaging over a region with statistically similar primitives would produce

a slow varying response that would be different from other textures within the image.

The size and response of the gk(i, j) functions should be carefully selected. There

are different opposing constraints that should be kept in mind. First, we want the

filter dimensions to be as large as possible to have a good statistical representation

of the primitives. Second, very large filters will preclude us having good localization

around the region boundaries, where we will effectively be averaging blobs from

different textures. Hence, filter support should be as small as possible.

Gaussian windows have shown to be a good compromise among this these two

requirements. They are known to provide optimal time-frequency localization. The

basic 1-D Gaussian response is given by

g[n] =
1√
2πσs

e
− 1

2
n2

σ2
s , (6.2)

where the σs parameter is specified as a function of the subband frequency content.

As defined in [93], this parameter is dependent on the average channel frequency u0

(i.e. the centroid), and it is given by

σs =
1

2
√
2u0

. (6.3)

The size of the window is set to 2σs. It is a straightforward step to derive the 2-D

filters gk[i, j].

The third state is used as a limiter to control the dynamic range of the energy

maps. Typically the normalization non-linearity is also used, and is given by

f2(x) = log(x). (6.4)
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6.5 Classification Stage

As the last step of this stage, the energy maps obtained from each channel are

combined to form feature vectors. In segmentation, each pixel on the original image

must be assigned to some class. For a filter bank with N channels, each image pixel

will count with an N -dimensional feature vector fi,j given by

fi,j = [m1(i, j) m2(i, j) ... mN (i, j)]
T , (6.5)

where mk(i, j) corresponds to the 2-D energy map of the kth channel. The {i, j}
indices refer to a spatial location in both the original image and the energy map.

The feature vectors fi,j are passed through a classifier to be assigned to one of

the C texture classes in the image. In this dissertation, we assume that C is known

beforehand. The final output of the classifier will be a classification map S(i, j)

which assigns each pixel in the original image to one of the textures classes or labels.

We plan to use then the Linear Programming Support Vector Regression (LP-

SVR) approach introduced in this dissertation. The LP-SVR will be implemented in

three different architectures: single LP-SVR, a cascaded LP-SVRs, and an ensemble

of LP-SVRs. Assuming that the ground truth segmentation maps are available, we

use classification error as a measure of accuracy.

6.6 Framework for Texture Segmentation with the

DFB

In [162] Rosiles, et al. introduced a segmentation system based on the DFB. The

results showed that the DFB is well suited for segmentation. In this case a the

non-linearity from Equation (6.4), and the fuzzy C-means clustering algorithm for

classification were used. Although this system performs well, in order to compare
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(a) Original (b) Ground Truth

Figure 6.13: Texture mixture number 1: “Nat-5c.” It contains five different texture
classes. Mixture taken from [153].

against other systems we would have to build a similar system for other multichannel

representations. However, it turns out this type of comparison has already been

reported by Randen and Husøy in [153]. They developed a framework which allows

testing of many multichannel representations while keeping the other elements of the

system in Figure 6.1 the same. Using this dataset, De Rivaz has reported results

for the DT-CWT in [49] and more recently Marial, et al. have reported sparse

dictionary-based schemes [125] using this dataset. For this reason, it makes sense

that we adopt this framework for comparison purposes.

The image data set for this framework consists of the 12 texture mixtures shown in

Figure 6.13a and 6.13b trough Figure 6.24a and 6.24b. The mixtures exhibit different

degrees of difficulty in terms of number of textures and boundaries. In some cases,

textures are difficult to discern by a human observer. Training data corresponding

to each texture mixture and “ground truth” maps are also made available. Texture

data had their histograms equalized, so that textures could not be discriminated

based on their first-order local statistics. Finally, the feature vectors were scaled by

the normalization factors which give unit variance to the features of the mixture in

Figure 6.13a.
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(a) Original (b) Ground Truth

Figure 6.14: Texture mixture number 2: “Nat-5v,” with five classes [153].

(a) Original (b) Ground Truth

Figure 6.15: Texture mixture number 3: “Nat-5v2,” with five classes [153].

(a) Original (b) Ground Truth

Figure 6.16: Texture mixture number 4: “Nat-5v3,” with five classes [153].
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(a) Original (b) Ground Truth

Figure 6.17: Texture mixture number 5: “Nat-5m,” with five classes [153].

(a) Original (b) Ground Truth

Figure 6.18: Texture mixture number 6: “Nat-16c.” It contains 16 different texture
classes. Mixture taken from [153].
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(a) Original (b) Ground Truth

Figure 6.19: Texture mixture number 7: “Nat-16v.” It contains 16 different texture
classes. Mixture taken from [153].

(a) Original (b) Ground Truth

Figure 6.20: Texture mixture number 8: “Nat-10.” It contains 16 different texture
classes. Mixtures taken from Randen and Husøy [153].

(a) Original (b) Ground Truth

Figure 6.21: Texture mixture number 9: “Nat-10v.” It contains 10 different texture
classes. Mixtures taken from Randen and Husøy [153].
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(a) Original (b) Ground Truth

Figure 6.22: Texture mixture number 10: “d4d84.” It contains two different texture
classes. Mixture taken from [153].

(a) Original (b) Ground Truth

Figure 6.23: Texture mixture number 11: “d12d17.” It contains two different tex-
ture classes. Mixture taken from [153].

(a) Original (b) Ground Truth

Figure 6.24: Texture mixture number 12: “d5d92.” It contains two different texture
classes. Mixture taken from [153].
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Figure 6.25: Basic frequency domain supports for DFB truncated subbands. Ω1 and
Ω2 correspond to the eight-band DFB case.

Besides the multichannel representation on the feature extraction stage, the rec-

tifying non-linearity is given by f1(x) = |x|2, and the normalization non-linearity is

also used, and is given by (6.4). This combination of non-linearities was found to

give the best segmentation results in a work by Unser and Eden [190].

For the Gaussian kernel g[i, j] it is necessary to estimate the filter parameter σs

in Equation (6.2). For Gabor functions σs is proportional to u0, the center frequency.

In the DFB case, u0 can be viewed as the “average” frequency of a subband. The

directional subbands have a truncated wedge-shaped support as shown in Figure 6.25

for the eight-band case. Hence, the centroids of the regions represent the average

coordinates (f0, f1) over a 2-D region. A detailed derivation for f 0 and f1 is discussed

in [164,165] for these regions. Additionally, they found out that the value for σs was

obtained on a separable fashion:

σs =
√
σ2
s,0 + σ2

s,1, (6.6)
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where

σs,0 =
1

2
√
2 f0

, (6.7)

and

σs,1 =
1

2
√
2 f1

. (6.8)

6.6.1 Proposed LP-SVR Architectures

The prupose of presenting different arthitectures for LP-SVR is two-folded: (i) im-

prove the performance of a single unit SVR and (ii) introduce a novel multiresolution

architecture specialized in texture segmentation. This subsection discuss three dif-

ferent architectures for the LP-SVR model proposed in this dissertation.

These architectures are part of the contribution of this dissertation. Their signif-

icance is related to the problem type and related to the flexibility of the model. In

the next section we address the results of using these architectures.

Single Unit LP-SVR

The first architecture uses all the directional subbands as inputs to produce an out-

put, as shown in Figure 6.26. This is the typical LP-SVR model used for classifi-

cation. The understanding of the concept is fairly simple, since it is a single unit

LP-SVR. This is exactly the model discussed in Chapter 3. Using this architecture,

the training set, comprising the three levels of the DP, is received in full at the

LP-SVR inputs and the large-scale training method is performed. Let y denote the

output of the single unite LP-SVR. Then, from Figure 6.1, we have that y ≡ S.
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Figure 6.26: LP-SVR architecture that uses all the directional subbands as inputs
to produce an output.

Cascaded or Multiresolution LP-SVR

The second architecture, illustrated in Figure 6.27, uses a cascade approach of the

LP-SVR model. In the first stage, it receives as input the first level of the DP. In the

second stage, another LP-SVR model receives as input the second level of the DP

along with the first stage LP-SVR’s output. Finally, the third stage LP-SVR classifier

receives the third DP level along with the second stage LP-SVR output to produce

a final segmentation result. This is effectively a multiresolution architecture, where

higher resolution results are used to guide the segmentation at lower resolutions in

the next stage.

Formally, define y(j) as the output of an LP-SVR at the j-th stage. Then, in

terms of training sets, we can define the inputs at each stage as follows:

Stage 1: T1 = {xi, di}Ni=1, for all x in the first DP

Stage 2: T2 = {[xi y
(1)
i ], di}Ni=1, for all x in the second DP

Stage 3: T3 = {[xi y
(2)
i ], di}Ni=1, for all x in the third DP,

where x ∈ R8. Finally the output is given by y(3), which, from Figure 6.1, we have

that y(3) ≡ S.
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Figure 6.27: LP-SVR architecture that uses a cascade approach receiving as input
the current stage UDFBs and feeds the output to the next LP-SVR
along with the next stage UDFBs.

Ensemble of LP-SVR

The third architecture, depicted in Figure 6.28, is an LP-SVRs ensemble that receives

the three DP levels of resolution at individual LP-SVR classifiers. Each LP-SVR

produce an output y(1), y(2), and y(3). These outputs form a new training set T =

{[y(1)i y
(2)
i y

(3)
i ], di}Ni=1. Then, a final LP-SVR classifier is trained with T , producing

a segmentation result as illustrated in Figure 6.28. Let y(f) denote the output of the

final LP-SVR, then we have that y(f) ≡ S.
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Figure 6.28: LP-SVR architecture that uses an ensemble approach which receives the
three UDFB stages at individual LP-SVR classifiers producing outputs
connected to a final classifier that gives the segmentation result.

6.7 Evaluation of the Undecimated DP and LP-

SVR for Texture Segmentation

We evaluate the segmentation algorithm using the ULap-UDFB pyramid where the

pyramidal and directional components are undecimated. Hence full-rate subbands

are available for all channels. For our experiments, we determined that four pyramid

levels (J = 4) provided the best performance-complexity tradeoff. We should note

that the lowpass band was not used for feature extraction.

Texture segmentation is a clear example of a large-scale classification problem

for SVRs. The different texture mixtures are represented by feature vectors f ∈ R24,

this size comes from the three pyramid levels and N = 8. To address the size of
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the problem, let us recall that the LP-SVR has LP problems with 2|T | constraints
and 4|T | + 2 variables, where |T | denotes the size of the training set. Also let

us recall that in our case we want to perform classification of a minimum of two

classes and a maximum of 16 classes, each corresponding to different textures. This

results in training sets varying in number of samples from 131, 072 to 1, 045, 576,

which are derived from the training images size as 2(256× 256) and 16(256× 256).

These number of samples result in SVR linear programming (LP) problems with

137, 439, 477, 760 to 8, 796, 097, 216, 512 points, i.e., LP problems that have 524, 290

variables and 262, 144 constraints, up to LP problems with 4, 194, 306 variables and

2, 097, 152 constraints. Therefore, this problems is a excellent representative of a

large-scale classification problem in image processing and analysis.

From the extensive evaluation in [165], we have chosen a set of UDFB parameters

that provide good performance. Eight directional subbands (N = 8) were used for

all directional pyramid resolutions. The wedge-shaped filters for the UDFB were

implemented with a three-step ladder structure (see Figure 6.10) with 1-D prototypes

β(z) designed as length-12 Parks-McClellan filters.

In Table 6.1 we present the classification error results for a full-rate DP system

with J = 4 and L = 12. Table 6.1 shows experimental results of work reported over

the texture mixtures presented in the preceding figures; the first column identifies

a mixture according to the number provided in Figures 6.13 to 6.24. The values in

the table represent the segmentation error (in percentage) given by the proportion

on misclassified pixels on the ground truth label maps also presented in the figures.

The work we include is organized as follows: column two shows the work by Randen,

et al. [153], column three shows the work by Topi, et al. [186], column four shows the

work by Skretting, et al., [176], column five shows the work by Di Lillo, et al. [52],

column six shows the work by Mairal, et al. [125]. Then, on the seventh column

appears the work by Rosiles [165] using the ULaup-UDFB pyramid with learning

vector quantization (LVQ) classifier. On the remaining columns, we show the results
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Table 6.1: Comparison of Segmentation Errors. ULap-UDFB system implemented
with J = 4 and L = 12.

Previous Work Reported In [165] [165] with LP-SVR

♯ [153] [186] [176] [52] [125]
N = 8 N = 6

LVQ 800 Sing. Casc. Ense.

1 7.2 6.7 5.5 3.37 1.61 4.67 3.41 1.26 3.97
2 18.9 14.3 7.3 16.05 16.42 19.48 3.48 2.71 4.11
3 20.6 10.2 13.2 13.03 4.15 12.37 3.36 7.50 6.01
4 16.8 9.1 5.6 6.62 3.67 17.01 4.04 5.72 4.74
5 17.2 8.0 10.5 8.15 4.58 14.18 4.02 2.10 3.40
6 34.7 15.3 17.1 18.66 9.04 31.12 7.22 41.05⋄ 42.19⋄

7 41.7 20.7 17.2 21.67 8.80 48.02 10.90 40.86⋄ 43.96⋄

8 32.3 18.1 18.9 21.96 2.24⋆ 20.60 7.24 6.53 8.00
9 27.8 21.4 21.4 9.61 2.04⋆ 37.88 7.50 6.97 12.33
10 0.7 0.4 - 0.36 0.17⋆ 0.58 0.18 0.97 0.60
11 0.2 0.8 - 1.33 0.60⋆ 1.57 0.12 0.03 0.01

12 2.5 5.3 - 1.14 0.78⋆ 4.82 0.84 0.82 1.49

µ 18.4 10.9 - 10.16 4.50 17.69 4.36 9.71 10.90

of using the LP-SVR classifier combined with the DP for different architectures. The

single unit LP-SVR architecture is shown in the eighth column, the multiresolution

architecture is shown in the ninth column, and an LP-SVR ensemble architecture is

shown in the tenth column.

The method with the lowest classification error is shown in bold font. In the

average case, the single unit architecture reports the lowest classification error. While

the cascaded approach can be ranked in the third place. Note that the errors reported

with the symbol ⋄ are those that are related to the issue of having more classes than

features.

In the case of Mairal, et al. [125], the results for textures 8 and 9 show very low

segmentation error. However, we believe these low results are an artifact resulting

from their scheme and the way the textures are arranged over a uniform 2× 5 grid.

In [119], the texture mixtures are divided in 12 × 12 patches which are classified as

a single pixel; in essence, the 12 × 12 block receives the same class label. This pro-
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cess results on uneven texture boundaries across textures that need to be smoothed

through an ad-hoc post-filtering step. The exact effect of the post-filtering step is dif-

ficult to quantify as far as how it benefits the overall segmentation result. However,

it is clear that the configuration of textures 8 and 9 is favored by this approach since

we can establish a well-defined relationship between the dimensions of the square

texture regions (128×128) and the selected texture patch size. This generates a bias

toward lower errors around texture boundaries. Moreover this scheme is highly de-

pendent on the texture patch size. As discussed by Mairal, their algorithm performed

poorly with texture mixture 2 as a result of having textures whose characteristics

(i.e., structure, orientation, randomness) could not be captured by the 12×12 patch

size. He mentions the need for a multiresolution scheme in this case, but this ideas

has not been reported at the moment of this writing. Hence, although the approach

in [119] is promising, it remains to be seen if it can be generalized to reduce its

dependency on heuristics like patch size and post-filtering that are quite difficult to

quantify in terms of visual content of images.

Hence, from this perspective, we believe that the LP-SVR scheme developed here

represents a well founded classification scheme for texture segmentation with the

some of the best results reported to date.

We also show the classification maps and the error maps for some of the test

mixtures in Figures 6.29 through 6.32. The work reported by Rosiles [165] using an

LVQ approach to classify the data is depicted in Figure 6.29. From the date [165]

was published to date, there have been advances in large-scale machine learning,

such as the one presented in this dissertation: the Linear Programming Support

Vector Regression (LP-SVR). The remaining figures explain the different choices of

LP-SVRs architecture.

Figure 6.30 shows the results of using a simple LP-SVR trained with the full

set of features using the large-scale learning approach presented in Chapter 3. As

can be observed from the figure, there are some classification errors in the texture
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neighborhood borders while the inner regions show good classification.

The result of using a cascaded LP-SVR architecture is shown in Figure 6.31.

This architecture takes advantage of the multiresolution properties of the problem

and features. In this case, each LP-SVR received eight features corresponding to a

single resolution level of the directional pyramid. This architecture results in a better

classification of textures around boundaries as a result of separating the classification

of texture features across resolutions. The first (finest resolution) takes care of the

texture boundaries, while the other two refine the internal regions of the texture.

This is clearly seen on Figure 6.31c. This is a very interesting result since we can

see the texture boundaries are clearly and well delineated, while the inside areas

have a high rate of misclassification. Moreover, the degradation of performance with

respect to the single-SVR architecture is more than evident and we could conclude

that the cascaded SVR method fails. However, we provide some explanations for

this behavior at the end of this section.

Figure 6.32 depicts the segmentation results for three mixtures using the ensemble

architecture. In this case we see that the visual results are somewhere in between

the single SVR and the cascade SVR architectures with respect to the classification

around boundaries as inside each region. Here we see a similar failure for the sixteen

texture mixtures where the region boundaries look well defined while the inner regions

are highly misclassified.

Further inspection of Figure 6.31c and 6.32c provides some insight into the origin

of the bad performance. For each class, the classification errors are “bounded” in

the sense that for class k the errors correspond to class k − 1 and/or k + 1. This

is clearly a by-product of LP-SVR which is actually predicting a value between 1

and 16 and the value is miss-predicted by ±1. In other words, the function f(x) has

a high degree of oscillation around the true value. This behavior within the real-

valued output of function is very common and is typically attributed to the following

reasons:
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• The ǫ-tube defined on the optimization problem is too wide.

• The regressor does not have enough predictive power, or in terms of classifica-

tion, enough discriminative power. In other words, the feature vector cannot

be projected to a kernel space where the feature vectors are linearly separable.

In the first case, we could make it tighter. However, this could reduce the general-

ization capacity of the LP-SVR. The second factor makes sense intuitively. There

seems to be a relationship between the feature vector dimension and the number of

classes. For the single-SVR architecture, we see an excellent overall performance us-

ing a 24 dimensional feature space. For the other two cases where each SVR uses an

eight-dimensional feature vector, we see the same excellent numerical performance

(or even slightly better) for the two texture and five texture cases, and ten texture

cases, with some detriment on the visual results for the ten texture case. However,

for the sixteen texture mixtures the cascade- and ensemble-SVR architecture broke

down. Hence this supports our conjecture on the relationship between feature vector

dimension and number of classes. However, we can not claim that as the number of

texture classes becomes very large, then the dimension of feature vector should grow

equally. This should be the subject of extensive research and directs us towards the

holy grail question in texture analysis: Is there a theory of textons [100, 101] that

will allow us to efficiently represent textures with a well defined model?

