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Abstract

Support Vector Machines (SVMs) have become one of the most popular supervised learning-machines in the statistical pattern
recognition area. They are used for classification (i.e. SVM) and regression analysis (i.e. Support Vector Regression, SVR).
However, when the number of samples available to model an SVM/SVR problem supersedes the computational resources (i.e.
large-scale problems where the number of dimensions or samples are in the order of millions) the traditional methods fail in finding
the optimal solution to a classification problem based on regression models. The reason for the typical failures is that the solution
finding process involves high-dimensional vector operations. The aim of this research is to overcome the natural limitation of large-
scale problems particular to SVR using an efficient convex linear programming framework. We propose a sequential decomposition
method based on a linear programming support vector regression (SLP-SVR) approach. The proposed scheme uses an interior point
method (IPM) to solve a sequence of smaller LP optimization sub-problems given by the proposed decomposition strategy.Then
we perform chunking (preserve the the support vectors) of the sub-problem at each iterate. We take advantage of the quadratic rate
of convergence of IPM on the proposed LP-SVR method to finds the global solution to the regression/classification problem in few
iterates. Experiments were performed to solve the large-scale sonar mine-rocks detection problem show fast rate of convergence,
and very good performance when compared to other approachessuch as neural networks and PCA-based methods. The proposed
linear programming formulation is efficient from the mathematical point of view and the sequentialdecomposition strategy using
IPM poses fast rate of convergence to make the proposed modelalso efficient from the computational point of view.

Keywords: Support vector machines, support vector regression, linear programming, interior point methods, sequential
optimization.
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1. Introduction

Real-life problems are difficult to model by finding a set of
rules or a linear relationship. Such is the case of sonar-based
rescue or military missions as illustrated in Figure 1. The prob-
lem we address here is the large-scale automatic detection of
mines based on millions of sonar frequency-based data. The
mines subject of this study are typically cylindrically shaped
as shown in Figure 2. Typically researchers and engineers can
design methods to produce an image of sea surface and a quali-
fied technician may observe and detect possible threats. Figure
3 shows an example of this kind of technology. In our study we
use frequency-based information at sonar range. The dataset of
information we use comes from Gorman’set.al. [1] previous
work using neural networks to detect mines. However, in our
research we use a novel concept in the statistical and machine
learning community.

Statistical learning theory concepts introduced by Vapnik
et.al. [2, 3] leaded to Support Vector Machines for Regression
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(SVR), derived from the concepts ofstructural risk minimiza-
tion andempirical risk minimization. The training (setup) of
an SVR is equivalent to solve a Quadratic Program (QP) with
linear constraints [4]. The number of data points (instrument
readings, calibration data) is equivalent to the number of vari-
ables for the QP problem. Hence, problems arise as the training
data set size grows to millions, as is the case of real-life en-
gineering applications, such as instrument calibration, military
equipment testing and certification, etc.

Current approaches [4, 5, 6, 7, 8, 9] assume that the following
conditions are satisfied: (i) the number of data points available
to train the SVR is manageable; (ii) the total number of support
vectors (relevant information) is manageable. However, these
conditions do not hold in some engineering applications. Par-
ticularly, we aim to address condition (i) where the number of
samples is in the order of millions.

We propose a training algorithm that takes advantage of Lin-
ear Programming (LP) efficiency. We pose the SVR optimiza-
tion problem as an LP problem rather than a QP problem. We
use an interior point methods (IPM) to solve a sequence of LP
problems that converge quadratically to the solution. Then, we
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Figure 1: Sonar instrument on-board a ship sensing the seafloor.

Figure 2: Real picture of a cylindrical mine at a sandy seafloor.

Figure 3: A typical display or image produced by sonar-basedalgorithms.

address the problem of sonar target detection using millions of
sonar instrument readings.

This paper is organized as follows: the fundamentals of SVR
are explained in Section 2. The linear programming formula-
tion for SVR is explained in Section 3. In Section 4 we describe
the proposed strategy for sonar large-scale target detection. Fi-
nally, we draw conclusions in Section 5.

2. Support Vector Regression Theoretical Basis

In 1995, Vapniket al. [2, 3] and later Smolaet al. [10, 11]
explored and developed the SVM approach for regression prob-
lems. This approach is commonly known as Support Vector
Regression (SVR), which increased the application range of
SVMs since SVRs can also perform multi-class pattern recog-
nition. This type of machine is typically formulated using
quadratic optimization under the umbrella of convex optimiza-
tion.

Let’s consider the linear regression case where the depen-
dency of a scalar observabled on a regressorx is denoted as

d = wT x + b, (1)

where the parameter vectorw and the biasb are the unknowns.
The problem is to estimatew and b given the training sam-
ples{(xi, di)}Ni=1 where the vector elementsxi are assumed to be
statistically independent and identically distributed (iid). The
problem formulated by Vapnik is aimed to minimize therisk
functional

1
2
||w||22 +C

N
∑

i=1

|yi − di|ǫ (2)

which can be expressed as an optimization problem in its primal
form as follows [12]:

minw,Lǫ
1
2 ||w||

2
2 + C

∑N
i=1 |yi − di|ǫ

s.t.



















di − yi ≤ ǫ + ξi
yi − di ≤ ǫ + ξ∗i
ξi, ξ

∗
i ≥ 0

for i = 1, 2, · · · ,N.

where the summation in the cost function accounts for theǫ-
insensitive training error, which forms a tube where the solu-
tion is allowed to be defined without penalization, as shown in
Figure 4.C > 0 is a constant describing the trade off between

Figure 4: The epsilon tube where the solution is is allowed tobe defined without
penalization.
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the training error and the penalizing term||w||22. The variable
yi is the estimator output produced in response to the inputxi,
that isyi = wT xi + b. The variablesξi andξ∗i are two sets of
nonnegative slack variables that describe theǫ-insensitive loss
function denoted as

Lǫ (d, y) =

{

|d − y| − ǫ for |d − y| ≥ ǫ
0 otherwise,

(3)

whereǫ is a prescribed parameter. This loss function is illus-
trated in Figure 5 in relation with the data shown in Figure 4.

Figure 5: Theǫ-insensitive loss function. Solution data-points are penalized as
they go apart from the limits specified by the parameterǫ.

The objective function in the primal can be rewritten in terms
of the slack variablesξ andξ∗, by observing the restrictions of
the primal and the definition of theǫ-insensitive function, and
thus definingξ = di−yi− ǫ andξ∗ = yi−di− ǫ. Then one obtain
another common version of the primal problem as follows:

minw,ξ,ξ∗
1
2 ||w||

2
2 + C

∑N
i=1

(

ξi + ξ
∗
i

)

s.t.



















wT xi + b − di ≤ ǫ + ξi
di − wT xi − b ≤ ǫ + ξ∗i

ξ, ξ∗ ≥ 0
for i = 1, 2, · · · ,N.

(4)

The SVR problem in the dual is obtained by the Lagrange
multipliers method. The result is the maximization problem

maxw,ξ,ξ∗ ,α,α∗ ,γ,γ∗
1
2 ||w||

2
2 + C

∑N
i=1

(

ξi + ξ
∗
i

)

−
∑N

i=1

(

γiξi + γ
∗
i ξ
∗
i

)

−
∑N

i=1αi

(

wT xi + b − di + ǫ + ξi
)

−
∑N

i=1α
∗
i

(

di − wT xi − b + ǫ + ξ∗i
)

s.t.











































αi (ǫ + ξi + di − yi) = 0
α∗i

(

ǫ + ξ∗i + di − yi

)

= 0
(αi −C) ξi = 0
(

α∗i −C
)

ξ∗i = 0
ξ, ξ∗,α,α∗,γ,γ∗ ≥ 0

for i = 1, 2, · · · ,N.

(5)

whereα, α∗, γ, andγ∗ are the nonnegative Lagrange multipli-
ers.

Problems (4) and (5) solve the linear regression problems,
and for the non-linear regression case it simply follows to in-

troduce a kernel functionk(·, ·) mapping in the following way:

xT
i x j = k

(

xi, x j

)

=φT (xi)φ(x j), (6)

xi = k (xi, ·) =φ(xi), (7)

where the map
φ : X 7→ H (8)

is known as feature map from the data spaceX into the feature
spaceH . The feature space is assumed to be a Hilbert space of
real valued functions defined onX. The typical kernel functions
are as follows:

Polynomial : (xT
i x j + 1)p, (9)

Radial : e−
1

2σ2 ||xi−x j ||
2
2, (10)

Sigmoidal : tanh(κ1xT
i x j + κ2). (11)

The kernelk
(

xi, x j

)

may also be referred as thei j-th element of
the symmetricN × N matrix

K =
{

k
(

xi, x j

)}N

i, j=1
. (12)

The matrixK is called “kernel matrix.” It is positive definite
since it satisfies the conditionaT Ka ≥ 0 for any real valued
vectora of dimension compatible withK. The matrix notation
of K is specially useful when posing the optimization problem
in matrix-vector form.