From a mathematical perspective, this indicates that the resulting regression

function f(x) as given in Equation (3.1) has a limited reconstruction ability as there

is not enough “signal support” to provide good approximations. This is reflected by

the oscillatory (and bounded) behavior of the segmentation maps. Hence, we leave

as this as an open issue, subject to future work which should involve a detailed study

on ways the discriminative capacity of SVRs over a large set of texture classes.
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(a) Segmentation Map of “Nat-5c” (b) Error Map of “Nat-5c”

(c) Segmentation Map of “Nat-10” (d) Error Map of “Nat-10”

(e) Segmentation Map of “Nat-16c” (f) Error Map of “Nat-16c”

Figure 6.29: Texture segmentation maps result using ULAP-UDFB and LVQ [165].
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(a) Segmentation Map of “Nat-5c” (b) Error Map of “Nat-5c”

(c) Segmentation Map of “Nat-10” (d) Error Map of “Nat-10”

(e) Segmentation Map of “Nat-16c” (f) Error Map of “Nat-16c”

Figure 6.30: Texture segmentation maps result using ULAP-UDFB and LP-SVR
with a single architecture.
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(a) Segmentation Map of “Nat-5c” (b) Error Map of “Nat-5c”

(c) Segmentation Map of “Nat-10” (d) Error Map of “Nat-10”

(e) Segmentation Map of “Nat-16c” (f) Error Map of “Nat-16c”

Figure 6.31: Texture segmentation maps result using ULAP-UDFB and LP-SVR
with a cascaded architecture.
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(a) Segmentation Map of “Nat-5c” (b) Error Map of “Nat-5c”

(c) Segmentation Map of “Nat-10” (d) Error Map of “Nat-10”

(e) Segmentation Map of “Nat-16c” (f) Error Map of “Nat-16c”

Figure 6.32: Texture segmentation maps result using ULAP-UDFB and LP-SVR
with an ensemble architecture.
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6.8 Conclusions on Texture Segmentation

In this chapter we showed that the large-scale (LS) linear programming support vec-

tor regression (LP-SVR) approach, is a powerful classification scheme for supervised

texture segmentation. Experimental results suggests that combining the proposed

LS LP-SVR with wavelet-based features provided the best results reported (as far

as we know) to date on a well known dataset. We have explored different classifier

configurations or architectures that take advantage of the multiresolution structure

of the features. Such architectures demonstrate the flexibility of the proposed LS LP-

SVR training scheme. These architectures include an ensemble-based configuration

and a multiresolution or cascaded configuration. One limitation that we encountered

was for those cases where the number of textures (i.e., classes) on a mixture exceeded

the number of features used in the SV regressor. This remains an open issue that

will be explored in subsequent work. To close this chapter we emphasize that the

results presented should be considered state-of-the-art in the texture segmentation

area and we expect a lot of attention for our approach by the community.
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Chapter 7

LP-SVR-Based Dust Storm

Detection

Recent studies have found correlation between lung disease and dust storms. This

prompted researchers to conduct dust air-borne suspended particle (aerosol) analy-

sis. However, there is paucity of formal pattern recognition models in dust storm

detection. This research analyzes the proposed Linear Programming Support Vector

Regression (LP-SVR) approach as compares it with popular statistical and neural

approaches. This study includes the Maximum a Posteriori Classifier (MAP), the

hybrid Probabilistic Neural Network (PNN), and the Feed-Forward Neural Network

(FFNN). The features utilized are multispectral thermal emissive bands from the

Moderate Resolution Imaging Spectroradiometer (MODIS). We utilized four near in-

frared bands: B20 (3.66−3.84µm), B29 (8.40−8.70µm), B31 (10.78−11.28µm), and

B32 (11.77− 12.27µm). Numerical performance evaluation shows that the LP-SVR

and the hybrid approach (PNN) perform better than the classic MAP and FFNN.

Visually, the four methods accurately detect dust storms. The models demonstrated

a strong ability to find non-trivial relationships within the spectral bands. The pro-

posed methods demonstrated to be soil-independent and surface-invariant detection

methods. This research highlights the effectiveness of LP-SVR, MAP, PNN, and

FFNN in understanding dust storm phenomena.
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7.1 Introduction

Dust storms are an inadvertent cause of several physical, environmental, and eco-

nomic hazards. Recent studies show a direct correlation between exposure to high-

levels of air-borne particle concentrations (aerosols) and the increase in mortality

rate from cardiovascular, respiratory illness (e.g., increase of asthma cases), and

lung cancer [160]. Therefore, this situation represents a major concern for several

health and safety agencies [66, 121]. From a scientific perspective, understanding

dust storm genesis, formation, propagation and composition is important to reduce

their impact or predict their effect.

Advances in remote sensing like multispectral instruments allow imaging of at-

mospheric and earth materials based on their spectral signature over the optical

range. In particular, dust aerosols propagated through the atmosphere in the form

of dust storms can be detected through current remote sensing instruments. Some

of the most relevant systems are based in the Moderate Resolution Spectroradiome-

ter (MODIS) Aerosol Optical Density (AOD) product [114], which is provided by

the NASA Terra satellite. However, AOD products require a considerable amount of

processing that introduces a significant delay (i.e., two days after a satellite pass) be-

fore it can provide useful information on aerosol events. Other approaches are based

on the so-called “band-math” [1,32,160] where simple operations between bands are

used to provide a visual (and subjective) display of the presence of dust storms.

Other studies focus on dust storm transport and observe its trajectory [57,94,113,

124, 150, 159]. However, these findings can be further improved to be more accurate

in analyzing and detecting dust [2, 82, 92, 102, 105, 131, 167, 188].

Furthermore, given the large amounts of data produced by the MODIS instru-

ment, it is also desirable to have automated systems that assist scientists in finding

or classifying different earth phenomena. For example, Aksoy, et al. [4] developed

a visual grammar scheme that integrates low-level features to provide a high level
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spatial scene description on land cover and land usage. As far as the authors know,

similar automated schemes for dust detection based on statistical pattern recognition

techniques have not been reported.

This chapter presents a feature (i.e. band) selection procedure based on spectral

signatures known to express dust aerosols. These features are analyzed using four

methods for the detection of dust storms from multispectral imagery using statistical,

neural, and optimal classifiers. Based on reported data, a feature set that allows

high performance, accuracy, and real-time detection of the dust aerosol is presented.

The proposed feature set is extracted from MODIS spectral bands and tested with

a maximum a posteriori (MAP) classifier, a probabilistic neural network (PNN), a

feedforward neural network (FFNN) and a support vector regression (SVR) classifier.

It will be shown that the PNN and LP-SVR approaches provide better detection and

representation of dust storm events.

This chapter is organized as follows: Section 7.2 discusses the feature extraction

methods. Sections 7.3, 7.4, 7.5, and 7.6 explain the proposed detection models for

classification; Section 7.7 addresses a numerical comparison of results and discusses

visual results over land and ocean; and Section 7.8 presents conclusions of this re-

search.

7.2 Feature Extraction

The MODIS instrument is carried on board NASA’s Terra and Aqua satellites.

MODIS provides Earth’s information in 36 spectral bands. It facilitates atmosphere,

ocean, and land analysis. The data available in MODIS Level 1B make possible dust

storm analysis. Dust storm visual assessment can be achieved using MODIS bands

B1, B3, and B4 since they match the human visual spectrum. We produced RGB

true color images by mapping R = B1, G = B4, and B = B3. The true color images

are enhanced using a non-linear function explained in Appendix A. As an example,
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Figure 7.1 shows a true color image of the south-western US area.

Figure 7.1: True color RGB composite of the southwestern US. Date 04/15/2001.
Time 18:05 UTC. Satellite: Terra. Instrument: MODIS.

In 1997, Ackerman, et al. [184] demonstrated that using bands B32 and B31

improves dust storm visualization. Later, Hao, et al. [76] established that a linear

combination of bands B20, B29, B31, and B32 can be utilized for dust storm vi-

sualization. Based on these findings, we designed a classification scheme using the

following MODIS thermal emissive bands: B20 (3.66−3.84µm), B29 (8.40−8.70µm),

B31 (10.78− 11.28µm), and B32 (11.77− 12.27µm).

MODIS level 1B contains 16−bit scaled thermal emissive bands that need to be

recovered to their original scale in W/m2/µm/sr, i.e., Watts / squared meters /

micrometers / Schrödingers. The recovery process is given by

I = κ(ω − η), (7.1)
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where I ∈ R denotes the recovered radiance, κ is the radiance scale factor, η is the

radiance offset, and ω is the scaled (i.e. raw) data. Our feature vector x ∈ R4

consists of the following recovered radiances:

xi =
[
IB20
i , IB29

i , IB31
i , IB32

i

]
, (7.2)

where x is a set of features associated with multispectral data, and the superscript

of I refers to an element of the specified spectral band. The feature vector x will

be associated with a class d. The variable d can take on either one of the following

two values d ∈ {0, 1}, where 0 is background, and 1 is dust. Formally, a dataset is

defined by the pair of a feature vector and a desired class value: {x, d}.
For the reported experiments, 31 different events were used, corresponding to the

south-western US and north-western Mexico area as reported in [137]. Each of the

31 events produced 2.7 million feature vectors associated to either dust or non-dust

data. Typically, the number of feature vectors associated with dust is lower than

with non-dust.

In pattern recognition methods, the data is generally separated into three sets:

training, used to build the model; testing, used to adjust the model if needed and

also to determine the numerical performance; and validation, used to determine the

generalization capabilities of the model.

Some powerful pattern recognition approaches are constrained in the number of

samples that can be used for training due to the computational complexity of the

model. This chapter reports the Probabilistic Neural Network (PNN) approach as

an example of a highly constrained method. The PNN requires as many neurons

as the number of samples provided times the number of classes. Therefore, this

chapter aims to use as few samples as possible for constructing the models, which

also contributes to a less expensive hardware implementation.

In this research, the training set selection is based on Mather’s criteria [102] and
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the Karhunen Loeve Transformation (KLT). Mather’s criteria establishes that the

training samples number must be at least 30 times the number of bands (|x|) times

the number of classes, i.e., in this study we would have to use at least 30×4×2 = 240

training samples.

Given the data availability, twice as many training samples as Mather’s criteria

establishes are used: 480 training samples, 240 for dust class, and 240 for non-dust

class. The selection of the training set was performed with KLT, also known as

Principal Component Analysis (PCA). Instead of using KLT to reduce the number

of bands used, KLT is used to identify the 240 most discriminant training samples

per class; then these 480 samples become the training set for modeling the dust storm

detection problem.

The choice of reducing the training set was driven by the fact that we want

neural models with low complexity. Furthermore, the number of 240 samples per

class matches a confidence level of 99.9% according to a well established sample

number selection criteria described in [40]. All the remaining feature vectors were

used as a testing set. The validation set consisted of eight worldwide events.

All the data samples were downloaded using NASA’s WIST on-line tool [72]. The

complete dataset provides approximately 85 million feature vectors. The complete

list of data granules appears in [157].

7.3 Maximum a Posteriori Detection

Let x from (7.2) be a random variable with probability density function (PDF) p(x),

x ∈ X ⊂ R4. Let d ∈ C ⊂ R be a random variable associated with the class values.

Then let P (di) be the prior probability mass function (PMF) of the i-th class. Let

the conditional PDF p (x|di) be denoted as the likelihood of di with respect to the

feature vector x. Let p(di|x) be the a posteriori (posterior) PDF. The Maximum a

Posteriori Classifier (MAP) can be derived from Bayes theorem. It is an accepted
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method in remotely sensed data classification and analysis [4]. Therefore, here we

use the MAP for dust storm detection.

To obtain the maximum a posteriori probability of class di given that the feature

vector vector x has been observed, we start by assuming that p(x) is uniform, and

then we define the following discriminant function [77]:

ψi(x) = p (x|di)P (di) , (7.3)

that allows us to define the following decision rule: Assign feature vector x to class

di with probability p(di|x) ≡ ψi(x) if

ψi(x) > ψj(x) for all j 6= i. (7.4)

Now, since in [158] has been demonstrated that the likelihood PDF p(x|di) follows a
multivariate Gaussian distribution, one can use the following Gaussian discriminant

function [154]:

ψi(x) =
1

(2π)2 det(Σi)
1
2

e−
1
2
(x−µi)

TΣ
−1
i (x−µi)P (di) (7.5)

where (·)T denotes the transpose operation, Σi the likelihood covariance matrix for

the i-th class, µi denotes the likelihood mean vector for the i-th class, and det (·) is
the determinant function.

The next step is to estimate the following set of parameters: the mean vector

µ̂i, the covariance matrix Σ̂i, and the prior PMF P̂ (di). In this research the sample

mean and the sample covariance matrix where estimated from the reduced training

set as described in Section 7.2; however, the prior class PMF was estimated from the

complete dataset. Let us remark that the covariance matrix estimation will not be

ill-posed due to the data sufficiency.
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7.4 Probabilistic Neural Network Detection

Specht’s Probabilistic Neural Network (PNN) is a semi-supervised neural network

[179] used widely in pattern recognition applications. The PNN is inspired by

Bayesian classification and does not require training. Although a PNN is robust

for classification, it has large complexity O((N + 1)d); where N is the number of

training samples and d is the dimension of the feature vectors.

The PNN estimates the true PDF of the feature vector assuming Gaussian dis-

tributions. The PNN has a four-layered architecture, as shown in Figure 7.2.

Figure 7.2: The hybrid architecture of the Probabilistic Neural Network. Note the
probabilistic nature embedded in a neural architecture.

The input layer receives the features x ∈ R4. The pattern layer contains radial

basis functions ϕ (·) in each node. The number of nodes commensurates the Ni
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number of samples for the i-th class. These nodes are called pattern units and are

fully connected to the input nodes. The pattern layer output is defined as

ϕij (x) =
1

(2π)2 σ4
e−

1
2σ2 (x−xij)

T (x−xij). (7.6)

The summation layer contains summation units to complete the probability esti-

mation. The number of summation units equals to the number of classes. The i-th

summation unit receives input only from those pattern units belonging to the i-th

class. This layer estimates the maximum likelihood of x being classified as d. This

is done by averaging and summarizing neuron’s output belonging to the same class:

Ωi (x) =
1

(2π)2 σ4

1

Ni

Ni∑

j=1

e−
1

2σ2 (x−xij)
T (x−xij) (7.7a)

=
1

Ni

Ni∑

j=1

ϕij (x) . (7.7b)

The last layer is called the “decision layer.” It classifies the feature vector x

according to the following Bayesian decision rule: Assign feature vector x to class di

with probability p(di|x) ≡ Ωi(x) if

Ωi(x) > Ωj(x) for all j 6= i. (7.8)

Thus, the maximum of the summation nodes output characterize the PNN general

output. The function Ωj(·) gives the probability of the j-th class. This allows us to

generate probabilistic visualizations of dust storms.

The parameter σ is estimated with Ramakrishnan, et al. method [152]. The au-

thors normalize the feature vectors xi training the PNN using the following equation:

x̂ij =
xij − µj

σj
(7.9)
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where xij is the j-th component of i-th feature vector x, µj is the sample mean of the

j-th component, and σj is the sample standard deviation of j-th component. The

method developed is shown in Algorithm 7.1. This completes the PNN modeling

Algorithm 7.1 Ramakrishnan, et al. method [152] for estimating PNN parameter
σ.
1: For each class, compute the variances of each component of the normalized train-

ing set (7.9).
2: Find the difference between the two smallest variances.
3: Set the value of σ equal to the difference obtained in Step 2.

since it needs no training phase.

7.5 Feed-Forward Back-Propagation Neural Net-

work Detection

Multilayered feed-forward Neural Networks (FFNN) are of particular interest in pat-

tern recognition and classification applications because they can approximate any

square-integrable function to any desired degree of accuracy provided a training

set [67, 84]. Therefore, we have designed a FFNN to model a dust storm by ap-

proximating the true posterior probability density function p(di|x). A simple FFNN

contains an input layer and an output layer, separated by l layers (the set of l layers

is known as hidden layer) or neuron units. Given an input sample clamped to the

input layer, the neuron units of the network compute their parameters according to

the activity of previous layers. This research considers the particular neural topol-

ogy where the input layer is fully connected to the first hidden layer, which is fully

connected to the next layer until the output layer.

Given an input feature vector x ∈ R4, the value of the j-th unit in the i-th layer

is denoted hij(x), with i = 0 referring to the input layer, i = l + 1 referring to the

output layer. We refer to the size of a layer as |hi(x)|. The default activation level
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is determined by the internal bias bij of that unit. The set of weights W i
jk between

hi−1
k (x) in layer i − 1 and unit hi−1

j (x) in layer i determines the activation of unit

hij(x) as follows:

hij(x) = Φsig

(
aij(x)

)
, (7.10)

where aij(x) =
∑

kW
i
jkh

i−1
k (x)+bij , for all i ∈ {1, ..., l}, with h0(x) = x, and Φsig (·) =

sigm (·) is the sigmoid activation function sigm (a) = 1
1+e−a . Given the last hidden

layer, the output layer is computed similarly by

o(x) = hl+1(x), (7.11a)

hl+1(x) = Φsof

(
al+1(x)

)
, (7.11b)

where al+1(x) = Wl+1hl(x) + bl+1, and the activation function Φsof(·) is of the

softmax which is known to better define class probabilities (see texts such as [16,24]

for a detailed development). Thus, when an input sample x is presented to the

network, the application of (7.10) at each layer will generate a pattern of activity in

the different layers of the neural network and produce an output with (7.11). The

decision rule is to classify x as di if the output neuron associated to the i-th class is

greater than that associated with the j-th class. The posterior probability is then

p(di|x) ≡ Φi
sof

(
al+1(x)

)
.

The FFNN requires a training phase to build the model (W,b). In this train-

ing phase, we used the “Levenberg-Marquardt” algorithm along with with a back-

propagation strategy to update the weights W and biases b. As a learning function,

we used the well established method of gradient descent with momentum weight and

bias. The FFNN training phase ends when any of the following conditions holds:

• a number of 100 epochs (i.e. training iterations) is reached,

• the actual mean squared error (MSE) is 1× 10−6,
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• the gradient step size is less than or equal to 1× 10−10.

A well established technique for preventing over-fitting in the training was also imple-

mented. This technique consists of partitioning the training set into two sets, training

(80%) and validation (20%), such that when the MSE has not been decreased in the

past five iterations using the internal validation set, the training phase stops and

rolls back to the model (W,b) associated with the previous minimum MSE.

7.6 Linear Programming Support Vector Regres-

sion Detection

This study also includes the LP-SVR formulation (3.2), which was trained with the

reduced training dataset using interior point methods and also with the complete

training dataset for comparison. Algorithm 3.4 was used to train the LP-SVR for

the complete training set. The LP-SVR parameters used are σ = 0.125, C = 0.5,

and ǫ = 0.1; these have been found with Algorithm 4.2.

The LP-SVR approach outputs an approximation to the true dust class posterior

probability p(d = 1|x), and the background posterior probability is assumed to be

p(d = 0|x) = 1− p(d = 1|x) by symmetry [77].

7.7 Results

The models presented in Sections 7.3 - 7.6 imply the process explained in the following

three steps:

First, multispectral data from MODIS Level 1B thermal emissive bands B20,

B29, B31 and B32 is recovered using (7.1).

Second, the recovered data is used to form i feature vectors xi with (7.2) and to

define both a reduced training set Tr = {xi, di}Nr

i=1 as well as a larger training set
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T = {xi, di}Ntr

i=1, where Nr = 480 and Ntr = 40 million. MAP,PNN,FFNN, and LP-

SVR are then trained with Tr, and also the LP-SVR is trained with T for comparison

purposes. The testing set D = {xi, di}Nte

i=1 consists of Nte = 45+ million samples. The

total dataset size N consisted of N = 85+ million samples.

Third, now that the classifiers are trained with T or Tr, dust detection is per-

formed with D and obtain a result using (7.4) for MAP, (7.8) for PNN, (7.11) for

FFNN, and (3.2) trained with both the reduced and complete training sets. In

this section we address the results of comparing the proposed dust storm detection

models.