Then, introducing introducing kernel functions for the pri-
mal case, the sole modification is on the restrictions which are
redefined as

wT k(xi, ·) + b − di ≤ ǫ + ξi (13a)

di − wT k(xi, ·) − b ≤ ǫ + ξ∗i (13b)

and for the dual problem the objective function is redefined as

max
w,ξ,ξ∗ ,α,α∗ ,γ,γ∗

1
2 ||w||

2
2 +C

∑N
i=1

(

ξi + ξ
∗
i

)

−
∑N

i=1

(

γiξi + γ
∗
i ξ
∗
i

)

−
∑N

i=1αi

(

wT k(xi, ·) + b − di + ǫ + ξi
)

−
∑N

i=1α
∗
i

(

di − wT k(xi, ·) − b + ǫ + ξ∗i
)

(14)

for i, j = 1, 2, · · · ,N.

3. Formulation of a Linear Programming SVR

Linear Programs are those problems that can be stated in the
canonical form as:

minz cT z

s.t.

{

Az = b
z ≥ 0.

(15)

wherez ∈ ℜn is a vector containing the unknowns,c ∈ ℜn and
b ∈ ℜm are vectors of known parameters, andA ∈ ℜm×n is a
matrix of known coefficients associated toz in a linear relation-
ship.
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Let us re-state the original support vector regression problem
(4) using theℓ1-norm. The decision function can be expressed
by means ofx as d(xi) = wT xi + b. Thus, using Mercer’s
theorem[13, 14], we can replace the expressionwT xi + b, by
the following kernel expansion

d(x j) =
N

∑

i=1

αik(x j, xi) + b, (16)

whereα, b can take on any real value,k(·, ·) is a valid kernel
function such as (9)-(11). Then, taking advantage of the geo-
metric analysis, which states thatξiξ∗i = 0 in regression prob-
lems, it is sufficient to just introduceξi, then the problem be-
comes

minα,ξ ||α||1 + 2C
∑N

i=1 ξi

s.t.



















d j −
∑N

i=1αik(x j, xi) − b ≤ ǫ + ξ j
∑N

i=1αik(x j, xi) + b − d j ≤ ǫ + ξ j

ξ ≥ 0
for j = 1, 2, · · · ,N.

(17)

Then, since the requirement of a linear program is to have the
unknowns greater than zero, we must then decompose such
variables in their positive and negative part. Therefore, we de-
noteα = α+ − α−, andb = b+ − b−. Then, in order to pose the
problem as a linear program in its canonical form and in order
to use an interior point method solver, problem (17) must have
no inequalities; thus, we need to add a slack variableu, which
results on the following problem

min
α+,α−,b+,b−,ξ,u

∑N
i=1

(

α+i + α
−
i + 2Cξi

)

s.t.











































−
∑N

i=1(α+i − α
−
i )k(x j, xi)

−b+ + b− − ξ j + u j = ǫ − d j
∑N

i=1(α+i − α
−
i )k(x j, xi)

+b+ − b− − ξ j + u j = ǫ + d j

α+j , α
−
j , b
+, b−, ξ j, u j ≥ 0

for j = 1, 2, · · · ,N.
(18)

which is finally an acceptable problem to be solved. Note that
(18) allows us to define the following equalities:

A =
(

−K K −1 1 −I I
K −K 1 −1 −I I

)

, (19)

b =
(

1ǫ − d
1ǫ + d

)

, (20)

z =
(

α+ α− b+ b− ξ u
)T
, (21)

c =
(

1 1 0 0 2C 0
)T
. (22)

Then, we have posed the problem in the LP canonical form (15).
Note that the problem has (4N+2) variables and 2N constraints.

This is a definition more accurate than the one described by
Lu et.al. in late 2009 [15], and also it is a generalized and
extended version of the LP-SVM work presented by Toriiet.al.
in early 2009 [16] and by Zhang in early 2010 [17].

By introducing the Lagrange multipliers (λ, s) into the primal
problem above, we obtain the following dual:

maxλ bTλ

s.t.

{

ATλ + s = c
s ≥ 0.

(23)

whereλ is a vector of dual variables defined overℜ2N , ands is
a slack variable vector inℜ4N+2.

The solution to the primal problem is denoted asz∗, and the
solution to the dual problem is denoted as (λ∗, s∗). The duality
theorem states thatcT z∗ = bTλ∗, which means that the solution
z∗ also solves the dual, and the solution of the dual (λ∗, s∗) also
solves the primal.

The Karush-Kuhn-Tucker (KKT) conditions, are a set of
equalities and inequalities that for this problem are necessary
and sufficient conditions to establish optimality of the model.
The KKT conditions for the LP problem are the following:

ATλ + s = c, (24a)

Az = b, (24b)

zi si = 0, (24c)

(z, s) ≥ 0, (24d)

i = 1, 2, ..., 4N + 2,

where the equalityzisi implies that one of both variables must
be zero. This equality will be referred to as thecomplementar-
ity condition. Note that the problem depends on the variables
(z, λ, s), and if the set of solutions (z∗, λ∗, s∗) satisfy all the con-
ditions, the problem is said to be solved. The vector (z∗, λ∗, s∗)
is known as aprimal-dual solution.

The dual problem (23) in its extended form is

min
λ,s

∑N
i=1 λi (ǫ − di) +

∑N
i=1 λi+N (ǫ + di)

s.t.































































∑N
i=1 λ j+Nk(x j, xi) −

∑N
i=1 λ jk(x j, xi) + s j = 1j

∑N
i=1 λ jk(x j, xi) −

∑N
i=1 λ j+Nk(x j, xi) + s j+N = 1j
∑N

i=1 λi+N − λi + s2N+1 = 0
∑N

i=1 λi − λi+N + s2N+2 = 0
−λ j − λ j+N + s j+2N+2 = 2C
λ j + λ j+N + s j+3N+2 = 0

s ≥ 0
for j = 1, 2, · · · ,N.

(25)
The KKT conditions (24) in their extended form are

N
∑

i=1

λ j+Nk(x j, xi) −
N

∑

i=1

λ jk(x j, xi) + s j = 1j (26a)

N
∑

i=1

λ jk(x j, xi) −
N

∑

i=1

λ j+Nk(x j, xi) + s j+N = 1j (26b)

N
∑

i=1

λi+N − λi + s2N+1 = 0 (26c)

N
∑

i=1

λi − λi+N + s2N+2 = 0 (26d)
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−λ j − λ j+N + s j+2N+2 = 2C (26e)

λ j + λ j+N + s j+3N+2 = 0j (26f)

−

N
∑

i=1

(α+i − α
−
i )k(x j, xi) − b+ + b− − ξ j + u j = ǫ − d j

(26g)
N

∑

i=1

(α+i − α
−
i )k(x j, xi) + b+ − b− − ξ j + u j = ǫ + d j

(26h)

s jα
+
j + s j+Nα

−
j + s2N+1b+ + s2N+2b−

+s j+2N+2ξ j + s j+3N+2u j = 0 (26i)

si, α
+
j , α
−
j , b
+, b−, ξ j, u j ≥ 0 (26j)

for all j = 1, 2, · · · ,N, andi = 1, 2, · · · , 4N + 2

where the equalities (26a)-(26f) come from the expansion of
(24a), the equalities (26g)-(26h) come from the expansion of
(24b), the complementarity condition (24c) results in the ex-
pansion (26i), and the inequalities in (24d) are the ones that
force positivity in (26j).