7.7.1 Comparison between Methods

We selected four performance metrics to evaluate the three proposed classification

methods. These metrics are processing time per feature vector, precision, accuracy,

and the area under the receiver operating characteristics (ROC) curve (AUC). The

AUC is a widely used metric because of its superiority in reflecting the true per-

formance of a classification system [60]. The precision and accuracy metrics can be

computed with (C.13e) and (C.13c) respectively.

Sometimes these metrics may become biased towards false positive counts, and,

considering that D has more examples of the non-dust class, we use the balanced error

rate (BER) defined in (4.5). Clearly, the BER meets the classical misclassification

rate if there are equal number of samples per class, i.e., classes are balanced (see

[26]). The performance metrics were computed using only the validation set D. The
numerical results are shown in Table 7.1.

The interpretation of results in Table 7.1 are as follows. In terms of performance

metrics, the PNN approach classifies better than the FFNN approach among the

neural classifiers. Among the statistical classifiers, the LP-SVR approach classifiers

better than the MAP classifier. Among all, the LP-SVR and the PNN approaches

are the best. The superior AUC and smaller BER of LP-SVR may be attributed to

169



Table 7.1: Classifiers Performance. The processing time shown here is in milli-
seconds.

Precision Accuracy AUC BER P. Time

MAP 0.5255 0.6779 0.4884 0.2259 0.0141

PNN 0.8080 0.8816 0.7035 0.0536 0.2393
FFNN 0.7664 0.8412 0.6293 0.0729 0.0459
LP-SVR 0.7907 0.8678 0.7117 0.0502 0.0809

LP-SVR |T 0.8295 0.9104 0.7349 0.0318 0.0974

the fact that it is solving an optimal classification problem; PNN is also shows high

precision and accuracy because it is very close to a Mixture of Gaussian classification

problem formulation, which both are well known to perform very well in two-class

classification problems.

The results of Table 7.1 also suggest that LP-SVR was unbiased and that MAP

was biased towards one class as its AUC and BER show. However, the MAP method

proved to be faster than the other approaches as expected. Alternatively, the FFNN

and LP-SVR show a good balance of speed, small error, good accuracy, and precision.

The processing time is an important measure when modeling “real-time” process-

ing systems. In this case “real-time” means that a feature vector must be processed

at least as fast as the data is being captured by the MODIS instrument. In the case

of the MODIS instrument, a complete scan (i.e. 10 × 1053 pixels at 36 bands) is

produced every 6.25 seconds. In this case, it produces almost one feature vector in

0.5 milliseconds. Thus, a real-time system must perform a classification in less than

or equal to this time. Table 7.1 show the processing time per scan in milliseconds.

Therefore, since the MAP and LP-SVR approaches take much less time to classify

a feature vector, and since the PNN and FFNN approaches take less than 0.25 mil-

liseconds to produce the classification result, both groups (i.e., neural and statistical

classifiers) can be considered suitable for real time detections at 1km resolution. In
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contrast, the MODIS AOT product takes two days to be produced and released at

a 10km resolution.

Thus far, it has been demonstrated numerically that the models studied are

capable of assessing dust aerosol detection. However, we also want to perform a

visual assessment of the results provided by the classifiers under study. For a visual

assessment, we separate the results into two categories: dust over land, and dust

over ocean. Since the methods were modeled using only dust over land data, the

validation using events with dust over ocean will demonstrate the generalization

capabilities of the methods.

7.7.2 Dust over Land

A major difficulty in detecting dust over land is the variability of the dust physical

properties depending on the region. This soil variability can adversely impact the

performance of the models. The reader must recall that the models were constructed

using data from south-western US events. Therefore, here we demonstrate that the

models possesses the ability to detect dust independently of the soil type.

Let us consider a case of dust storm detection within the south-western US region,

e.g., the dust storm of April 10, 2001, covering Chihuahua, Texas, and New Mexico.

The true color image is shown in Figure 7.3 (a) and a region of interest in Figure 7.3

(j). Figure 7.3 (b) shows the result reported by the MODIS Aerosol Optical Density

(AOD) level 2 product, where higher intensities are associated with more dense

aerosols. Figure 7.3 (c) shows the result using Ackerman’s method [1, 184]. Figure

7.3 (d) depicts the result obtained with Hao’s method [76], where brighter intensities

are associated with a higher Thermal Dust Index (TDI). The dust storm probability

using MAP, PNN, FFNN, LP-SVR, and LP-SVR trained with the complete training

set respectively is depicted in Figure 7.3 (e)-(i) respectively. Clearly, PNN, FFNN,

and SVR approaches perform well from the visual assessment perspective, while the

MAP method shows conservative results. Ackerman’s method and Hao’s TDI are
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well established visualization methods, they are not classification methods, and here

we use them to ease the visual location of the dust.

Now, let us consider a case of a dust storm in a totally different region and soil

type. We consider the dust storm from June 05, 2009, covering a very large area in

the middle east. The true color image is shown in Figure 7.4 (a) and a region of

interest in Figure 7.4 (j). Figure 7.4 (b) shows the result reported by the MODIS

AOD product. Figure 7.4 (c) shows the result using Ackerman’s method. Figure 7.4

(d) depicts the TDI obtained with Hao’s method. The dust storm probability using

MAP, PNN, FFNN, LP-SVR, and LP-SVR trained with the complete training set

respectively is presented in Figure 7.4 (e)-(i) respectively. Clearly, the models have

the capacity to detect the different types of dust without changing any parameters

and without re-training any model.

7.7.3 Dust over Ocean

So far, the proposed methods performed well in training and validation cases for

different types of dust. This suggests that the physical properties exhibited by the

dust over ocean and over land are similar in the near infrared spectral range. These

findings confirm Ackerman’s, et al. [1, 184] and also Hao’s, et al. [76] conclusions

about dust aerosols over land and ocean.

The dust storm in Argentina on January 24, 2010, shown in Figure 7.5 (a),

originated over land and extended for miles over the ocean. Figure 7.5 (b) shows the

result reported by the MODIS AOD product. Figure 7.5 (c) shows the result using

Ackerman’s method. Figure 7.5 (d) depicts the TDI obtained with Hao’s method.

The dust storm’s probability for MAP, PNN, FFNN, LP-SVR, LP-SVR trained with

the complete training set is shown in Figure 7.5 (e)-(i) respectively. The region of

interest is depicted in Figure 7.5 (j).

Similarly, we present the detection of a dust storm in Australia on September 26,

2009, shown in Figure 7.6 (a). The benchmark results of MODIS AOD, Ackerman’s
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method, and Hao’s TDI are shown in Figure 7.6 (b)-(d) respectively. The proposed

methods detected the dust storm over land and ocean as shown in Figure 7.6 (e)-

(i). Furthermore, the methods can accurately discriminate similar signatures like

smoke and clouds. It is evident that the methods provide a strong ability to infer

non-trivial multispectral data relationships. Particularly the PNN, due to its hybrid

neuro-statistical nature, performed better than MAP.

7.7.4 Extension to Segmentation and Classification

The presented models aimed to approximate the true class probabilities p(di|x) to

perform a Bayesian-like decision in the dust storm detection problem. This has an

important advantage: the models can easily be translated to a classification or seg-

mentation problem. Then, the classification problem is simply posed as the following

decision rule [77]: Feature vector x is classified as d1 (dust) if

(λ(α0|d1)− λ(α1|d1)) p(d1|x) > (λ(α1|d0)− λ(α0|d0)) p(d0|x) (7.12)

otherwise the feature vector is classified as d0 (background). In (7.12) α0 is the action

of classifying x as background, α1 is the action of classifying x as dust, and λ(αi|dj)
denotes the loss of deciding αi when the true class is dj. Since the LP-SVR outputs

only p(d1|x), then we assume p(d0|x) = 1− p(d1|x) by symmetry [16, 77].

To illustrate the classification or segmentation of dust regions we define the fol-

lowing loss function:

λ(αi|dj) =





0 i = j

2τ i 6= j,
(7.13)

where τ controls the weight of misclassification. Clearly, if τ = 0.5, then (7.13)

becomes the traditional symmetrical or zero-one loss function [77].

Since the models described in this paper aim to approximate true posterior class
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membership probabilities p(di|x), the minimum error choice corresponds to a value of

τ = 0.5 [77]. However, the value of τ may be application dependent. For instance, let

us consider military applications in which one might want to penalize false positives,

in this case it would be appropriate to use some τ > 0.8 or even τ > 0.9.

As an example of segmentation let us consider the case of the dust storm of April

6, 2001, whose true color image is shown in Figure 7.7 (a) and a region of interest

in (b). The probability of dust as approximated by the PNN approach is shown in

Figure 7.7 (c). The segmentation, based on different weights (i.e. τ = {0.5, 0.8, 0.9}),
is shown in Figure 7.7 (d).

7.8 Conclusion

We compared four methods for dust storm detection: the Maximum a Posteriori

Classifier (MAP), the Probabilistic Neural Network (PNN), the Feed-Forward Neural

Network (FFNN), and the Linear Programming Support Vector Regression (LP-

SVR).

The comparison among classifiers was made using different performance metrics,

after the classifiers where modeled using a reduced training dataset. This comparison

also included a large-scale approach to LP-SVR, that allowed us to use the complete

(non-reduced) training dataset. Numerical results showed that the reduced training

dataset contains significant data for modeling and performing dust detection based on

very few feature vectors. More explicitly, we extracted features from MODIS thermal

emissive spectral bands: B20, B29, B31, and B32. Sample feature vectors were

reduced following a concept introduced by Mather. The reduction was performed

with KLT to preserve the most discriminant samples. The model’s parameters were

estimated from these reduced sample feature vectors, aiming to approximate true

posterior class membership probabilities.

Among the neural-network-based classifiers, the hybrid approach, PNN, per-
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formed better than the FFNN after a numerical evaluation of different performance

metrics. The LP-SVR approach demonstrated to be better than the MAP. Visually,

the four methods performed an accurate detection.

MAP, PNN, FFNN, and LP-SVR were modeled using known cases from the south-

western US and north-western Mexico over land observations. Nevertheless, the

methods provided accurate detection when tested over land at different geographical

regions with different soil types. Furthermore, all methods were able to classify

dust storms over the ocean. Numerical and visual results suggest that the MAP,

PNN, FFNN, and LP-SVR classifiers are soil-independent; this in turn suggests that

dust aerosols physical properties over land and ocean are very similar when analyzed

within the near-infrared spectral range.

Furthermore, the four methods currently output 1 km spatial resolution results,

which improves traditional Aerosol Optical Density (AOD)-based methods at 10 km

spatial resolution.

In general, the four methods can be effectively utilized in the analysis of strato-

spheric dust, thereby helping researchers in the understanding of dust aerosol activity

and transport.
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Figure 7.3: Dust storm over southwestern US. In (a) is shown the true color image
and a region of interest in (j). In (b) the MODIS AOD. In (c) the result
using Ackerman’s method. In (d) the TDI according to Hao’s method.
In (e)-(i) the dust storm probability using MAP, PNN, FFNN, LP-SVR,
and LP-SVR trained with the complete training set respectively. Date
04/10/2001. Time 18:05 UTC. Satellite: Terra. Instrument: MODIS.
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Figure 7.4: Dust storm over the middle east. In (a) is shown the true color image
and a region of interest in (j). In (b) the MODIS AOD. In (c) the result
using Ackerman’s method. In (d) the TDI according to Hao’s method.
In (e)-(i) the dust storm probability using MAP, PNN, FFNN, LP-SVR,
and LP-SVR trained with the complete training set respectively. Date
06/05/2009. Time 07:50 UTC. Satellite: Terra. Instrument: MODIS.
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Figure 7.5: Dust storm over Argentina. In (a) is shown the true color image, and (j)
is the region of interest. In (b) the MODIS AOD. In (c) the result using
Ackerman’s method. In (d) the TDI according to Hao’s method. In
(e)-(i) the dust storm probability using MAP, PNN, FFNN, LP-SVR,
and LP-SVR trained with the complete training set respectively. Date
01/24/2010. Time 14:40 UTC. Satellite: Terra. Instrument: MODIS.
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Figure 7.6: Dust storm over Australia. In (a) is shown the true color image, and
(j) is the region of interest. In (b) the MODIS AOD. In (c) the result
using Ackerman’s method. In (d) the TDI according to Hao’s method.
In (e)-(i) the dust storm probability using MAP, PNN, FFNN, LP-SVR
and LP-SVR trained with the complete training set respectively. Date
09/26/2009. Time 00:35 UTC. Satellite: Aqua. Instrument: MODIS.
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Figure 7.7: Dust storm over southwestern US and northwestern Mexico. In (a)
is shown the true color image. In (b) the region of the dust storm.
In (c) the dust storm probability p(d1|x) ≡ Ω1(x) using PNN. In (d)
the classification/segmentation regions found using τ = 0.5, τ = 0.8,
and τ = 0.9. Date 04/06/2001. Time 18:30 UTC. Satellite: Terra.
Instrument: MODIS.
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Chapter 8

Conclusions

The proposed methods deal with important issues in SVM and SVR theory. These

methods allow the training over large data sets on a computationally tractable fash-

ion.

Although conclusions have been given at each chapter, in this final chapter we

summarize and discuss the conclusions in a chapter-wise fashion. Each section will

provide a summary of conclusions related to that particular chapter topic. Then we

will discuss future work and conclude the chapter with a list of publications.

8.1 Contributions

8.1.1 Large Scale LP-SVR

The major contribution of this research is an algorithm to train large-scale LP-SVRs.

This contribution can be explained in three parts. First, we posed a Support Vector

Regression (SVR) problem as an efficient Linear Programming (LP) problem. Such

model was developed in a primal-dual fashion in such a way that the KKT conditions

are necessary and sufficient for optimality.

Second, we introduced a large-scale training method based on a variables decom-

position algorithm, a constraints decomposition algorithm, and primal-dual interior

point methods. The proposed method finds a solution that satisfies optimality con-

ditions in finite time while converging to a global minimum. Each of the variable-

constraint-reduced LP-SVR sub-problems are solved using interior point methods
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(IPM), which are known to have a very high rate of convergence. IPM is the key

that balances the total computational expense of performing two decompositions

and solving several LPs. Using other approaches (e.g. the simplex method) would

dramatically increase computational efforts.

Third, experimental results demonstrate that the proposed approach is compara-

ble with other formulations in terms of performance, which is desirable. Furthermore,

experimental results shown that the model is sparser than the regular SVR and other

SV-based classifiers. Particularly, experiments demonstrate that as the problem size

increases, the sparser the solution becomes, and more computational efficiency can

be gained in comparison with other methods.

Finally, let us remark that the experiments performed over the large-scale LP-

SVR approach comprised state-of-the art benchmarking datasets, mostly from the

UCI machine-learning repository [65]. Such datasets include the following: the Rip-

ley dataset [138, 156], the Wine dataset [64, 107], the Adult database [98, 148], the

MNIST database of handwritten digits [39, 112, 148], the HIVA dataset related to

HIV infections, the Twenty-Newsgroup dataset [97]. the Covertype dataset [17, 39],

the Iris dataset [63,77], the Spiral dataset [206], and the “sinc” function approxima-

tion problem [144]. In each dataset, the LP-SVR demonstrated competitive results

when compared to other classifiers.

8.1.2 LP-SVR Training Speedup and Hyper-Parameters Es-

timation

Following the major contribution of a large-scale training method for an LP-SVR,

we explored two other problems that are considered open problems within machine

learning: (i) how to accelerate or improve the training time and (ii) how to estimate

the hyper-parameters of SV-based learning machines. We have addressed problem

(i) using statistical tools and problem (ii) well known optimization techniques.
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We developed a method to reduce the LP-SVR training time, based on the fact

that the support vectors (SVs) are likely to lie on the convex hull of each class. The

algorithm we designed uses the Mahalanobis distance from the class sample mean,

in order to rank each sample in the training set. Then, the samples with the largest

distances are used as part of the initial working set. Experimental results shown

a reduction in the total training time, as well as a significant decrease in the total

iterations percentage. Results also suggest that using the speedup strategy the SVs

are found earlier in the learning process. Moreover, the speedup strategy is not

particular to LP-SVR and can be extended to other SV-based learning methods.

Next, we presented a method that finds the set of LP-SVR hyper-parameters.

This scheme uses a line-search-based quasi-Newton method for function minimiza-

tion. The proposed approach uses a K-fold cross validation technique as a true

test generalization error estimator. We particularly proposed the usage of differ-

ent error functions for each type of problem: two-class, multi-class, and regression.

The combination of a proper selection of good error functions, stable true general-

ization error estimator, and powerful optimization technique, resulted in a robust

algorithm. Experimental results show that the algorithm performs an estimation of

hyper-parameters that minimize the true test generalization error. Finally, let us

remark that this approach can be easily adapted to other classification methods that

require an estimation of hyper-parameters. However, the algorithm, as we developed,

will work only for those classification methods that require an exact number of two

hyper-parameters.

8.1.3 Applications

To show the robustness of the proposed large-scale LP-SVR learning method, this

dissertation discusses different applications representative of large-scale real-life prob-

lems in the Smart Grid community, image processing area, and earth sciences. The

following paragraphs summarize such contributions.
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Power Load Prediction

Accurate forecasting of electric power consumption by the national electric power

grid is critical for short term operations and long term utilities planning. The power

load prediction impacts a number of decisions (e.g., which generators to commit for

a given period of time) and broadly affects wholesale electricity market prices.

Within the realm of short term power load prediction, we used the large-scale

linear programming support vector regression (LP-SVR) model. The LP-SVR is

compared with other two non-linear regression models: Feed Forward Neural Net-

works (FFNN) and Bagged Regression Trees (BRT). The three models are trained

to predict hourly day-ahead loads given temperature predictions, holiday informa-

tion and historical loads. Experimental results indicate that the proposed LP-SVR

method gives the smallest error when compared against the other approaches. The

LP-SVR shows a mean absolute percent error of 1.58% while the FFNN approach

has a 1.61%. Similarly, the FFNN method shows a 330MWh (Megawatts-hour) mean

absolute error, whereas the LP-SVR approach gives a 238MWh mean absolute error.

This is a significant difference in terms of the extra power that would need to be

produced if FFNN was used.

We conclude that LP-SVR model can be utilized for predicting power loads to a

very low error, and it is comparable to FFNN and over-performs other state of the

art methods such as: Bagged Regression Trees, and Large-Scale SVRs.

Texture Classification

We also showed that the large-scale (LS) linear programming support vector regres-

sion (LP-SVR) approach, is a powerful classification scheme for supervised texture

segmentation. Researchers have explored this area with good results; however, no

scheme based on LP-SVR has been reported as far as we know. For feature extrac-

tion we used a well known local energy scheme in combination with a redundant

184



directional pyramid image decomposition. This type of filter bank was proposed by

Rosiles and Smith for texture segmentation [163]. Experimental results demonstrate

that combining the proposed LS LP-SVR with wavelet-based features provide better

results than those works reported to date.

A remarkable contribution is that we introduced different classifier configurations

or architectures that took advantage of the multiresolution structure of the wavelet-

based texture features. Such architectures demonstrate the flexibility of the proposed

LS LP-SVR training scheme. These architectures include an ensemble-based config-

uration and a multiresolution or cascaded configuration.

Typically SVRs are used for regression problems; however, it is well known that

can be used for classification as well. Thus, we claim that such architectures for LP-

SVRs represent a unique contribution in the sense that no architectures like these

have been reported for LP-SVRs in a multi-class classification problem.