4. Sonar Large-Scale Target Detection using LP-SVR

In this section we explain the proposed solution of (18), (25),
and (26a)-(26f) for the large scale sonar-based mines detection
problem. The idea is to divide the training set{xi, di}i∈T , for T =
{1, 2, ...,N} in two subsets. The first is theworking set {xi, di}i∈B,
for B ⊂ T , |B| ≪ |T |. The second set is the remaining of the
data{xi, di}i∈M , for M ⊂ T , |B| ≪ |M| < |T |, andB + M = T .
Then, it follows to define

α+B,α
−
B = α

+
i , α

−
i , for all i ∈ B,

α+M ,α
−
M = α

+
j , α
−
j , for all j ∈ M,

respectively. In this proposed formulation, the set of remaining
variables are fixedα+j , α

−
j = 0, for all j ∈ M, This follows the

idea of the well known QP-SVM methods, such as [4, 5, 6, 7,
8, 9]. Under this formulation, the subproblem to solve becomes

min
α+B ,α

−
B ,b
+,b−,ξB,uB

∑

i∈B

(

α+i − α
−
i + 2Cξi

)

s.t.







































−
∑

i∈B(α+i − α
−
i )k(x j, xi)

−b+ + b− − ξ j + u j = ǫ − d j
∑

i∈B(α+i − α
−
i )k(x j, xi)

+b+ − b− − ξ j + u j = ǫ + d j

α+j , α
−
j , b
+, b−, ξ j, u j ≥ 0

for all j ∈ B
(27)

Then, we can solve this problem by finding a feasiblez∗ =
[α+∗B ,α

−∗
B , b

+∗, b−∗, ξ∗B, u
∗
B]. Using the same argument, we find

the corresponding dual problem to be

min
λ,s

∑

i∈B λi (ǫ − di) +
∑

i∈B λi+|B| (ǫ + di)

s.t.







































































∑

i∈B λi+|B|k(x j, xi) −
∑

i∈B λik(x j, xi) + s j = 1j
∑

i∈B λik(x j, xi) −
∑

i∈B λi+|B|k(x j, xi)
+s j+|B| = −1j

∑

i∈B λi+|B| − λi + s2|B|+1 = 1
∑

i∈B λi − λi+|B| + s2|B|+2 = −1
−λi − λi+|B| + s j+2|B|+2 = 2Ci

λi + λi+|B| + s j+3|B|+2 = 1i

s ≥ 0
for all j ∈ B

(28)
and the KKT conditions are rewritten as follows

∑

i∈B

λi+|B|k(x j, xi) −
∑

i∈B

λik(x j, xi) + s j = 1j (29a)

∑

i∈B

λik(x j, xi) −
∑

i∈B

λi+|B|k(x j, xi) + s j+|B| = −1j (29b)

∑

i∈B

λi+|B| − λi + s2|B|+1 = 1 (29c)

∑

i∈B

λi − λi+|B| + s2|B|+2 = −1 (29d)

−λ j − λ j+|B| + s j+2|B|+2 = 2C j (29e)

λ j + λ j+|B| + s j+3|B|+2 = 1j (29f)

−
∑

i∈B

(α+i − α
−
i )k(x j, xi) − b+ + b− − ξ j + u j = ǫ − d j (29g)

∑

i∈B

(α+i − α
−
i )k(x j, xi) + b+ − b− − ξ j + u j = ǫ + d j (29h)

s jα
+
j + s j+|B|α

−
j + s2|B|+1b+ + s2|B|+2b− (29i)

+s j+2|B|+2ξi + s j+3|B|+2u j = 0 (29j)

si, α
+
j , α
−
j , b
+, b−, ξ j, u j ≥ 0 (29k)

for all i, j ∈ B.

The initial working setB is assumed to be smaller than the
original problem since we kept only|B| data points and 3|B|
constraints for the primal. For the dual, we have 2|B| out of
2N data points and 4|B| + 2 out of 4N + 2 constraints. And,
also it is assumed that the set of parameters (T, |B|,C, ǫ, σ, t∗, µ)
are given. The first parameterC is the trade-off between over-
fitting or relaxing the solution. The parameterσ controls the
characteristics of the kernel function like the RBF in (10).The
parametert∗ is the maximum number of iterations allowed.

Under this formulation, we start by fixingα±i = 0,∀i ∈ M,
and proceed to solve the subproblem (27),(28) satisfying the
KKT conditions (29a)-(29k) of the subproblem. If the subprob-
lem is solved, then check if the KKT conditions are satisfied
for all i ∈ M. To do this we have to restate the KKT condi-
tions, such that the missing values in the objective function and
constraints are estimated according to the subproblem solution.