Dust Storm Detection

Advances in remote sensing like multispectral instruments allow imaging of atmo-

spheric and earth materials based on their spectral signature over the optical range.

Methods to analyze dust aerosols have been proposed; however, there is paucity on

specialized classification-based approaches for dust storm detection.

We compared four methods for dust storm detection: the Maximum a Posteriori

Classifier (MAP), the Probabilistic Neural Network (PNN), the Feed-Forward Neural

Network (FFNN), and the Linear Programming Support Vector Regression (LP-

SVR). We extracted features from NASA MODIS thermal emissive spectral bands:

B20, B29, B31, and B32. Sample feature vectors were reduced in size while preserving

class manifolds. The model’s parameters were estimated from these reduced sample

feature vectors, aiming to approximate true posterior class membership probabilities.

Numerical results demonstrate that the reduced training dataset contains signif-

icant data for modeling and performing dust detection based on very few feature
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vectors. The LP-SVR approach demonstrated to be better than the MAP classifier.

LP-SVR was modeled using known cases from the south-western US and north-

western Mexico over land observations. Nevertheless, the method provided accurate

detection when tested over land at different geographical regions with different soil

types. Furthermore, LP-SVR was able to classify dust storms over the ocean. Nu-

merical and visual results suggest that the LP-SVR classifier is soil-independent; this

in turn suggests that dust aerosols physical properties over land and ocean are very

similar when analyzed within the near-infrared spectral range.

Furthermore, the LP-SVR method currently output 1 km spatial resolution re-

sults, which improves traditional Aerosol Optical Density (AOD)-based methods at

10 km spatial resolution. In general, the LP-SVR can be effectively utilized in the

analysis of stratospheric dust, thereby helping researchers in the understanding of

dust aerosol activity and transport.

8.2 Future Work

8.2.1 Theoretical

LP-SVR Model

As a future work on the LP-SVR model, we want to use different loss functions apart

from the ǫ-insensitive loss function used throughout in this document. Particularly,

we want to use the Huber loss function [29, 88, 132]. The reason is that the Huber

loss function behaves linearly at higher errors and quadraticly at smaller errors:

LH (d, f(x)) =




|d− f(x)| − ǫ for |d− f(x)| ≥ ǫ

(d− f(x))2
4ǫ

otherwise,
(8.1)

where ǫ is a prescribed parameter.
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We want to explore as well the quadratic loss function [83]:

LQ (d, f(x)) = (d− f(x))2, (8.2)

and the Laplacian loss function [36]:

LP (d, f(x)) = |d− f(x)|. (8.3)

The theoretical development consist on having to restate the optimization model

and reformulate from scratch the SVR and pose it as an LP program if possible.

Then, derive the KKT conditions and see if they can be reduced or simplified for

computational efficiency. Also, the learning algorithm would have to be re-formulated

since the LP program suffered a changed in the variables. This change aims to take

advantage of the new LP-SVR structure.

Another research study would involve the possibility of introducing ǫ, C, or σ into

the optimization problem without increasing the complexity of the SV-based regres-

sion machine. More specifically, we should avoid the insertion of hyper-parameters

as part of the optimization problem if at the same time we introduce new variables

or new degrees of freedom.

Finally, another future work consists of seeking novel LP formulations related

to SV-based models that may have lower complexity. For instance, by performing

research about novel LP problems that regularize an SV-based model or relax some

of the current LP variables. However, this would require a large amount of time,

possibly worthy of a totally new dissertation. Mainly because every algorithm dis-

cussed in this dissertation would change if the LP model is different from the one we

are considering here.
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LP-SVR Hyper-Parameters Estimation

An interesting point of improvement, in the proposed algorithm for hyper-parameter

estimation, is the estimation of a “good” initial point. We should attempt to use more

well-established techniques that cover a broad area of the error surface. Especially,

a biologically-inspired heuristics such as Evolution Strategies (ES).

The ES of the type (1, λ)-ES [10] and the CMA-ES [75] seem to be the the better

options for this case. This choice is made because both algorithms have a fast rate

of convergence and low computational complexity.

Following ES algorithms we could find a good initial point by stopping ES algo-

rithms at the slightest sign of a steady error variation. In this manner, our Newton-

based algorithm can remain exactly the same.

Another chance of improvement would be to use different error functions to min-

imize. Particularly, we are interested on finding a pair of functions that produce a

result in the same domain and interval, and such that each function covers a broader,

yet different, kind of error surfaces. In an ideal world, a good pair of functions would

provide a smooth error surface; however, current research achievements show no ev-

idence of such functions. We believe such a pair of functions can be derived in the

near future.

8.2.2 Experimental

In regard to the large-scale LP-SVR approach, we would leave as future work the

inclusion of more comparisons to other related large-scale SVR approaches. This

can be achieved either by obtaining compatible freely-distributed source codes, or,

by translating our approach to other languages compatible with the freely-distributed

source codes.

We leave as future work the theoretical and experimental extension of the learning-

speedup to other SV-based learning methods, such as: ν-SVM, LP-SVM, and others.
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The hyper-parameters can clearly be extended to other learning methods; how-

ever, we leave as future work the exploration of other classifiers that have hyper-

parameters to compute, such as ν-SVM, LP-SVM, neural networks, fuzzy inference

systems, k-means, and others.

In regard to the texture classification problem, we want to explore the relationship

between multispectral features and the number of classes in an LP-SVR. If there is

such a relationship, then we want to find a lower bound to the number of features

required as a function of the number of classes.

8.3 Publications

This research has produced many sources of publications given the large number of

possible applications as well as the theoretical development of the large-scale LP-

SVR method itself. In the following paragraphs we provide the list of publications

produced.

8.3.1 Theoretical Development

• In regard to the decomposition method for large-scale LP-SVR and its conver-

gence. The paper is entitled “SEQUENTIAL OPTIMIZATION FOR LARGE

SCALE SUPPORT VECTOR MACHINES FOR REGRESSION,” targeted for

the IEEE Transactions on Pattern Analysis and Machine Intelligence. Paper

ready for submission.

• The theoretical development of the speedup strategy and the parameter es-

timation algorithm produced the following paper: “TRAINING SPEEDUP

AND HYPER-PARAMETER ESTIMATION FOR SV-BASED LEARNING

MACHINES,” targeted for the Journal of Neurocomputing. Paper ready for

submission.
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8.3.2 Applications

In regard to applications of this work. We have the following papers:

• “STATISTICAL ANDNEURAL PATTERN RECOGNITIONMETHODS FOR

SOIL-INDEPENDENT DUST AEROSOL DETECTION,” for the IEEE Trans-

actions on Geoscience and Remote Sensing. Paper ready for submission.

• “TEXTURE SEGMENTATION USINGWAVELET-BASED FEATURES AND

LINEAR PROGRAMMING SUPPORT VECTOR REGRESSION,” for the

EURASIP Journal on Image and Video Processing, Paper ready for submis-

sion.

• “SHORT TERMELECTRIC POWER CONSUMPTION FORECASTING US-

ING LINEAR PROGRAMMING SUPPORT VECTOR REGRESSION,” for

the 1st Southwest Energy Science and Engineering Symposium 2011. Paper

submitted.

• “LARGE-SCALE SONAR TARGET DETECTION WITH ℓ1-NORM SV RE-

GRESSION BASED ON UNFEASIBLE INTERIOR POINT METHODS,” for

the 2011 ITEA Live-Virtual-Constructive Conference. Paper published.
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Appendix A

Background in Support Vector

Machines

A.1 Support Vector Machines Fundamental Prin-

ciple

The seminal principle of Support Vector Machines (SVM), shown in Figure 1.3, can

be explained in terms of a given training set T = {xi, di}Ni=1, where di ∈ {1,−1}.
The goal is to find w’s and b that form the hyperplane wTxi + b = 0 with maximum

margin between the parallel hyperplanes wTxi + b = −1 and wTxi + b = 1. If we

use a geometrical analysis we can trivially derive that such margin is given by 2
||w||2

as illustrated in Figure 1.3. Therefore, in order to maximize the margin, we need to

minimize ||w||2, and so the SVM requires the solution of the following constrained

optimization problem in its primal form:

min
w,b

1
2
||w||22

s.t.
{

wTxi + b = di

for i = 1, 2, . . . , N.

(A.1)

Those input patterns that satisfy the equality condition

wTxi + b = di. (A.2)
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are called “support vectors.” And it must be clear from Figure 1.3 that the support

vectors are the only data points relevant (necessary and sufficient) to represent the

separating hyperplane, and all the remaining data can be discarded as a result.

The previous optimization problem is a generic SVM; however, the SVM is de-

signed for two-classes, and so the problem becomes

min
w,b

1
2
||w||22

s.t.





wTxi + b ≥ 1

wTxi + b ≤ −1
for i = 1, 2, . . . , N.

(A.3)

where the restrictions can be formulated as a function of di as follows

di(w
Txi + b) ≥ 1 (A.4)

and the primal problem finally becomes

min
w,b

1
2
||w||22

s.t.
{
di(w

Txi + b) ≥ 1

for i = 1, 2, . . . , N.

(A.5)

The dual problem can be formulated using the Lagrange multipliers method,

where a Lagrangian function is defined as:

L(w, b,α) =
1

2
||w||22 −

N∑

i=1

αi(di(w
Txi + b)− 1) (A.6a)
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and the associated stationary points are defined as

∂L(w, b,α)

∂w
= w−

N∑

i=1

αidixi = 0, (A.6b)

∂L(w, b,α)

∂b
= −

N∑

i=1

αidi = 0, (A.6c)

∂L(w, b,α)

∂α
= −di(wTxi + b)− 1 = 0. (A.6d)

Then, the dual problem using the method of Lagrange multipliers is stated as

max
w,b,α

L(w, b,α)

s.t.





∂L(w,b,α)
∂w

= 0

∂L(w,b,α)
∂b

= 0

α ≥ 0

(A.7)

and the expanded problem is

max
w,b,α

1
2
||w||22 −

∑N
i=1 αidiw

Txi − b
∑N

i=1 αidi +
∑N

i=1 αi

s.t.





w −∑N
i=1 αidixi = 0

−∑N
i=1 αidi = 0

α ≥ 0

for i = 1, 2, . . . , N.

(A.8)

However, it can be noticed from (A.6b) that we can solve for w as

w =

N∑

i=1

αidixi (A.9)

220



and so the term ||w||22 can be denoted as

||w||22 = wTw =
N∑

i=1

αidiw
Txi =

N∑

i=1

N∑

j=1

αiαjdidjx
T
i xj (A.10)

which can be plugged in the Lagrangian function and associate similar terms, and

also we can remove the first constraint. Also, the term −b∑N
i=1 αidi can be removed

since it becomes zero by the definition (A.6c); and the well known dual problem

becomes [78]:

max
α

∑N
i=1 αi − 1

2

∑N
i=1

∑N
j=1 αiαjdidjx

T
i xj

s.t.





∑N
i=1 αidi = 0

α ≥ 0

for i = 1, 2, . . . , N.

(A.11)

A.1.1 Soft-Margin Support Vector Machines

To this point, the primal and dual constrained optimization problems are designed

under the following assumptions: (i) the input patterns are linearly separable and

(ii) the optimal hyperplane exists. However, most pattern recognition problems do

not fit into the linearly separable model. That is, some problems are linearly non-

separable because the non-linear manifold of the class input-space, or the hyperplane

that minimizes the function of the primal, does not exist (i.e., the solution is un-

feasible), most likely because the problem becomes poorly posed in terms of the

training data set. An example of this situation is shown in Figure A.1, a case where

outliers may arise for different reasons such as measurement errors, acquisition er-

rors, floating point representation errors, etc. Therefore, a new set of nonnegative

scalar variables, {ξi}Ni=1, is introduced to avoid an unfeasibility in the primal and

dual problem formulations. These variables are known as “slack variables.”

Considering the slack variables {ξi}Ni=1 in the problem (A.1) and using (A.4), we
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Figure A.1: Linearly non-separable data points, due to outliers in the data. Here
the slack variables {ξi}Ni=1 help in solving the problem in the presence
of outliers that otherwise produce an unfeasibility.

can define the optimization problem for the linearly non-separable case as follows

min
w,b,ξ

1
2
||w||22 + C

∑N
i=1 ξi

s.t.





di(w
Txi + b) ≥ 1− ξi

ξ ≥ 0

for i = 1, 2, . . . , N.

(A.12)

where C is a parameter empirically specified by the classification scheme designer.

The parameter C controls the trade-off between the complexity of the SVM and the

number of points that can’t be linearly separated by the hyperplane. This parameter

is also known as the reciprocal of the “regularization” parameter. Parameter C

should be large if the designer has high confidence in the quality of the training

samples; however, parameter C should be small if the training samples are considered

noisy. Empirically it suggested by the community to test exponentially growing C

sequences good parameter identification e.g., C ∈ {2−5, 2−3, . . . , 213, 215}.
Following the method of Lagrange multipliers, one can also formulate the dual
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problem for the linearly non-separable patterns case by finding the Lagrange multi-

pliers {αi}Ni=1 in the problem

max
α

∑N
i=1 αi − 1

2

∑N
i=1

∑N
j=1 αiαjdidjx

T
i xj

s.t.





∑N
i=1 αidi = 0

α ≥ 0

α ≤ C1

for i = 1, 2, . . . , N.

(A.13)

The relaxed SVM formulation in (A.12)-(A.13) is known as “Soft-Margin” SVM.

These models solve linearly separable problems in the presence of outliers.

A.1.2 Kernel Expansion and Kernel Functions

Typically, real-life problems are non-linear, and as we try to use SVMs to model

such problems, we find that the problems (A.12)-(A.13) only solve linearly or linearly

non-separable problems. Consequently, the second key idea behind SVMs is an input

pattern mapping (input space) to a higher dimensional space (kernel-induced feature

space) where the data points xi ∈ X are more likely to be linearly separable. This

is achieved by using a kernel function k(·, ·) mapping in the following way:

xT
i xj =k (xi,xj) = φT (xi)φ(xj), (A.14)

xi =k (xi, ·) = φ(xi), (A.15)

where the map

φ : X 7→ H (A.16)

is known as feature map from the data space X into the feature space H. The feature
space is assumed to be a Hilbert space of real valued functions defined on X (more
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information in Appendix D). In the case of SVMs the data space xi ∈ X ∈ RN×M .

The picture in Figure 1.4 illustrates the particular example where the feature map

φ(x1, x2) : R2 7→ R3.

Mercer’s theorem (see Theorem D.1 in Appendix D) [41, 129] provides a useful

tool known as kernel expansion that allows us to define the hyperplane as linear

combinations with parameters αi as follows:

wTφ(x) =
N∑

i=1

αik(x,xi) + b, (A.17)

where α, b can take on any real value, and k(·, ·) is a valid kernel function. Mercer’s

theorem also explains the properties a valid kernel function k(·, ·) must follow. Mer-

cer shows that it is sufficient for k(xj ,x) to be continuous, symmetric and positive

definite. In our case if X ∈ RN×M uses a function k : X ×X 7→ RN×N that

1. k(xj ,xi) is continuous,

2. k(xj ,xi) = k(xi,xj), is symmetric,

3. k(xj ,xi) is P.D. (positive definite),

then such function is said to be a Mercer kernel.

The typical kernel functions are as follows:

Polynomial : (xT
i xj + 1)p, (A.18)

Radial : e−
1

2σ2 ||xi−xj ||22, (A.19)

Sigmoidal : tanh(κ1x
T
i xj + κ2). (A.20)

The kernel k (xi,xj) may also be referred as the ij-th element of the symmetric

N ×N matrix

K = {k (xi,xj)}Ni,j=1. (A.21)
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The matrix K is called “kernel matrix.” It is positive definite since it satisfies the

condition aTKa ≥ 0 for any real valued vector a of dimension compatible with K.

The matrix notation of K is specially useful when posing the optimization problem

in matrix-vector form.

In summary, a kernel function allows us to map an input space into a kernel-

induced feature space of higher dimension where the mapped input data is (expected

to be) linearly separable with an appropriate selection of a valid kernel function.

Therefore, the usage of kernel functions represent a breakthrough for SVMs since

they provide the means to solve non-linearly (non-)separable problems. As a result

we can just modify the constraint in the SVM primal problem (A.12) to be as follows:

min
w,b,ξ

1
2
||w||22 + C

∑N
i=1 ξi

s.t.





di(w
Tk(xi, ·) + b) ≥ 1− ξi

ξ ≥ 0

for i, j = 1, 2, . . . , N.

(A.22)

and in the case of the dual formulation (A.13), the objective function is modified to

be as follows

max
α

∑N
i=1 αi − 1

2

∑N
i=1

∑N
j=1 αiαjdidjk(xi,xj)

s.t.





∑N
i=1 αidi = 0

α ≥ 0

α ≤ C1

for i, j = 1, 2, . . . , N.

(A.23)

The example on Figure A.2 shows three different views on the same data points:

Figure A.2a, a linear separation does not work well since a the optimal margin

requires misclassifying one point; Figure A.2b, a better separation is allowed by

using a kernel function in the input space, which corresponds to a linear function in
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the feature space; Figure A.2c, the input space and the kernel-induced feature space

are related by the kernel function.

(a) Input Space. Linear separation of input
points does not work well: a reasonably sized
margin requires misclassifying one point.

(b) Input Space. A better separation is per-
mitted by nonlinear functions in input space
(Figure A.2a), which corresponds to a linear
function in the featurespace (Figure A.2c).

(c) Feature Space. A linear function in the
feature space: Input space and feature space
are related by some kernel function.

Figure A.2: Three different views of an arbitrary two-class classification problem.

Figure A.3 shows that using valid kernel function, the linearly non-separable data

(in the input space) can be mapped to linearly separable in a higher dimensional space

(the kernel-induced feature space).

A.1.3 Toy Example: XOR Problem

To actually show the solution procedure and elucidate the idea of SVMs, we con-

sider the case of the XOR (Exclusive OR) problem, following [78]. The problem is
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Figure A.3: With a suitable kernel function, the linear-inseparable data (in input
space) can be transferred to linear separable in a higher dimensional
space (in feature space).

summarized in Table A.1 that shows the inputs and the desired outputs.

Table A.1: Summary of XOR problem characterization.
Input vector x Desired response d

(+1,+1) −1
(+1,−1) +1
(−1,+1) +1
(−1,−1) −1

For this problem, the kernel proposed in [35] is a polynomial in the form of (A.18)

for p = 2 as follows:

k (x,xi) =
(
1 + xTxi

)2
, (A.24)

where x = [x1, x2]
T and xi = [xi1, xi2]

T . Thus, the kernel function can be expressed

as

k (x,xi) = 1 + x21x
2
i1 + 2x1x2xi1xi2 + x22x

2
i2 + 2x1xi1 + 2x2xi2. (A.25)
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Following the kernel matrix definition in (A.21) we obtain

K =




9 1 1 1

1 9 1 1

1 1 9 1

1 1 1 9



.

The objective function for the dual non-linear SVM defined in (A.23) produces

the following objective function:

min
α

α1 + α2 + α3 + α4 −
1

2

(
9α2

1 − 2α1α2 − 2α1α3 − 2α1α4

+9α2
2 + 2α2α3 − 2α2α4 + 9α2

3 − 2α3α4 + 9α2
4

)
,

which need to be optimized with respect to the Lagrange multipliers as defined by

the system of equations

9α1 − α2 − α3 + α4 = 1

−α1 + 9α2 + α3 − α4 = 1

−α1 + α2 + 9α3 − α4 = 1

α1 − α2 − α3 + 9α4 = 1

from where it follows that the optimum values for the Lagrange multipliers are

α1 = α2 = α3 = α4 =
1

8
,

which implies that the set of input vectors {xi}4i=1 are support vectors. This solution

yields that the optimum value for the objective function is 1
4
.