First, assume that the primal subproblem inequalities are sat-
isfied, then remove from the setB those indexes that are not
associated with support vectors (i.e. those indexesi ∈ B such
thatαi = 0). Then, the values for the primal variablesξi andui
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for i ∈ M can be estimated according to the following cases:

Case 1: When the following inequalities holds true forj ∈ M

−
∑

i∈B

(α+i − α
−
i )k(x j, xi) − b+ + b− − ǫ + d j ≥ 0 (30a)

∑

i∈B

(α+i − α
−
i )k(x j, xi) + b+ − b− − ǫ − d j ≥ 0, (30b)

then the values for thej-th index are computed as follows

u j = 2















∑

i∈B

(α+i − α
−
i )k(x j, xi) + b+ − b− − d j















, (30c)

ξ j = 0. (30d)

Case 2: When the inequalities (30) holds false, then the values
for the j-th index are computed as follows:

u j = 0, (30e)

ξ j = −2















∑

i∈B

(α+i − α
−
i )k(x j, xi) + b+ − b− − d j















. (30f)

Here the values for the dual variableλi = 0 for i ∈ M, and
the values for the dual slacksi for i = 1, 2, ..., 4|M| + 2 can be
estimated as follows:

s j = 1j −
∑

i∈B

λi+|B|k(x j, xi) +
∑

i∈B

λik(x j, xi) (30g)

s j+|B| = −1j −
∑

i∈B

λik(x j, xi) +
∑

i∈B

λi+|B|k(x j, xi) (30h)

s2|B|+1 = 1−
∑

i∈B

λi+|B| + λi (30i)

s2|B|+2 = −1−
∑

i∈B

λi + λi+|B| (30j)

s j+2|B|+2 = 2C j + λ j + λ j+|B| (30k)

s j+3|B|+2 = 1j − λ j − λ j+|B| (30l)

for all j ∈ M.

Once we have estimated all the values for the setM using (30),
we must verify the KKT conditions; particularly the following
conditions

zi si = 0

(z, s) ≥ 0

i = 1, 2, ..., 4|M|+ 2

because they ensure that both the primal and dual problems are
being solved simultaneously, and that the solutions are strictly
non-negative. If there were no violations, the problem has been
solved for both setsB,M, and the method has converged for the
set of parameters given. However, if there were violations in
M, we look for those inactive constraints inB (i.e. those whose
αi = 0) and move them intoM and replace those indexes with
the indexes that violate the complementarity conditions from M

into B. We maintain record of which indexes has been moved
from M into B. The number of indexes moved fromM to B
is proportional to the number of indexes moved out fromB to
M. In the case that all the constraints inB are active (i.e. those
whoseαi , 0), then the size ofB is incremented by a scaling
exponent as follows

|B|t+1 = |B|t + 1+ ⌈log |B|t⌉, such that: |B|t+1 ≤ |M|t (31)

allowing the consideration of more indexes. This ends the first
iteration,t = 0. And it should be repeated until convergence.
After t > 10 iterations, we check if there exist any sample in-
dexes that have been moving fromM into B for at least five
times. If this condition is true, the indexes will be held inB
without being removed until the algorithm converges. The com-
plete process can be summarized in the following steps:

Algorithm 1 Decomposition Strategy for Large-Scale LP-SVR
Training

1: SetB with the first|B| indexes from the data set.
2: For all indexes inB Solve LP sub-problem.
3: Verify if the current solution satisfy the KKT conditions for

the indexes inM. If so, thenStop.
4: Those indexes that have been at leastk times in and out of

the working setB are moved permanently intoB.
5: If the number of variables violating the KKT conditions

increased, then,roll-back the indexes that were moved out
from B to M at iterationt − 1, and go to Step 2.

6: Move theworst 1 + ⌈log |B|⌉ violating indexes fromM to
B. Go to Step 2.

The fact that our algorithm stops when the KKT conditions
are satisfied, guarantees the convergence to an optimal solu-
tion. Furthermore, our algorithm avoids a possible infiniteloop
by limiting indexes from going in and out of the setB for a lim-
ited number of times. This guarantees that the algorithm will
converge in finite number of iterations. Of course, the solution
will be sub-optimal if the algorithm stops when the maximum
number of iterationst∗ is reached.

In the following subsection, we explain how the optimality is
reached, and why the function is decreasing at each iteration.

4.1. Convergence and Optimality Conditions

Problem (27) is solved using Interior Point Methods (IPM).
A more extensive reference for IPM can be found in [18]. For
this case we use aninfeasible IPM within the path-following
framework, which means that the algorithm will follow the path
to the solution instead of looking at the vertex of each constraint
e.g. the simplex method. For promoting a fast rate of conver-
gence apredictor-corrector strategy in computing the Newton
step was chosen.