Using the duality theorem, the solution found also solves the primal problem in

228



(A.1) using the kernel trick, and we can rewrite

1

2
||w||22 =

1

4
,

or

||w||22 =
1√
2
.

Now we can find the optimum weight vector that by definition must satisfy the

equation

w =
4∑

i=1

αidik (x,xi) ,

that applying (A.25) and the solution for the Lagrange multipliers results in

w = 1
8
(−k (x,x1) + k (x,x2) + k (x,x3)− k (x,x4))

= 1
8




−




1

1
√
2

1

−
√
2

−
√
2




+




1

1

−
√
2

1

−
√
2

√
2




+




1

1

−
√
2

1
√
2

−
√
2




−




1

1
√
2

1
√
2
√
2







=




0

0

− 1√
2

0

0

0




.

Now, we can test the optimality of the hyperplane evaluating the property

wTk (x,xi) + b = 0,
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for a bias b = 0 we arrive to

(
0 0 − 1√

2
0 0 0

)




1

x21√
2x1x2

x22√
2x1
√
2x2




= 0,

that results into

−x1x2 = 0.

For both input variables x1 = x2 = −1 and x1 = x2 = +1, the output is y = −1.
Also it can be followed that for x1 = −1, x2 = +1 and x1 = +1, x2 = −1, the output
is y = +1. Therefore, this problem is said to be solved.

A.2 Summary of Support Vector Machines Learn-

ing Methods

The most relevant training strategies for SVMs are presented below in chronological

order. The review begins with Osuna’s, et al. and finishes with Sra’s work, to cover

a period of 20 years.

A.2.1 Osuna’s Decomposition Algorithm

In 1997 Osuna, et al. proposed a decomposition method that achieves optimality

by solving a sequence of smaller sub-problems from randomly selected samples [139].

The authors start by formulating the Quadratic Programming (QP) fundamental
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problem for the two class SVM as follows:

min
α

Q (α) = −∑N
i=1 αi +

1
2

∑N
i=1

∑N
j=1 αiαjdidjk (xi,xj)

s.t.





∑N
i=1 αidi = 0

−α ≤ 0

α− C ≤ 0

for i = 1, 2, . . . , N.

(A.26)

which is a slightly modification of problem (A.13), where di ∈ {−1, 1}. Then, since
the kernel function is a positive definite matrix and the constraints are linear, then

it follows to define the Karush-Kuhn-Tucker (KKT) conditions for optimality:

∇Q (α) +

N∑

i=1

vi −
N∑

i=1

πi + µ

N∑

i=1

di = 0 (A.27a)

N∑

i=1

viαi − C = 0 (A.27b)

N∑

i=1

πiαi = 0 (A.27c)

v ≥ 0 (A.27d)

π ≥ 0 (A.27e)

N∑

i=1

αidi = 0 (A.27f)

−α ≤ 0 (A.27g)

α− C ≤ 0 (A.27h)

i = 1, 2, . . . , N. (A.27i)

where µ, v, and π are the Lagrange multipliers associated with the KKT conditions.

Then the authors assume that there exists some αi that satisfies 0 ≤ αi ≤ C, and

therefore there are three possible cases:
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1. Case: 0 ≤ αi ≤ C

From the first tree equations of the KKT conditions we can derive

µ

N∑

i=1

di − 1 +

N∑

i=1

N∑

j=1

αiαjdidjk (xi,xj) = 0 (A.28a)

which the authors show that this implies µ = b.

2. Case: αi = C

From the first tree equations of the KKT conditions we can derive

µ
N∑

i=1

di − 1 +
N∑

i=1

vi +
N∑

i=1

N∑

j=1

αiαjdidjk (xi,xj) = 0 (A.28b)

from which we can define by convenience the following function:

g(xi) =

N∑

j=1

αjdjk (xi,xj) + b (A.28c)

and recalling that µ = b and the restriction of vi being strictly positive we can

show that the following condition must hold:

dig(xi) ≤ 1 (A.28d)

3. Case: αi = 0

From the first tree equations of the KKT conditions we can derive

µ

N∑

i=1

di − 1−
N∑

i=1

πi +

N∑

i=1

N∑

j=1

αiαjdidjk (xi,xj) = 0 (A.28e)
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which leads us to

dig(xi) ≥ 1 (A.28f)

The previous conditions are part of the stopping criteria of the decomposition

algorithm proposed by Osuna et.al. This algorithm suggests partitioning the index

set {1, 2, . . . , N} in two sets B andM, {B,M} = {1, 2, . . . , N}. The set B is defined

as the working set. It allows to decompose αi into two vectors αB and αM where the

former is the one that is changing.

Using this decomposition, the problem in (A.26) has been reformulated in terms

of the index set variables B,M as follows:

min Q (αB) = −∑i∈B αi +
1
2

∑
i∈B
∑

j∈B αiαjdidjk (xi,xj)

+
∑

i∈B
∑

j∈M αiαjdidjk (xi,xj)

s.t.





∑
i∈B αidi +

∑
j∈M αjdj = 0

−∑i∈B αi ≤ 0
∑

i∈B αi − C ≤ 0

. (A.29)

The procedure in Algorithm A.1 selects the support vector coefficients that are

active on either side of the optimal hyperplane, then proceeds iteratively until the

completion of the problem size. That is, the algorithm suggests adding one example

and subtracting one example at each iteration. This algorithm performs satisfactory

in applications of up to 100, 000 data points; however, the algorithm has deficiencies.

Platt’s paper refers to these deficiencies as follows [147]: “Numerical QP is tricky

to get right; there are many numerical precision issues that need to be addressed.”

Also, the author fails to prove convergence, as Smola, et al. [178] confirm when they

say “... this [algorithm] does not prove convergence (contrary to statement in Osuna,

Freund and Girosi (1997) [139]) ...”

The problem with this algorithm is that it requires a numerical QP solver at each
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iteration. It is well known that numerical QP solvers lack precision.

Algorithm A.1 Osuna’s algorithm

1: procedure αB =TrainSVM(xi, di, C, |B|, N)
2: [B,M]← RandIdx(|B|, N) ⊲ Randomly choose |B| points from N
3: αB ← SolveQP(xB, dB, C) ⊲ Solve sub-problem (A.29) for the variables in B
4: for all j ∈ M do

5: if




(αj = 0 and g(xj)dj ≤ 1) or
(αj = C and g(xj)dj ≥ 1) or

(0 ≤ αj ≤ C and g(xj)dj 6= 1)


 then

6: [B,M]← ReplaceIdx(i ∈ B, j ∈M) ⊲ Replace any αi, with αj

7: αB ← SolveQP(xB, dB, C) ⊲ Solve (A.29) for new B
8: end if

9: end for

10: return αB
11: end procedure

A.2.2 Joachims’ SVMLight

Later in 1998, Joachims introduced the concept of “shrinking” the problem in (A.26)

under the SVM training context [98]. The authors follow Osuna’s algorithm up to

the point of breaking down the problem to find the new working set. Unlike Osuna,

Joachims uses a more formal method. The author proposes to follow Zoutendijk’s

method [223] on a first order approximation to the target function. In this method

we want to obtain a feasible direction vector p that has steep descent and at most q

non-zero entries. The direction of the vector p is

−1 +Rα = ∇Q(α) (A.30)
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where R =
∑N

i=1

∑N
j=1 didjk (xi,xj). However the direction in (A.30) may not be

sparse or feasible. Thus, it follows to define the problem:

min
∑N

i=1 pi∇Q(αi)

s.t.





∑N
i=1 pidi = 0

pi ≥ 0 for i : αi = 0

pi ≤ 0 for i : αi = C

pi ≤ 1

−pi ≥ 1

|{di : di 6= 0}| = q

(A.31)

where the vector pi can take on values {−1, 0, 1} that establish which samples will

be part of the new working set B.
The other idea that Joachims introduced is “shrinking.” To define this concept,

the author uses the following decomposition: Let X be the indexes associated to

unbounded support vectors, Y define the indexes associated to bounded support

vectors, and Z the indexes of non-support vectors. Then, the author defines

α =




αX

αY

αZ


 =




αX

C1

0


 d =




dX

dY

dZ


 R =




RXX RXY RXZ

RYX RYY RYZ

RZX RZY RZZ




(A.32)

where R =
∑N

i=1

∑N
j=1 didjk (xi,xj). Then Joachims defines the decomposition as
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follows

min Q (αX ) = −αT
X (1− CRXY1) +

1
2
αT

XRXXαX

s.t.





αT
XyX + C1TyY = 0

αX ≤ C1

−αX ≤ 0

. (A.33)

Then Joachims define a heuristic approach to identify certain variables that will

be at boundaries (i.e., support vectors); this approach is based on Lagrange multiplier

estimates. The idea is based on the fact that a strictly positive value of a Lagrange

multiplier of a bound constraint implies variable optimality at such bound. The

point is to use a Lagrange multiplier estimate whenever a non-optimal point arises.

Let A denote the current set of αi that satisfy 0 ≤ αi ≤ C, then, by solving (A.27)

for µ and averaging for all αi in A we have

µ =
1

|A|
∑

i∈A

(
di −

N∑

j=1

αjdjk (xi,xj)

)
, (A.34)

and since it is not possible that the variables αi exist at the upper and lower bound

simultaneously, we can define the lower bound as

πi = di

([
N∑

j=1

αjdjk (xi,xj)

]
+ µ

)
− 1 (A.35)

and the upper bound as

vi = −di
([

N∑

j=1

αjdjk (xi,xj)

]
+ µ

)
+ 1 (A.36)

If the Lagrange multiplier estimates are positive for last h iterations, then it is

likely that they correspond to the optimal solution; this procedure is explained in

236



Algorithm A.2.

The only issues with this algorithm are the inherent QP solution process and the

additional steepest descent process.

Algorithm A.2 Joachims’ algorithm

1: procedure αB =TrainSVM(xi, di, C, |B|, N, h)
2: [B,M]← GetShrinkIdx(|B|, N) ⊲ Choose |B| points from N using (A.30)
3: [αB, µB, πB, vB]← SolveQP(xB, dB, C) ⊲ Solve (A.33)-(A.36) for B
4: Iter← 0
5: repeat

6: if




(αj = 0 and g(xj)dj ≤ 1) or
(αj = C and g(xj)dj ≥ 1) or

(0 ≤ αj ≤ C and g(xj)dj 6= 1)


 then

7: Iter← Iter + 1
8: [B,M]← ReplaceIdx(|B|,B,M, N) ⊲ Get new B from N using

(A.30)
9: [αB, µB, πB, vB]← SolveQP(xB, dB, C) ⊲ Solve (A.33)-(A.36) for B
10: end if

11: until




µ(Iter− h : Iter)B ≥ 0 and
π(Iter− h : Iter)B ≥ 0 and
v(Iter− h : Iter)B ≥ 0




12: return αB
13: end procedure

A.2.3 Platt’s Sequential Minimal Optimization

Also in 1999, Platt extended Osuna’s work for the case of |B| = 2, and he called

his algorithm “sequential minimal optimization” (SMO) [148]. This algorithm has

been implemented in several commercial and open-source software applications such

as “Weka” [74]. The key idea behind Platt’s method is to decompose the large QP

problem into a series of two dimensional QP sub-problems; therefore, the problem

is so small that it can be solved without a QP solver, thus much faster. In Platt’s

mathematical derivation, we are interested in optimizing both αi, αj leaving the

remaining α’s fixed. Therefore, we can reduce the inequalities in problem (A.29) for
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the two variable case dual problem as follows:

diαi + djαj =−
N∑

i=1
i/∈{j,k}

dkαk = γ

αnew
j =

γ − diαi

dj
(A.37)

Therefore, this is used to remove αj from the problem, and then it is just matter of

solving the quadratic equation for αi by clipping the previous value as follows:

αnew
i = αi −

di(Ej −Ei)

2k (xi,xj)− k (xi,xi)− k (xj ,xj)
(A.38)

where Ei = yi−di, that is the error at point i. Then, to decide which α’s are selected

as the first pair, the author uses heuristics that make single passes over the whole

training set, and then multiple passes over the unbounded support vectors since they

are more likely to require re-optimization. The author uses a different heuristic to

maximize the step size towards the solution. The SMO stores the value of Ei for

each unbounded support vector i, and if the heuristics chose i as the first element,

then j will be the one that maximizes |Ei−Ej|, these ideas are shown in Algorithm

A.3.

The SMO also stores the value ofw =
∑N

i diαik (xi,xj) and updates it as follows:

wnew = w + di(α
new
i − αi)k (xi,xj) (A.39)

which increases training speed. This is because instead of having to compute a

kernel inner product for all the training samples, it only has to compute a single

dot product. The problem with SMO is that the algorithm was highly questionable.

It received criticism because the algorithm as reported was not as fast as promised

and as reported by the author. Rifking from MIT in his dissertation [155] comments

that “... Platt’s algorithm as written is not particularly fast, and the timing results

238



spring from a poor implementation of [other methods]...” Rifkin reports that his

implementation of the SMO was found to be quite slow.

Algorithm A.3 Platt’s algorithm

1: procedure αB =TrainSVM(xi, di, C, |B| = 2, N = |N | − 2)
2: [B,M]← FindBestIdx(|B|, N) ⊲ Choose best two points from N
3: αB ← SolveQP(xB, dB,B, C) ⊲ Solve sub-problem (A.29) for the variables in
B

4: for all j ∈ M do

5: if




(αj = 0 and g(xj)dj ≤ 1) or
(αj = C and g(xj)dj ≥ 1) or

(0 ≤ αj ≤ C and g(xj)dj 6= 1)


 then

6: [B,M]← FindNewBestIdx(i ∈ B, j ∈M) ⊲ Replace any αi, with αj

7: αB ← SolveQP(xB, dB,B, C) ⊲ Solve using procedure below
8: end if

9: end for

10: return αB
11: end procedure

12: procedure αB =SolveQP(xB, dB,B, C)
13: αj ← GetAlphaJ(B[1], dB) ⊲ Solve αj with (A.37)
14: αi ← GetAlphaI(xB, dB,B[2], C) ⊲ Solve αi with (A.38)
15: αB ← {αi, αj}
16: return αB
17: end procedure

A.2.4 Rifkin’s SVMFu

Rifkin, in his PhD dissertation work, presented the “SVMFu” algorithm in 2002 [155].

This work reviews and synthesizes Osuna’s, Platt’s, and Joachims’ work, as shown

in Algorithm A.4.

However, the author redefines the gradient function to be in terms of problem

(A.33), so the gradient is no longer denoted as

∇Q(α) = −1 +Rα
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Algorithm A.4 Rifkin’s algorithm

1: procedure αB =TrainSVM(xi, di, C, |B|, N)
2: [B,M]← FindBestIdx(|B|, N) ⊲ Choose best two points from N
3: αB ← SolveQP(xB, dB,B, C) ⊲ Solve sub-problem (A.29) for the variables in
B

4: for all j ∈ M do

5: if




(αj = 0 and g(xj)dj ≤ 1) or
(αj = C and g(xj)dj ≥ 1) or

(0 ≤ αj ≤ C and g(xj)dj 6= 1)


 then

6: [B,M]← FindNewPair(B,M, N) ⊲ Use (A.40) and procedure below
7: αB ← SolveQP(xB, dB,B, C) ⊲ Solve using procedure below
8: end if

9: end for

10: return αB
11: end procedure

12: procedure [B,M] =FindNewPair(B,M, N)
13: [i, j]← argi,j max |∇Q(αj)−∇Q(αi)| ⊲ with i, j moving towards gradient
14: B ← {i, j};M← {N \ B}
15: E ← |∇Q(αj)−∇Q(αi)|
16: if (E ≥ Threshold) then
17: return [B,M]
18: else if (|B| < |N |) then
19: B ← N ;M← ∅
20: return [B,M]
21: else ⊲ It is done
22: B ← ∅;M← ∅
23: return [B,M]
24: end if

25: end procedure

26: procedure αB =SolveQP(xB, dB,B, C)
27: αj ← GetAlphaJ(B[1], dB) ⊲ Solve αj with (A.37)
28: αi ← GetAlphaI(xB, dB,B[2], C) ⊲ Solve αi with (A.38)
29: αB ← {αi, αj}
30: return αB
31: end procedure
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but instead as

∇Q(α) = −1+RXYαY +RXXαX (A.40)

which adds robustness to the sub-problem since the linear interactions between αX

and αY are considered.

The author also use “shrinking” methods to reduce the number of points, e.g.,

to remove those points that have not been selected as part of the working set for a

number of k iterations. The key contribution is the idea of dividing the large problem

in sub-problems such that their Hessian matrices fit within memory limitations.

Rather than storing the kernel inner products with the α’s, he stores only the inner

products of the kernel rows and columns associated to non-zero α’s. The drawbacks

of this algorithm is that in the case that there are not non-zero α’s (i.e., all data are

support vectors) the complete Hessian is stored; also another issue arises with the

usage of explicit “shrinking,” since this technique no longer guarantees optimality in

the final solution.

A.2.5 Nystrom Method for Kernel Approximation

In 2005, Drineas, et al. developed an algorithm to approximate a kernel in the form of

(A.21) with low rank matrix. They authors give mathematical proof that if O(k/ε4)

columns are selected, then the following equation holds

||K−CW+
k C

T ||ξ ≤ ||K−Kk||ξ + ε

N∑

i=1

K2
ii, (A.41)

for both ξ = {2, F}, and for all k : 0 ≤ k ≤ rank(W); where K ∈ RN×N is a kernel

in the form of (A.21), C ∈ RN×c is a matrix formed by randomly selecting a small

c number of columns and rows of K, Wk ∈ Rc×c is the best rank-k approximation

to W, which is formed by the intersection of those c columns and rows of K. Also,
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it is important to recall that the notation W+ is used to denote the Moore-Penrose

generalized inverse, also that the spectral norm || · ||2 of a matrix A ∈ Rm×n is defined

as

||A||2 = sup
x∈Rn,x 6=0

||Ax||2
||x||2

(A.42)

where ||x||2 = (
∑n

i=1 x
2
i )

1
2 . Also, let us recall that the Frobenious norm || · ||F is

defined as

||A||F =

(
m∑

i=1

n∑

j=1

||Ai,j||22

) 1
2

(A.43)

Finally, the kernel approximation K̃ is given by

K̃ = CW+CT (A.44)

and it is computed as shown in Algorithm A.5.

Using this approximation, the amount of computation required to find the solu-

tion of an SVM can be reduced from O(N3) to O(N) using the kernel approximation.

The authors report an interesting derivation of their ideas based on the Nystron

method [53].

A.2.6 Hush’s QP SVM Dual to Primal Mapping

Continuing with QP-based methods, Hush, et al. in 2006, proposed an algorithm

that produces approximate solutions without compromising accuracy in a QP SVM

problem [90]. The authors propose a first stage where the algorithm provides an

approximate solution for the QP dual and a second stage where that maps the QP-

dual to the QP-primal, based on the duality theorem. The authors claim that this

mapping is performed in O(N logN) time and with an accuracy of (2
√
2KN +8)−2ε2p
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Algorithm A.5 Nyström method for kernel approximation

1: procedure K̃ =ApproximateKernel(K, c ≤ N, k ≤ c)

2: pi ←
K2

ii∑N
i=1K

2
ii

3: S← 0N×c ⊲ Define the matrix S ∈ RN×c

4: D← 0c×c ⊲ Define the matrix D ∈ Rc×c

5: for (t = 1, ..., c) do
6: if (Pr(it = i) = pi) then ⊲ Pick it ∈ [N ], where Pr(it = i) = pi
7: Dtt ← (cpit)

− 1
2

8: Sit ← 1
9: end if

10: end for

11: C← KSD

12: W← DSTKSD

13: Wk ← GetRankkApprox(W)
14: K̃k ← CW+

k C
T

15: return K̃k

16: end procedure

in the dual, and with an accuracy εp back in the primal. The parameterKN is defined

as

KN = max
1≤i≤N

k (xi,xi) . (A.45)

The proposed method is shown in Algorithm A.6, where u = {ui}Ni=1 is functionally

equivalent to the constant C in problem (A.12) but here there is a specific constant

for each sample; and εp is the maximum error tolerated in the solution to the primal

problem. Although the authors prove that the ε-accuracy is guaranteed, the process

involves the solution to a QP problem, several sorting algorithms, and a limited

selection of a decomposition strategy.
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Algorithm A.6 Hush’s, et al. method for primal QP-SVM guaranteed accuracy

1: procedure [α̂, b̂] =PrimalQP(T = {(xi, di)}Ni=1, k(·, ·),u, εp)
2: if (di = d1, ∀i) then
3: α̂←

{
0, d1 = 1
u1, d1 = −1

4: b̂← d1
5: end if

6: Qij ← k(xi,xj)

2
, li ← (1−di)ui

2
, w ← Ql + d, c← l · 1 ⊲ From the dual

7: ε← ε2p

(2
√
2KN+8)2

⊲ Compute desired accuracy for the dual

8: α0 ← l ⊲ Initialize variable for the dual
9: [α̂, g]← Decomposition(Q,w, c,u, ε,α0) ⊲ ε-approximate dual solution α̂

10: b̂← Offset(g, d,u) ⊲ Compute offset parameter
11: return [α̂, b̂]
12: end procedure

A.2.7 Sra’s LP to QP SVM Mapping

Sra in 2006 proposed an algorithm that explicitly takes advantage of the LP formu-

lation for SVMs to produce an efficient training method for large-scale problems [90].

The author formulates the two class (i.e. di ∈ {±1}) SVM problem for the ℓ1-norm

instead of the typical ℓ2-norm as follows:

min
w,b

||w||1 + C
∑N

i=1 ξi

s.t.





di(w
Tx + b) ≥ 1− ξi

ξi ≥ 0

for i = 1, 2, . . . , N.

(A.46)

Then the author converts the LP problem into a QP problem using the principle

establishing that there exists an ǫ0 > 0, such that for all ǫ ≤ ǫ0,

argmin
g∈G
||g + ǫ−1c||22 = arg min

g∈G∗
||g||22 (A.47)
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where G is the feasible set, andG∗ is the set of optimal solutions to the SVMQP prob-

lem, and is a unique minimizer. Here g =
(

w b |w| ξ

)
, c =

(
0 0 1 C1

)
.

In the solution of the latter QP problem, they apply Bregman’s [27] and Hildreth’s

[81] decomposition, then the QP problem is solved. The authors report solving a

problem with as many as 20, 000, 000 samples. The drawbacks are using QP formu-

lation instead of taking advantage of the efficiency of an LP formulation and also

sacrificing performance to gain speed.

A.3 Linear Programming Support Vector Machines

The methods for QP-SVM described in previous sections cannot be trivially extended

to the LP-SVM and LP-SVR problems since the nature of QP and LP problems is

different. In spite of this, there have been recent attempts to address an efficient

technique to decompose a large-scale SVM problem using Linear Programming (LP)

techniques [187], which could be extended to the LP-SVR case.

By the time this dissertation topic was already under development, Torii, et al.

published his work on LP-SVM decomposition methods in 2009. His decomposition

strategy for SVM is very similar to the one presented in this document; however,

a different problem is addressed; that is, the LP-SVR problem is developed in this

dissertation. Furthermore, they address a totally different formulation for the linear

program, as the reader will notice later in Chapter 3. Torii, et al. [187] proposed

what is called a “decomposition method” for LP-SVMs. The authors decompose the

input training set indexes into two subsets: B is the subset of indexes that represent

the working set, while the remaining indexes are denoted asM, where B ∩M = ∅.
The authors follow the definition of problem (A.22) and then start to formulate it

in a standard LP form. First, the ℓ2-norm is changed by the ℓ1-norm, and introduce

α to allow the usage of the kernel expansion. Then authors divide the α in its

positive α+ and negative α− parts. To remove the inequality in the constraint, a
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slack variable u is added to arrive at the following formulation:

max
α+,α−,ξ,b+,b−,u

∑
i∈B(α

+
i + α−

i ) + C
∑N

i=1 ξi

s.t.





di
(∑

i∈B(α
+
i − α−

i )k(xi,xj) + b+

−b− +
∑

i∈M(α+
i − α−

i )k(xi,xj)
)
+ ξj = 1 + uj

α+,α−, ξ ≥ 0

b+, b− ≥ 0

for j = 1, 2, · · · , N

(A.48)

which the authors claim is equivalent to the following LP-SVM problem:

min
∑

i∈B cizi + dTξ

s.t.





∑
j∈BAi,jzj = bi + ui − ξi

z,u, ξ ≥ 0

for i ∈ B,

(A.49)

where d is a vector, and ξ,u are a slack variable vectors.

The corresponding dual is then defined as follows:

max bTλ

s.t.





∑N
j=1Aj,izj + vi = ci

λ+ t = d

z,v, t ≥ 0

for i ∈ B,

(A.50)

where λ, v are vectors, and t is a vector of slack variables.

The solution (z∗, ξ∗,u∗,λ∗,v∗, t∗) is said to be optimal if it satisfies the corre-

sponding optimality conditions, i.e., the Karush-Kuhn-Tucker (KKT) conditions. If

the solution to (A.49)-(A.50) is not optimal, they propose to move the indexes of

inactive variables from B toM, and those variables that violate the optimality con-
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ditions are moved fromM into B. The process is repeated until a solution satisfies

the optimality conditions for the working set and for the remaining variables. The

authors propose a theorem that states for this method to produce a sequence of

non-increasing values bounded (in its lower limit) by the global minimum of (A.49);

however, Torii, et al. do not report mathematical proof or reference to an existing

one.
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Appendix B

Algorithms and Theorems Proofs

Some of the algorithms used in this dissertation are included in this appendix. Also,

some Theorem proofs are included.

B.1 Algorithms

Algorithm B.1 Collobert’s algorithm

1: procedure αB =TrainSVR(xi, di, C, ξ, ǫ, q, N, h)
2: [B,M]← GetShrinkIdx(q, N) ⊲ Choose q points from N using (2.16)
3: [αB, α

∗
B, µB, πB, vB]← SolveQP(xB, dB, C, ξ, ǫ) ⊲ Solve (2.15) for B

4: Iter← 0
5: repeat

6: if




(αj = 0 and g(xj)dj ≤ 1) or
(αj = C and g(xj)dj ≥ 1) or

(0 ≤ αj ≤ C and g(xj)dj 6= 1)


 then

7: Iter← Iter + 1
8: [B,M]← ReplaceIdx(q,B,M, N) ⊲ Get new B from N
9: [αB, α

∗
B, µB, πB, vB]← SolveQP(xB, dB, C, ξ, ǫ) ⊲ Solve (2.15) for B

10: end if

11: until




µ(Iter− h : Iter)B ≥ 0 and
π(Iter− h : Iter)B ≥ 0 and
v(Iter− h : Iter)B ≥ 0




12: return αB, α
∗
B

13: end procedure
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Algorithm B.2 Bradley and Mangasarian’s LPC algorithm

1: procedure z =LPC(c,A,b, ℓ)

2:




A1 b1

A2 b2

...
...

Aℓ bℓ


← BlockPartition(ℓ,A,b) ⊲ Partition into ℓ blocks

3: j ← 0 ⊲ Iterations counter
4: repeat

5: j ← j + 1

6: zj ← arg vertex min

{
cTz

∣∣∣∣∣
A(j mod ℓ)z ≥ b(j mod ℓ)

Ā(j mod ℓ)−1z ≥ b̄(j mod ℓ)−1

}

7: until
(
cTzj = cTzj+4

)
⊲ Stops if there is no change during four iterations

8: return zj

9: end procedure

B.2 Theorems and Proofs

B.2.1 Theorem on the ESV Bound

Theorem B.1 (Zhang, et al. [214]: ESV Bound). Given an optimal solution z∗ to

(3.2), the number of nonzero αi coefficients of (3.2) has the following upper bound:

|A| ≤ |VE |. (B.1)

for all i : αi 6= 0.

Proof. Consider the LP problem

min
z∗

cTz∗ (B.2a)

s.t. Az∗ = b (B.2b)

z∗ ≥ 0, (B.2c)

which is equivalent to (3.2), where A ∈ Rm×n and z∗ ∈ Rn. Then, for α∗ we can
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Algorithm B.3 Unfeasible interior point method used

1: procedure [zB,λB, sB] =SolveLP(xB, dB, B, C, ǫ, σ, µ)

2: AB ←
(
−KB KB −1 1 −IB IB
KB −KB 1 −1 −IB IB

)

3: bB ←
(

1ǫB − dB

1ǫB + dB

)

4: cB ←
(
1B 1B 0 0 2CB 0B

)T
5: (z0,λ0, s0)← UnfeasibleInitialPoint(AB,bB, cB) ⊲ With (z0, s0) > 0
6: for t = 0, 1, ..., until [rc, rb,XS1, stop] = Convergence(z,λ, s,A,b, c) do
7: [∆zp,∆λp,∆sp]← PredictorDirection(AB, zt, st, rc, rb,XS1)
8: µcen ← CenteringParameter(z,∆zp, s,∆sp, τ,XS1)
9: [∆zpc,∆λpc,∆spc]← PCDir(AB, zt, st, rc, rb,XS1, µcen,∆zp,∆λp,∆sp)
10: [zt+1,λt+1, st+1]← Globalization(zt,λt, st),∆zpc,∆λpc,∆spc, µcen, τ)
11: if (DetectInfeasibility(rc, rb, t) == true) then
12: return [zB,t−1,λB,t−1, sB,t−1]
13: end if

14: end for

15: zB ← z∗
∣∣z =

(
α+

B α−
B b+ b− ξB uB

)T
16: [λB, sB]← [λ∗, s∗]
17: return [zB,λB, sB]
18: end procedure

19: procedure [rc, rb,XS1, stop] =Convergence(z,λ, s,A,b, c)
20: XS1← GetGap(z, s) ⊲ Duality gap
21: [rc, rb]← GetResiduals(A,b, c, z,λ, s) ⊲ Residuals at current solution
22: stop ← CheckCriteria(rc, rb,b, c,XS1) ⊲ Returns a boolean
23: return [rc, rb,XS1, stop]
24: end procedure

25: procedure µ =CenteringParameter(z,∆zp, s,∆sp, τ,XS1)

26: ϕpri
cen ← argmax{ϕ ∈ [0, 1]

∣∣∣ zt + ϕ∆zp ≥ 0} ⊲ Steps length

27: ϕdual
cen ← argmax{ϕ ∈ [0, 1]

∣∣∣ st + ϕ∆sp ≥ 0}
28: σ ← ((zt + ϕpri

cen∆zp)
T (st + ϕdual

cen ∆sp)/XS1)3

29: µcen ← σ(XS1/|B|) ⊲ Affine-scaling direction
30: return µcen

31: end procedure
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define the following equality

|A| =|{α∗
j : α∗

j 6= 0, j = 1, 2, . . . , N}| (B.3)

|{α+∗
j : α+∗

j 6= 0, j = 1, 2, . . . , N}| . . . (B.4)

+ |{α−∗
j : α−∗

j 6= 0, j = 1, 2, . . . , N}|. (B.5)

Now, let

NPE(z∗) ≤ m, (B.6)

denote an upper bound to the number of positive elements in z∗. By (B.6), there are

at most 2N basic variables in z∗ that can take nonzero values; the other non-basic

variables take zeros. Among these basic variables, there are |VS| of ξ∗ > 0 and |VS|
of u∗ > 0, |VN | of u∗ > 0, and |VE | of u∗ = 2ǫ apart from the nonzero coefficients in

α+∗
j , α−∗

j , j = {1, 2, . . . , N}. As a result, the number of nonzero coefficients is

|A| = |{α∗
j : α∗

j 6= 0, j = 1, 2, . . . , N}| (B.7)

≤ 2N − 2|VS| − |VN | − |VE|. (B.8)

Since N = |VS|+ |VE|+ |VN |, we have that

|A| ≤ |VE |+ |VN |. (B.9)

This completes the proof.
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B.2.2 Theorem on The Rank Bound

Theorem B.2 (Zhang, et al. [214]: Rank Bound). Given an optimal solution z∗ to

(3.2), the number of nonzero coefficients of (3.2) has the following upper bound:

|A| ≤ rank(K), (B.10)

and the column vectors k(xj ,x1), k(xj,x2), . . . , k(xj ,xi), are linearly independent for

all j ∈ A.

Proof. For the LP-SVR problem (3.2), that is equivalent to (B.2), let us denote the

column vector matrix associated with the variables α+∗
j , α−∗

j , j = {1, 2, . . . , N} by

Bα =


 −K K

K −K


 . (B.11)

According to [214], the number |A| of nonzero variables in α+∗
j , α−∗

j , j = {1, 2, . . . , N}
is at most equal to the number of columns in the corresponding basic column vector

matrix B∗
α which are shared by Bα and the optimal basic matrix B∗ corresponding

to the optimal solution z∗. Hence,

|A| ≤ rank(B∗
α) ≤ rank(Bα) = rank(K), (B.12)

thus,

|A| ≤ rank(K). (B.13)

Since the optimal basic matrix B∗ is linearly independent, so is B∗
α. Now the col-

umn vectors {(φj(x1).φj(x2), . . . , φj(xi) : α∗
j 6= 0, i, j = 1, 2, . . . , N} are linearly

independent, since α+∗
j ≥ 0 (or α−∗

j ≥ 0 associated with α∗
j 6= 0 must be the basic

variables.
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B.2.3 KKT Conditions of Constraints Decomposition Method

This proposition is inspired by a Lemma introduced by Bradley, et al. [22], in which

the authors were giving proof of termination of the LPC algorithm.

Proposition B.1 (Decomposition KKT Conditions). If z solves the linear pro-

gram minz

{
cTz
}

subject to {Az = b, z ≥ 0}, and (z,λ) ∈ Rn+m is a primal-

dual optimal pair, such that λI > 0, where I ⊂ {1, 2, . . . , m} and λJ = 0, where

J ⊂ {1, 2, . . . , m}, I ∪ J = {1, 2, . . . , m}, then

z ∈ argmin
z

{
cTz
}

s.t {AIz = bI , z ≥ 0} , (B.14)

where AI has rows of Ai, for all i ∈ I, and bI has elements bi, for all i ∈ I.

Proof. The KKT conditions for a primal-dual optimal pair (z,λ) are:

c = ATλ,

λT (Az− b) = 0

Az− b ≥ 0,

z,λ ≥ 0,

which under the condition λI > 0 imply that

AIz = bI ,

λJ = 0,

AJ z ≥ bJ .

It can be claimed [22] that z is also a solution for (B.14) because the primal-dual
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optimal pair (z,λ) satisfies the KKT conditions:

c = AT
IλI ,

λI ≥ 0,

AIz = bI ,

which are necessary and sufficient.
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Appendix C

Interior Point Methods, Datasets,

Performance Metrics, and

Aditional Tables

C.1 Primal Dual Interior Point Methods for Lin-

ear Programming

In this dissertation, an Interior Point Methods (IPM)-based solver is used. The basic

idea behind IPM is explained in this section; however, for a more comprehensive

explanation, the reader may refer to the text in [203]. More specifically, an infeasible

IPM within the path-following framework is used, which means that the algorithm

will follow the path to the solution instead of looking at the vertex of each constraint

e.g. the simplex method. For promoting a fast rate of convergence a predictor-

corrector strategy in computing the Newton step was chosen.

An IPM aims to satisfy the Karush-Kuhn-Tucker (KKT) conditions. The KKT

conditions are a set of equalities and inequalities that are necessary and sufficient

conditions to establish optimality of the model. The KKT conditions of a linear
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programming problem with primal (2.18) and dual (2.19) are the following:

ATλ+ s = c, (C.1a)

Az = b, (C.1b)

zisi = 0, (C.1c)

(z, s) ≥ 0, (C.1d)

for i = 1, 2, . . . , n,

where the equality zisi implies that one of both variables must be zero. This equal-

ity will be referred to as the complementarity condition. Note that the problem

depends on the variables (z,λ, s), and if the set of solutions (z∗,λ∗, s∗) satisfy all

the conditions, the problem is said to be solved. The vector (z∗,λ∗, s∗) is known as

a primal-dual solution.

IPM considers the KKT conditions (C.1a)-(C.1d) as the following function:

F (z,λ, s) =




ATλ+ s− c

Az− b

ZS1


 = 0, (C.2a)

(z, s) ≥ 0 (C.2b)

where Z = diag(z1, z2, ..., zn), and S = diag(s1, s2, ..., sn). The IPM generates a set

of solutions (zt,λt, st) at each iteration t. The key idea is to find solutions (zt,λt, st)

that satisfy F (zt,λt, st) = 0 and more importantly (zt, st) being strictly positive,

except at the solution where z or s may be equal to zero.

Then, IMP uses a quasi-Newton’s method to approach the solution of a linear

programming problem (2.18). The most remarkable difference between Newton’s

method and IPM, is that the former does not care of keeping (z, s) ≥ 0, while the

latter does. IPM surrounds the current point in a linear model in order to obtain
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the step direction (∆z,∆λ,∆s) as follows:

J(z,λ, s)




∆z

∆λ

∆s


 = −F (z,λ, s), (C.3)

where J(z,λ, s) is the Jacobian of F (z,λ, s). Then the step direction (using a

predictor-corrector strategy) becomes as follows:




0 AT I

A 0 0

S 0 Z







∆z

∆λ

∆s


 =




−rc
−rb

−ZS1−∆Zaff∆Saff1+ σµ1


 , (C.4)

where rc = ATλ + s− c and rb = Az− b are residuals, ∆Zaff,∆Saff are the affine-

scaling direction, µ is the duality gap, and σ is an adaptive line-search parameter

depending on µ. The new iterate is therefore defined as follows:

(z,λ, s) + α(∆z,∆λ,∆s), (C.5)

where α ∈ (0, 1] is appropriately chosen in order to maintain (z, s) strictly positive.

As mentioned before, the predictor-corrector strategy promotes a very fast rate

of convergence, which is desirable. In fact, theoretical studies demonstrate that

IPM for linear programs is q-quadratically convergent to a feasible solution, i.e. it

is equivalent to the Newton method. Even if J(z,λ, s) is degenerate, the IPM is

q-super-linearly convergent. In contrast, the simplex method which is typically used

in most decomposition strategies in large-scale SVM, is of exponential complexity.
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C.2 Data Sets Used in this Dissertation

For an objective numerical assessment, the algorithms developed in this dissertation

are evaluated against the commonly used data-sets for classification and regression

problems. A benchmarking procedure is performed on most data-sets described

in [39, 53, 90, 98, 139, 144, 148, 155, 206].