First, let us consider the KKT conditions (26a)-(26j) estab-
lished for our problem (18). Let us recall that the problem (15)
is equivalent to (18), and that the KKT conditions (24a)-(24d)
are also equivalent to (26a)-(26j). IPM considers the KKT con-
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ditions as the following function

F(z, λ, s) =





















ATλ + s − c
Az − b

XS1





















= 0, (32a)

(z, s) ≥ 0 (32b)

where X = diag(z1, z2, ..., zn), and S = diag(s1, s2, ..., sn).
The IPM generates a set of solutions (zt, λt, st) at each itera-
tion t. The key idea is to find solutions (zt, λt, st) that satisfy
F(zt, λt, st) = 0 and more importantly (zt, st) being strictly pos-
itive, except at the solution wherez or s may be equal to zero.

Then, IMP uses a quasi-Newton’s method to approach the
solution of problem (32a). The most remarkable difference be-
tween Newton’s method and IPM, is that the former does not
care of keeping (z, s) ≥ 0, while the latter does. IPM surrounds
the current point in a linear model in order to obtain the step
direction (∆z,∆λ,∆s) as follows:

J(z, λ, s)





















∆z
∆λ

∆s





















= −F(z, λ, s), (33)

whereJ(z, λ, s) is the Jacobian ofF(z, λ, s). Then the step di-
rection (using a predictor-corrector strategy) becomes





















0 AT I
A 0 0
S 0 X









































∆z
∆λ

∆s





















=





















−rc

−rb

−XS1 − ∆Xaff∆Saff1 + σµ1





















,

(34)
whererc = ATλ+s−c andrb = Az−b are residuals,∆Xaff,∆Saff

are the affine-scaling direction,µ is the duality gap, andσ is an
adaptive line-search parameter depending onµ. The new iterate
is therefore

(z, λ, s) + α(∆z,∆λ,∆s), (35)

whereα ∈ (0, 1] is appropriately chosen in order to main-
tain (z, s) strictly positive. As mentioned before, the predictor-
corrector strategy promotes a very fast rate of convergence,
which is desirable. In fact, theoretical studies demonstrate that
IPM is q-quadratically convergent to a feasible solution,i.e. it
is equivalent to the Newton method. Even ifJ(z, λ, s) is de-
generate, the IPM isq-superlinearly convergent. In contrast,
the simplex method which is typically used in most decompo-
sition strategies in large-scale SVM, is of exponential complex-
ity. Figure 6 shows how the IPM iteratively minimizes the KKT
conditions at an arbitrarily three-class non-separable classifica-
tion problem.

4.1.1. Sonar Large-Scale Target Detection Results
The problem of sonar target classification was introduced ini-

tially by Gorman [1]. In his study, a neural network approach
was applied to a sonar target classification problem. The prob-
lem was to classify readings of sonar returns from an undersea
metal cylinder and a rock with a very similar shape and size.
He obtained an 82.7% of accuracy, and compared this results to
trained human listeners that achieved an accuracy of 88%.

The sonar data used for Gorman experiments were sonar
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Figure 6: Behavior of the KKT conditions as the number of iterations progress.
The primal, dual, and complementarity condition must converge to zero. The
results shown represent the average value and the standard deviation over sev-
eral experiments.

measurements collected from a metal cylinder and a cylindri-
cally shaped rock positioned on a sandy ocean floor. Both tar-
gets were approximately 5 ft in length. Readings were taken at
a range of 10 meters and obtained from the cylinder and rock at
aspect angles spanning 90 and 180 degrees respectively.

The preprocessing of the raw signal was based on experi-
ments with human listeners. A set of sampling apertures super-
imposed over the spectrogram of the sonar measurement. The
dataset was composed of 60 spectral samples, normalized to
take on values between 0.0 and 1.0.

There have been more recent approaches to solve this prob-
lem. Reid [19] reported an 82% of accuracy with his Random
Forest algorithm.

In 2009 [20], Siddiquiet.al. attempted to use sparse trans-
formations and dimensionality reduction techniques, however,
the maximum accuracy obtained was 83%. Altough they obtain
slighly better results than Gorman, they have achieved thiswith
only 25% of the dataset.