The well-known Ripley dataset problem [138,156] consists of two classes where the

data for each class have been generated by a mixture of two Gaussian distributions.

The data is shown in Figure C.1.
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(a) True 2-D data representation.
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(b) Data distribution across each dimension.

Figure C.1: Ripley dataset. Two classes non-separable.

The Wine dataset [64, 107] contains results of wine chemical analysis within the

Italy region but was derived from three different vines. The analysis consists of 13

attributes of two different groups of wine. This dataset is part of the UCI machine-

learning repository [65]. For displaying purposes, we used the dimensionality reduc-

tion technique called t-SNE [194,195]. Figure C.2 shows the dataset using t-SNE to

reduce the data to two and three dimensions.

ADA is a marketing-related dataset [108]. The goal of ADA is to discover high

revenue people from census data. This is a two-class classification problem. The raw

data from the census bureau is known as the Adult database [98, 148] in the UCI

machine-learning repository [65]. The 48 features include age, workclass, education,
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(d) Parallel coordinates plot with median and
25 percentile.

Figure C.2: Wine dataset. Two classes non-separable.

education, marital status, occupation, native country, etc. An illustration of the

non-separability of the data is shown in Figure C.3.

GINA is a digit recognition-related dataset that is commonly known as the

MNIST database of handwritten digits [112]. GINA aims to provide features for

handwritten digit recognition [39,148]. The problem consists of separating two-digit

odd numbers from two-digit even numbers. Only the unit digit is informative for

that task; therefore, at least 1
2
of the features are distracters. Additionally, the pixels

that are almost always blank were removed and the pixel order was randomized to

hide the feature identity. This is a two class classification problem with non-sparse
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(d) Parallel coordinates plot with median and
25 percentile.

Figure C.3: ADA dataset. Two classes non-separable.

continuous input variables, in which each class is composed of several clusters. It is

a problem with heterogeneous classes. The representation of the data is shown in

Figure C.4.

HIVA is a dataset related to HIV infections. The goal of HIVA is to provide

features for prediction of active compounds within an AIDS HIV infection. The

dataset represents a two-class classification problem (active vs. inactive) consisting

of 2000 sparse binary input variables. The variables represent properties of the

molecule inferred from its structure. The problem is to relate structure to activity

i.e., a quantitative structure-activity relationship (QSAR) problem, to screen new
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(d) Parallel coordinates plot with median and
25 percentile.

Figure C.4: GINA dataset. Two classes non-separable.

compounds before actually testing them, i.e., a high-throughput screening (HTS)

problem. The data is made available by the National Cancer Institute (NCI), and

has been used in [26]. A representation of the dataset appears in Figure C.5.

NOVA is a text classification dataset. The data of NOVA come from the UCI

repository [65] which is also known as Twenty-Newsgroup dataset [97]. Each text to

classify corresponds to email text. The features consist of a sparse binary represen-

tation of a vocabulary of approximately 17, 000 words. Figure C.6.

SYLVA is an ecology-related dataset that is part of the UCI repository [65] under

the name of Covertype Data Set [17,39]. The SYLVA dataset aims to provide features
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(d) Parallel coordinates plot with median and
25 percentile.

Figure C.5: HIVA dataset. Two classes non-separable.

for forest cover type classification. The data is obtained from 30×30 meter cells by the

US Forest Service (USFS) Region 2 Resource Information System (RIS). It represents

a two-class classification problem, that classifies Ponderosa pine against everything

else. The features consists of 216 input variables. Each pattern is composed of four

records: two records matching the target and two records chosen at random. Thus

1
2
of the features are distracters. The representation of the dataset is depicted in

Figure C.7.

The Iris dataset is perhaps the best known database to be found in the pattern

recognition literature and is also part of the UCI dataset [65]. The dataset contains
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(d) Parallel coordinates plot with median and
25 percentile.

Figure C.6: NOVA dataset. Two classes non-separable.

three classes of 50 instances each, where each class refers to a type of Iris plant. One of

the classes is linearly separable from the rest, which are not linearly separable [63,77]

as illustrated in Figure C.8.

The Spiral dataset is a synthetic dataset that consist of a two class problem with

an extremely non-linear decision surface, and is typically used to test the ability of

classifiers in finding such difficult decision functions [206].

Similarly, the remaining datasets are synthetic. The Synthetic S is a non-linearly

separable three-class problem whose classes are normally distributed as shown in

Figure C.10. The Synthetic NS is identical, however, the classes are non-separable.
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(c) Data distribution across three dimensions.
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(d) Parallel coordinates plot with median and
25 percentile.

Figure C.7: SYLVA dataset. Two classes non-separable.

The two last examples are for regression purposes. The datasets objective is

to fit the “sinc” function, which is a typical function to approximate [144]. The

f(x) =sinc(x) consists of unevenly sampled points from the sinc function. Similarly,

f(x) =sinc(x)× π consists of unevenly spaced points from the sinc function that are

affected by multiplicative white Gaussian noise (WGN); this makes it a very difficult

function to fit. Figure C.12 illustrates both cases.

The summary of the properties of these datasets are shown in Table C.1. Note

that the simulations include classification in two and multiple classes, as well as

regression problems. These datasets are widely used in the pattern recognition com-

munity, except by the “MODIS” and “Power Load”. The MODIS dataset was ob-
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(c) Data distribution across three dimensions.
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(d) Parallel coordinates plot with median and
25 percentile.

Figure C.8: Iris dataset. Two classes non-separable.

tained from a dust storm detection project developed by the author while at NASA

Goddard Space Flight Center. And the “Power Load” dataset is a relatively new

dataset exploited in MATLAB R© tutorials for neural networks-based regression, and

regression trees. The MODIS dataset is illustrated in Figure C.13 while the Power

Load dataset is depicted in Figure C.14 and C.15.

A double line in Table C.1 indicates that the datasets are synthetic. That is,

they were generated to test specific capabilities of classifiers. The spiral dataset is

a highly non-linear dataset in which many classifiers fail. The datasets Synthetic

S and NS, are three-class separable and non-separable problems respectively, which
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(b) Data distribution across each dimension.

Figure C.9: Spiral dataset. Two classes separable but with a highly non-linear
decision function.
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(a) True 2-D data representation. (b) Data distribution across each dimension.

Figure C.10: Synthetic S dataset. Three classes separable.

are normally distributed in R2. The π symbol in the last row, states for white

Gaussian noise (WGN). Thus, it means that the sinc function was contaminated

with multiplicative WGN.
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(a) True 2-D data representation. (b) Data distribution across each dimension.

Figure C.11: Synthetic NS dataset. Three classes non-separable.

Table C.1: Summary of the Dimensions and Properties of the Datasets.
Dataset Classes Features Training Testing Reference

M N N⋆

Ripley 2 2 250 1, 000 [138]
Sonar 2 60 104 104 [71]
Wine 2 13 110 20 [107]
ADA 2 48 4, 147 415 [98, 148]
GINA 2 970 3, 153 315 [39, 148]
HIVA 2 1, 617 3, 845 384 [26]
NOVA 2 16, 969 1, 754 175 [26]
SYLVA 2 216 13, 086 1, 308 [26, 39]
Iris 3 4 130 20 [128]

MODIS 4 4 374, 566 85+ million [157]
Power Load R 8 35, 064 8, 784 [103]

Spiral 2 2 200 101 [206]
f(x) =sinc(x) R 1 200 200 [144]
Synthetic S 3 2 3 million 3 million −
Synthetic NS 3 2 3 million 3 million −

f(x) =sinc(x) × π R 1 1 million 1 million −
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Figure C.12: Sinc function datasets. True function to approximate and the data
provided.
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(a) False 2-D data representation using PCA. (b) Data distribution across two dimensions.

(c) Data distribution across three dimensions.
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(d) Parallel coordinates plot with median and
25 percentile.

Figure C.13: MODIS dataset. Two classes non-separable.
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Figure C.14: Power Load dataset. Regression proglem.
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Figure C.15: Power Load dataset. Sample statistical distribution across dimensions.
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C.3 Performance Metrics

C.3.1 Regression

The most common parameters to measure good performance in regression are the

following: Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and

Normalized Root Mean Squared Error (NRMSE). These parameters are defined as

follows:

MAE =
1

N

N∑

i=1

|yi − di|, (C.6)

RMSE =

√√√√ 1

N

N∑

i=1

(yi − di)2, (C.7)

NRMSE =
1

σ

√√√√ 1

N

N∑

i=1

(yi − di)2, (C.8)

where y is the actual output of the classifier when the input vector x is presented at

its input, and sigma is the standard deviation of y.

Other error functions to be used are two: sum of squared error (SSE), and sta-

tistical metrics (STAT). The SSE metric is given by the following equation:

SSE =
N∑

i=1

(yi − di)2. (C.9)

Statistical properties of the residual error are based on the residual error: yi−di.
From estimation theory it is known that if one have the residual error expected value

equal to zero, and a unit variance, one have achieved the least-squares solution to

the regression problem, either linear or non-linear. Furthermore, it is understood

that as the variance of the residual error approaches zero, the regression problem is

271



better solved. Let us denote the expected value of the residual error as follows:

µ = E [yi − di] =
1

N

N∑

i=1

yi − di, (C.10)

and the variance of the residual error Var[yi − di − µ] is defined as follows:

σ2 = E [yi − di − µ]2 =
1

N − 1

N∑

i=1

(yi − di − µ)2, (C.11)

from where it is desired that µ, σ2 → 0. Hence, the second error metric is defined as

follows:

STAT = σ + |µ|. (C.12)

C.3.2 Classification

This document shows the usage of standard metrics for classification. These metrics

exist provided a training set (input) {(xi, di)}Ni=1 and from there, exist four possible

outcomes. Suppose one know the input (xi) correspond to the class 0 (di = 0) and

it is classified as 0 (yi = 0), then one call this a true positive (TP ); if it is classified

as 1 (yi = 1), it becomes a false negative (FN). If the input is not 0 (di = 1) and it

is not classified as 0 (yi = 1), it is counted as a true negative (TN); if it is classified

as 0, it is counted as a false positive (FP ). This is exemplified Table C.2, using a

confusion matrix.

Table C.2: Illustration of TP, FP, TN, and FN using a confusion matrix.
SVR’s Output, y

Known Class, d 0 1

0 TP FN
1 FP TN

For any given classification method and a number of j classes, a j-by-j confusion
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matrix exists. This matrix be constructed representing the dispositions of the test

set. The numbers along the major diagonal represent the correct decisions made,

and the numbers off this diagonal represent the errors (the confusion) between the

different classes. An example of a multi-class confusion matrix and its interpretation

for two classes is shown in Table C.3 and Table C.4.

Table C.3: Illustration of TP, FP, TN, and FN for class 0, using a multi-class
confusion matrix.

SVR’s Output, y
Known Class, d 0 1 2 · · · j

0 TP FN FN FN FN
1 FP TN FN FN FN
2 FP FN TN FN FN
... FP FN FN TN FN
j FP FN FN FN TN

Table C.4: Illustration of TP, FP, TN, and FN for class 2, using a multi-class
confusion matrix.

SVR’s Output, y
Known Class, d 0 1 2 · · · j

0 TN FN FP FN FN
1 FN TN FP FN FN
2 FN FN TP FN FN
... FN FN FP TN FN
j FN FN FP FN TN

The confusion matrix is very useful in the estimation of the performance metrics

used in this research. These metrics are defined as follows:

TP rate = TPR =
TP

TP + FN
, (C.13a)
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FP rate = FPR =
FP

FP + TN
, (C.13b)

Accuracy = ACC =
TP + TN

TP + FN + FP + TN
, (C.13c)

Specificity = SPC =
TN

FP + TN
, (C.13d)

Positive Predictive Value = PPV =
TP

TP + FP
, (C.13e)

Negative Predictive Value = NPV =
TN

TN + FN
, (C.13f)

False Discovery Rate = FDR =
FP

FP + TP
, (C.13g)

Matthews Correlation Coefficient = MCC =

TP × TN − FP × FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

, (C.13h)

F1 − Score = 2×
(

TP
TP+FP

)
×
(

TP
TP+FN

)
(

TP
TP+FP

)
+
(

TP
TP+FN

) . (C.13i)

Balanced Error Rate = BER =

1

2

(
FP

TN + FP
+

FN

FN + TP

)
(C.13j)
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Estimate of Scaled Error Rate = ESER =

N∑

i=1

ζΨ{(yi − di)− 0.5} (C.13k)

Remark: In the literature, one might also find the above measures with different

names; i.e. TPR is also known as Sensitivity, SPC is also known as TN rate, PPV

is also known as Precision, and the F1−Score is also known as the F−Measure.

In literature, one can find other typical performance metrics used in this research,

such as the Receiver Operating Characteristics [60] (ROC). The ROC graphs are two-

dimensional graphs in which TP rate is plotted on the ordinates axis and FP rate is

plotted on the abscissas axis, as shown in Figure C.16, constructed from the data [60]

in Table C.5.
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Figure C.16: An example of the ROC graph, and the corresponding AUC for the
example shown in Table .

A ROC graph shows the relative trade-offs between benefits (true positives) and

costs (false positives). The SVR methods here will be treated as discrete classifiers
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Table C.5: Classification targets and predicted values. Borrowed from [60].

d = ( 1 1 0 1 1 1 0 0 1 0 1 0 1 0 0 0 1 0 )T

y = ( .9 .8 .7 .6 .5 .5 .5 .5 .5 .5 .4 .3 .3 .3 .3 .3 .3 .3 )T

that outputs only a class label. Each discrete classifier produces an (fp rate, tp rate)

pair corresponding to a single point in the ROC space. Several aspects in the ROC

space are important to note. The lower left point (0; 0) represents the strategy of

never issuing a positive classification: a classifier commits no false positive errors

but also gains no true positives. The opposite strategy, of unconditionally issuing

positive classifications, is represented by the upper right point (1; 1). The point

(0; 1) represents perfect classification. Informally, one point in ROC space is better

than another if it is to the northwest (tp rate is higher, fp rate is lower, or both)

with respect to the first. Classifiers appearing on the left hand-side of an ROC

graph, near the ordinates axis, may be thought of as ”conservative”: they make

positive classifications only with strong evidence so they make few false positive

errors, but they often have low true positive rates as well. Classifiers on the upper

right-hand side of a ROC graph may be thought of as “liberal”: they make positive

classifications with weak evidence so they classify nearly all positives correctly, but

they often have high false positive rates. The diagonal line represents the strategy

of randomly guessing a class.

For simplicity in the comparison of the proposed method among others, the ROC

performance is expressed in a simple scalar value. A common method is to calculate

the area under the ROC curve, abbreviated AUC. Since the AUC is a portion of the

area of the unit square, its value will always be between zero and one. However,

because random guessing produces a diagonal line between (0; 0) and (1; 1), which

has an area of 0.5, no realistic classifier should have an AUC less than 0.5.

Although ROC curves may be used to evaluate classifiers, care should be taken
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when using them to make conclusions about classifier superiority. Some researchers

have assumed that an ROC graph may be used to select the best classifiers simply by

graphing them in ROC space and seeing which ones dominate. This is misleading; it

is analogous to taking the maximum of a set of accuracy figures from a single test set.

Therefore, the AUC of the proposed LP-SVR model is computed for the different

benchmark classification problems. A ROC plot with the result of each problem will

be included in this document.

Table C.6: Summary of Performance Metrics and Their Interpretation.
Metric Interval Desired

MAE R+ The smallest value.
RMSE R+ The smallest value.
NRMSE R+ The smallest value.
SSE R+ The smallest value.
STAT R+ The smallest value.

TP [0,Z] The largest integer.
TN [0,Z] The largest integer.
FP [0,Z] Zero.
FN [0,Z] Zero.
TPR [0, 1] One.
FPR [0, 1] Zero.
ACC [0, 1] One.
SPC [0, 1] One.
PPV [0, 1] One.
NPV [0, 1] One.
FDR [0, 1] Zero.
MCC [−1, 1] One.

F1-Score [0, 1] One.
BER [0, 1] Zero.
ESER [0, 1] Zero.
AUC [0, 1] One.

AUCHC [0, 1] One.
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C.4 Aditional Tables from Chapter 3

Table C.7 shows the false positive counts and Table C.8 the false negative counts.

The data is shown in proportion to the total number of samples. The proposed

model is comparable to the other classifiers in both tables, and shows better results

for larger problems. Table C.9 shows a comparison of the true positives rate

Table C.7: False Positives in Proportion to the Dataset Size.
Classifiers

Dataset LS SVM LS LPSVR IncSVM LSSVM
FFNN
[5, 20, 2]

Ripley 0.039 0.036 0.032 0.035 0.041
Wine 0 0 0 0 0.05
ADA 0.022 0.036 − 0.034 0.031
GINA 0.003 0 − 0.003 0
HIVA 0.008 0.008 − − −
NOVA 0 0 0 − −
SYLVA 0 0.001 − − 0.002
Iris 0 0 0 0 0

Spiral 0 0 0 0 0
Synthetic S 0.011 0.01 − − −
Synthetic NS 0.048 0.044 − − −

Avg. 0.087 0.012 − − −

(a.k.a. sensitivity). In the average case, the proposed model shows better average

performance, followed by the LS SVM.

Table C.10 shows a comparison of the false positives rate. The proposed approach

exhibits low false positives rate, although is not the lowest.

Table C.11 shows a comparison of the specificity (a.k.a. true negatives rate).

Table C.12 shows a comparison of the positive predictive value (a.k.a. precision).

Table C.13 shows a comparison of the negative predictive value.

Table C.14 shows a comparison of the false discovery rate.

Table C.15 shows a comparison of the Mathews correlation coefficient.

Table C.16 shows a comparison of the F1−score (a.k.a. F−Measure).
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Table C.8: False Negatives in Proportion to the Dataset Size.
Classifiers

Dataset LS SVM LS LPSVR IncSVM LSSVM
FFNN
[5, 20, 2]

Ripley 0.045 0.049 0.058 0.059 0.051
Wine 0 0 0 0 0
ADA 0.137 0.113 − 0.123 0.13
GINA 0 0.003 − 0.006 0.003
HIVA 0.122 0.122 − − −
NOVA 0 0 0 − −
SYLVA 0.002 0 − − 0.002
Iris 0 0 0.15 0.15 0.15

Spiral 0 0 0 0 0.02
Synthetic S 0.022 0.02 − − −
Synthetic NS 0.095 0.089 − − −

Avg. 0.038 0.036 − − −

Table C.9: True Positives Rate
Classifiers

Dataset LS SVM LS LPSVR IncSVM LSSVM
FFNN
[5, 20, 2]

Ripley 0.91 0.902 0.884 0.882 0.898
Wine 1 1 1 1 1
ADA 0.817 0.849 − 0.837 0.827
GINA 1 0.994 − 0.988 0.994
HIVA 0.873 0.873 − − −
NOVA 1 1 1 − −
SYLVA 0.998 1 − − 0.998
Iris 1 1 0.998 0.998 0.998

Spiral 1 1 1 1 0.979
Synthetic S 0.979 0.98 − − −
Synthetic NS 0.969 0.971 − − −

Avg. 0.959 0.961 − − −

Table C.17 shows a comparison of the estimate of scaled error rate.

Table C.18 shows a comparison of the area under the ROC curve.

Table C.19 shows a comparison of the area under the ROC curve convex hull.

Table C.20 shows a comparison of the root mean squared error and normalized
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Table C.10: False Positives Rate
Classifiers

Dataset LS SVM LS LPSVR IncSVM LSSVM
FFNN
[5, 20, 2]

Ripley 0.078 0.072 0.064 0.07 0.082
Wine 0 0 0 0 0.016
ADA 0.087 0.146 − 0.136 0.126
GINA 0.006 0 − 0.006 0
HIVA 0.214 0.214 − − −
NOVA 0 0 0 − −
SYLVA 0 0.013 − − 0.025
Iris 0 0 0 0 0

Spiral 0 0 0 0 0
Synthetic S 0.005 0.005 − − −
Synthetic NS 0.008 0.007 − − −

Avg. 0.036 0.041 − − −

Table C.11: Specificity
Classifiers

Dataset LS SVM LS LPSVR IncSVM LSSVM
FFNN
[5, 20, 2]

Ripley 0.922 0.928 0.936 0.93 0.918
Wine 1 1 1 1 0.984
ADA 0.913 0.854 − 0.864 0.874
GINA 0.994 1 − 0.994 1
HIVA 0.786 0.786 − − −
NOVA 1 1 1 − −
SYLVA 1 0.988 − − 0.975
Iris 1 1 1 1 1

Spiral 1 1 1 1 1
Synthetic S 0.995 0.995 − − −
Synthetic NS 0.992 0.993 − − −

Avg. 0.964 0.959 − − −

root mean squared error.
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Table C.12: Positive Predictive Value
Classifiers

Dataset LS SVM LS LPSVR IncSVM LSSVM
FFNN
[5, 20, 2]

Ripley 0.921 0.926 0.932 0.926 0.916
Wine 1 1 1 1 0.977
ADA 0.966 0.946 − 0.949 0.952
GINA 0.994 1 − 0.994 1
HIVA 0.991 0.991 − − −
NOVA 1 1 1 − −
SYLVA 1 0.999 − − 0.998
Iris 1 1 1 1 1

Spiral 1 1 1 1 1
Synthetic S 0.989 0.99 − − −
Synthetic NS 0.984 0.985 − − −

Avg. 0.986 0.985 − − −

Table C.13: Negative Predictive Value
Classifiers

Dataset LS SVM LS LPSVR IncSVM LSSVM
FFNN
[5, 20, 2]

Ripley 0.911 0.904 0.89 0.887 0.9
Wine 1 1 1 1 1
ADA 0.623 0.652 − 0.636 0.625
GINA 1 0.994 − 0.987 0.994
HIVA 0.19 0.19 − − −
NOVA 1 1 1 − −
SYLVA 0.964 1 − − 0.963
Iris 1 1 0.964 0.964 0.964

Spiral 1 1 1 1 0.98
Synthetic S 0.989 0.99 − − −
Synthetic NS 0.984 0.985 − − −

Avg. 0.878 0.883 − − −
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Table C.14: False Discovery Rate
Classifiers

Dataset LS SVM LS LPSVR IncSVM LSSVM
FFNN
[5, 20, 2]

Ripley 0.079 0.074 0.068 0.074 0.084
Wine 0 0 0 0 0.023
ADA 0.034 0.054 − 0.051 0.048
GINA 0.006 0 − 0.006 0
HIVA 0.009 0.009 − − −
NOVA 0 0 0 − −
SYLVA 0 0.001 − − 0.002
Iris 0 0 0 0 0

Spiral 0 0 0 0 0
Synthetic S 0.011 0.01 − − −
Synthetic NS 0.016 0.015 − − −

Avg. 0.014 0.015 − − −

Table C.15: Mathews Correlation Coefficient
Classifiers

Dataset LS SVM LS LPSVR IncSVM LSSVM
FFNN
[5, 20, 2]

Ripley 0.832 0.83 0.821 0.813 0.816
Wine 1 1 1 1 0.98
ADA 0.655 0.649 − 0.64 0.636
GINA 0.994 0.994 − 0.981 0.994
HIVA 0.345 0.345 − − −
NOVA 1 1 1 − −
SYLVA 0.981 0.993 − − 0.967
Iris 1 1 0.981 0.981 0.981

Spiral 1 1 1 1 0.98
Synthetic S 0.976 0.978 − − −
Synthetic NS 0.965 0.967 − − −

Avg. 0.886 0.887 − − −
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Table C.16: F1−Score
Classifiers

Dataset LS SVM LS LPSVR IncSVM LSSVM
FFNN
[5, 20, 2]

Ripley 0.915 0.914 0.908 0.904 0.907
Wine 1 1 1 1 0.988
ADA 0.885 0.895 − 0.889 0.885
GINA 0.997 0.997 − 0.991 0.997
HIVA 0.928 0.928 − − −
NOVA 1 1 1 − −
SYLVA 0.999 1 − − 0.998
Iris 1 1 0.999 0.999 0.999

Spiral 1 1 1 1 0.99
Synthetic S 0.984 0.985 − − −
Synthetic NS 0.976 0.978 − − −

Avg. 0.971 0.972 − − −

Table C.17: Estimate of Scaled Error Rate
Classifiers

Dataset LS SVM LS LPSVR IncSVM LSSVM
FFNN
[5, 20, 2]

Ripley 264.5 237.501 230 233.5 247.5
Wine 10.415 7.647 5.314 4.026 10
ADA 105.5 110 − 124 103
GINA 21.841 20.689 − 26.551 19.501
HIVA 105 97 − − −
NOVA 7.1 11.213 10.563 − −
SYLVA 94.937 109.06 − − 100.001
Spiral 16.85 20.179 17.209 15.315 18.5

Avg. 56.92 55.75 − − −
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Table C.18: Area Under the Receiver Operating Characteristic Curve
Classifiers

Dataset LS SVM LS LPSVR IncSVM LSSVM
FFNN
[5, 20, 2]

Ripley 0.977 0.974 0.971 0.97 0.971
Wine 1 1 1 1 1
ADA 0.938 0.933 − 0.905 0.927
GINA 1 1 − 1 1
HIVA 0.934 0.954 − − −
NOVA 1 1 1 − −
SYLVA 1 1 − − 1
Spiral 1 1 1 1 1

Avg. 0.981 0.983 − − −

Table C.19: Area Under the Receiver Operating Characteristic Curve Convex Hull
Classifiers

Dataset LS SVM LS LPSVR IncSVM LSSVM
FFNN
[5, 20, 2]

Ripley 0.979 0.977 0.974 0.972 0.973
Wine 1 1 1 1 1
ADA 0.943 0.939 − 0.911 0.932
GINA 1 1 − 1 1
HIVA 0.949 0.966 − − −
NOVA 1 1 1 − −
SYLVA 1 1 − − 1
Spiral 1 1 1 1 1

Avg. 0.984 0.985 − − −
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Table C.20: Root Mean Squared Error and Normalized Root Mean Squared Error.
Classifiers

Dataset LS SVR LS LPSVR
B. Dec. FFNN
Trees [5, 20, 2]

Root Mean Squared Error

f(x) = sinc(x) 0.00119 0.001156 0.001168 0.00105
f(x) = sinc(x)× π 0.11671 0.11463 0.11747 0.11577

Normalized Root Mean Squared Error

f(x) = sinc(x) 0.003479 0.00338 0.003416 0.00307
f(x) = sinc(x)× π 0.32429 0.31848 0.3264 0.32167

Table C.21 shows a comparison of the sum of squared errors, and the statistical

measure.

Table C.21: Sum of Squared Error and Statistical Metrics
Classifiers

Dataset LS SVR LS LPSVR
B. Dec. FFNN
Trees [5, 20, 2]

Sum of Squared Error

f(x) = sinc(x) 0.000283 0.000267 0.000273 0.00022
f(x) = sinc(x)× π 13622.3175 13138.9464 13800.226 13402.8679

Statistical Metrics

f(x) = sinc(x) 0.001352 0.001193 0.00127 0.001082
f(x) = sinc(x)× π 0.11678 0.11467 0.11757 0.11581
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Table C.22 shows a comparison of the number of exact support vectors.

Table C.22: Exact Support Vectors
SV-Based Classifiers

Dataset LS SVM LS LPSVR IncSVM LSSVM

Ripley 0.14 0.06 0.14 1.00
Wine 0.15 0.15 0.21 1.00
ADA 0.16 0.08 − 1.00
GINA 0.07 0.06 − 1.00
HIVA 0.15 0.16 − −
NOVA 0.07 0.07 0.06 −
SYLVA 0.06 0.03 − −
Iris 0.20 0.13 0.19 1.00

Spiral 0.17 0.16 0.16 1.00
f(x) = sinc(x) 0.15 0.16 0.15 1.00

f(x) = sinc(x)× π 0.01632 0.00331 − −
Synthetic S 0.000016 0.000003 − −
Synthetic NS 0.000082 0.000018 − −

Table C.23 shows a comparison of the number of saturated support vectors.

Table C.23: Saturated Support Vectors
SV-Based Classifiers

Dataset LS SVM LS LPSVR IncSVM LSSVM

Ripley 0.16 0.07 0.16 1.00
Wine 0.16 0.19 0.17 1.00
ADA 0.19 0.10 − 1.00
GINA 0.08 0.08 − 1.00
HIVA 0.18 0.18 − −
NOVA 0.07 0.08 0.07 −
SYLVA 0.07 0.03 − −
Iris 0.18 0.14 0.14 1.00

Spiral 0.19 0.19 0.19 1.00
f(x) = sinc(x) 0.18 0.18 0.17 1.00

f(x) = sinc(x)× π 0.01865 0.00379 − −
Synthetic S 0.000019 0.000004 − −
Synthetic NS 0.000093 0.000020 − −
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Appendix D

Background in the Newton

Method and in Kernel Functions

D.1 NewtonMethod for Error FunctionMinimiza-

tion

Let f(θ), f : Rn 7→ R be a real function representing some estimate of classification

of regression error; where θ ∈ Rn is a vector of parameters, and T = {xi, di}Ni=1

defines a training set given by N samples of the M-dimensional data vector x ∈ RM ,

and a desired output class value d ∈ R. Then, let F : Rn 7→ Rm be denoted as

F(θ) =




f1(θ)

f2(θ)
...

fm(θ)




m×n

. (D.1)

That is, F represents m different measures of error, provided model parameters θ,

and training data T . Here, we aim to make (ideally) F(θ) = 0 ≡ (0, 0, . . . , 0)T .

In this research the case when n = m is addressed, that is, when the number of

model parameters to estimate is equal to the number of error metrics used to find

such model parameters: θ = {θ1, θ2, . . . , θn}, and f1, f2, . . . , fn.
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If F : Rn 7→ Rn, then it has a gradient usually known as Jacobian given by

∇F(θ) ≡ JF(θ) =




∇f1(θ)T

∇f2(θ)T
...

∇fn(θ)T




n×n

, (D.2)

where ∇fn(θ) denotes the gradient of the n−th function, given by

∇fn(θ)T =
(

∂fn
∂θ1

∂fn
∂θ2

· · · ∂fn
∂θn

)
1×n

. (D.3)

Since we want to find the vector of parameters θ⋆, for which the training set

T produce minimal error functions, such that F(θ⋆) = 0, then we can use Newton

method assuming, for now, that F is continuously differentiable on Rn.

D.1.1 Newton Method

This method is well known from basic calculus and optimization courses. Newton

method can be summarized as in Algorithm D.1.

Algorithm D.1 Newton method to find θ⋆ that satisfies F(θ⋆) = 0.

Require: F to be continuously differentiable on Rn

Require: A close initial point θ0.
1: for t = 0, 1, 2, . . . , until convergence do

2: Solve for ∆θt in: ⊲ Newton direction

JF(θ
t)∆θt = −F(θt) or (D.4)

∆θt = −
(
JF(θ

t)
)−1

F(θt) (D.5)

3: Update:

θt+1 = θt +∆θt (D.6)

4: end for
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Newton method is known because it has a q−quadratic rate of convergence, find-
ing a solution in very few iterations, such that F(θt) = 0, if and only if such a

solution exists.

This method is also known for one of its main disadvantages: it is a local method.

Therefore, one needs to have in advance a vector of parameters that is close to an

acceptable solution. To overcome this difficulty, the following globalization strategy

is established.

D.1.2 Globalization Strategy

The proposed globalization strategy uses the following merit function:

Mf (θ) =
1

2
||F(θ)||22, (D.7)

where || · ||2 denotes the ℓ2−norm. Then the following property is defined.

Property D.1. ∆θ is a descent direction for Mf (θ). That is, 0 ≥ ∆θ in the linear

system given by

∇Mf (θ)
T∆θ = −Mf (θ). (D.8)

Proof. Let ∇Mf (θ) be the derivative of the merit function (D.7) denoted as:

∇Mf (θ) =
1

2
JF(θ)

TF(θ). (D.9)

Then, substituting (D.9) into (D.8) results

1

2
F(θ)TJF(θ)∆θ = −1

2
||F(θ)||22 (D.10)
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which reduces to

∆θ = − (JF(θ))
−1

F(θ) ≤ 0. (D.11)

Hence, 0 ≥ ∆θ .

Since the merit function (D.7) is a valid function that guarantees a descent at ev-

ery iterate, then we can establish the globalization strategy by defining the following

property.

Property D.2. If ∆θ is a descent direction ofMf (θ), then, there exists a β1 ∈ (0, 1]

such that

Mf (θ + β1∆θ) ≤Mf (θ) + β1β2∇Mf (θ)
T∆θ. (D.12)

Proof. The proof is given by Dennis et al.. 1996 [51] (see Theorems 6.3.2. and 6.3.3.

pp. 120-123).

Thus, substituting (D.7) into (D.12), one obtains the following

1

2
||F(θ + β1∆θ)||22 ≤

1

2
||F(θ)||22+ (D.13)

β1β2F(θ)
TJF(θ)∆θ, (D.14)

which reduces to

||F(θ + β1∆θ)||2 ≤ ||F(θ)||2 +
√

1− 2β1β2, (D.15)

where β2 is a parameter controlling the speed of the globalization strategy (a.k.a.

line search). Typically β2 = 1× 10−4 [51].

Using the line-search globalization strategy, we can modify Newton method to

include a sufficient decrease condition (a.k.a. Armijo’s condition). The Globalized
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Newton method is as shown in Algorithm D.2.

Algorithm D.2 Globalized Newton method to find θ⋆ that satisfies F(θ⋆) = 0.

Require: F to be continuously differentiable on Rn

Require: An initial point θ0.
1: for t = 0, 1, 2, . . . , until convergence do

2: Solve for ∆θ0 in: ⊲ Newton direction

JF(θ
t)∆θt = −F(θt)

3: Sufficient decrease: ⊲ Armijo’s condition

Find β1 that satisfies:

||F(θt + β1∆θt)||2 ≤ ||F(θt)||2 +
√

1− 2β1β2

4: Update:

θt+1 = θt + β1∆θt (D.16)

5: end for

Notice the new update step (D.16) that considers the sufficient decrease condition.

This will produce an acceptable step towards the solution parameters: θt → θ⋆.

This material completes the background needed in order to follow the discussion

presented in Section 4.5. Nonetheless, the reader can read further into details given

in textbooks by Dennis, et al. [51], or Nocedal, et al. [136].

D.2 Background in Kernel Functions

D.2.1 Mercer’s Theorem

Theorem D.1. If k(x, w) is a Mercer kernel then there exists a Hilbert space Hk of

real valued functions defined on X and a feature map φ : X 7→ Hk such that,

〈φ(x), φ(w)〉k = k(x, w) (D.17)
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where 〈·, ·〉k is the innerproduct on Hk.

Proof. Let L be the vector space containing all the real valued functions f defined

on X of the form,

f(x) =

m∑

j=1

αjk(xj , x) (D.18)

where m is a positive integer, the αj ’s are real numbers and {x1, . . . , xm} ⊂ X .
Define in L the inner product,

〈
m∑

i=1

αik(xi, ·),
n∑

j=1

βjk(wj, ·)
〉

=

m∑

i=1

n∑

j=1

αiβjk(xi, wj) (D.19)

Since k is a Mercer kernel the above definition makes L a well defined inner product

space. The Hilbert space Hk is obtained when we add to L the limits of all the

Cauchy sequences (with respect to the 〈·, ·〉) in L.
Notice that the inner product in Hk was defined such that

〈k(x, ·), k(w, ·)〉k = k(x, w). (D.20)

We can then take the feature map to be,

φ(x) = k(x, ·) (D.21)

For a more detailed explanation of this topic, consult [41, 129].

D.2.2 Reproducing Kernel Hilbert Space

The space Hk is said to be a Reproducing Kernel Hilbert Space (RKHS). Moreover,

for all f ∈ Hk

f(x) = 〈k(x, ·), f〉k. (D.22)
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This follows from the reproducing property when f ∈ L and by continuity for all

f ∈ Hk. It is also easy to show that the reproducing property is equivalent to the

continuity of the evaluation functionals δx(f) = f(x).

The Mercer kernel k(x, w) naturally defines an integral linear operator that we

also denote by k : Hk 7→ Hk, where,

(kf)(x) =

∫
k(x, y)f(y)dy (D.23)

and since k(x, y) = K is symmetric and positive definite, it is orthogonally diagonal-

izable. Thus, there is an ordered orthonormal basis set {φ1, φ2, . . .} of eigen vectors

of K. E.g., for j = 1, 2, . . .

Kφj = λjφj (D.24)

with 〈φi, φj〉k = δij , λ1 ≥ λ2 ≥ . . . > 0 and such that,

k(x, w) =

∞∑

j=1

λjφj(x)φj(w) (D.25)

from where it follows that the feature map is,

φ(x) =
∞∑

j=1

λ
1/2
j φj(x)φj (D.26)

producing,

k(x, w) = 〈φ(x), φ(w)〉k (D.27)

Notice also that any continuous map φ : X 7→ H where H is a Hilbert space,

defines k(x, w) = 〈φ(x), φ(w)〉 which is a Mercer Kernel.
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D.2.3 Representer Theorem

Theorem D.2 (Reisz Representer Theorem). If φ is a bounded functional on H
then exists a unique u ∈ H such that φ (f) = 〈f, u〉H for all f ∈ H define a func-

tion/operator k is positive-definite if for all functions
∫
f (x) k (x, x′) f (x′) dxdx′ > 0.

Proof. Proof follows fromMercer’s theorem and the theory of RKHS explained above.
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Appendix E

Remote Sensing

E.1 Non-Linear Enhancement for MODIS True

Color Images

For any downloaded MODIS reflectance data, if we try to make a true-color image

using bands B1, B4, and B3 as the RGB values, the images will appear dark. The

key to solve this problem is to scale the data differentially as proposed by Gumley

et. al. [59]. This involves two vectors:

input = [0, 30, 60, 120, 190, 255]

output = [0, 110, 160, 210, 240, 255]

The differential scaling consists of the following steps: First, scale the MODIS

reflectance data into the range [0, 255]. Second, use the input vector to select pixels

in the scaled image and re-scale those pixels to the range indicated by the output

vector. For example, take the pixels in the scaled image whose range fall between 0

and 30, and re-scale those pixels into the range 0 to 110. Then find the pixels with

values between 30 and 60, and scale those pixels into the range of 110 to 160, and so

on.
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E.2 List of MODIS Level 1B Data Granules

The complete list of data granules referred in Section II can be found in [157]. These

events correspond to NASA Terra MODIS instrument. The reference will show level

1B files.

296



Curriculum Vitae

Pablo Rivas Perea was born on August 4, 1980, at a small beach town on the Pacific
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