Malzahn1et.al. [21] achieved in 88% accuracy in average as
they incremented (via bootsrapping) the original dataset.

Now, to improve existing methos, we propose a sequential
decomposition model for sonar target detection problem using
SVR, the approach shown in Algorithm 1, and the interior point
method with predictor-corrector in the form of (34).

The classification problem is defined by a large-scale sonar
dataset that consist of two classes non-separable, with a million
of samples each. For training we have two million, and for test-
ing we have another two million readings. This dataset defines
the set{xi, di}

N=4,000,000
i=1 , with x ∈ ℜ2 andd ∈ {0, 1, 2}.

The reader must be aware of the high degree of non-
separability of the data. To illustrate this, we have used PCA
to make the dataset iid. A few readings projected in PCA and
the resulting hyperplane using only two dimensions is shownin
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Figure 7. The decision boundaries found using PCA reduction
to two dimensions and SVR illustrate the complexity in the sep-
aration of the two classes, even using optimal classifiers. When
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Figure 7: PCA-based decision hyperplane found by the LP-SVRapproach.
Note the non-separability of the data in two dimensions withPCA

we performed an analysis of the area under Receiver Operat-
ing Characteristic (ROC) curve, by varying the dimensionality
reduction rate, we can appreciate how intuitive is that by pre-
serving most of the information the detection rate (in termsof
the area under the ROC curve) improves and hence, better re-
sults are produced. This behavior is illustrated in Figure 8.
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Figure 8: Receiving Operating Characteristic curve for different reduction
amounts using PCA. The more information is kept the more robust the detec-
tion is. Note that the dimensional increase is not linear with respect to the ROC
behavior.

When we used no PCA projections, and kept the proposed
large-scale algorithm we observed an accuracy of 93.6% and
the area under the ROC curve was 0.9509 (see Figure 9). These
results suggest that the iterative optimization that preserves sup-

port vectors that promote the solution of the global optimization
problem is comparable and in most cases improves previous ef-
forts to solve the problem of sonar mines-rock detection.
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Figure 9: ROC curve using no PCA dimensionality reduction. The ROC is not
as smooth as when PCA is used; however, the performance and the area under
the ROC curve is greater.

In Table 1 we present the summary of the classification per-
formances for the large-scale sonar mines-rocks detectionprob-
lem. The variables shown are: dimensionality of the problem,
number of samples, accuracy, in percentage; accuracy in train-
ing (in parenthesis); and average time, in seconds; its standard
deviation; and the total number of iterations (in parenthesis).

Table 1: Classification performance over large-scale sonarmines-rocks detec-
tion. The variables are: dimensionality of the problem, number of samples,
accuracy (in testing), number of SVs, and the average iteration time, and num-
ber of t iterations between parenthesis.

PCA Dim. N Accuracy SVs Time (t)
Yes 2 4× 106 58.1 22 0.54 (17)
Yes 7 4× 106 62.3 28 0.60 (15)
Yes 28 4× 106 71.5 39 0.90 (16)
Yes 60 4× 106 88.8 39 1.09 (18)
No 60 4× 106 93.6 39 1.08 (18)

From Table 1 we can observe that the number of iterations re-
quired to reach a solution is very small for this problem. Theex-
pectation of the algorithm from preliminary results are promis-
ing from current evaluation of our algorithm. In comparison,
a typical simplex method will take several thousands of itera-
tions.

5. Conclusion

In this paper we propose to approach the problem of non-
linear classification of sonar targets (mines versus rocks)when
the very large number of samples available make the typical
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SVR model computationally intractable since the solution find-
ing process involves highly-dimensional vector operations. The
aim of this research is to overcome the natural limitation of
a large-scale problems particular to SVR with a real-life ap-
plication. We propose a sequential linear programming sup-
port vector regression (SLP-SVR) approach that uses an interior
point method (IPM) to solve the LP optimization problem. The
proposed idea consists of a sequential selection of data points
and then solve the sub-problem associated to these data points.
Then we preserve thesupport vectors at each iterate (chunking).
We use the proposed IPM-based LP-SVR approach to find the
optimal solution to the classification problem iterativelyby by
taking advantage of the quadratic rate of convergence of IPM.
To improve the rate of convergence, we use a predictor cor-
rector scheme for IPM. Experiments demonstrate the abilityto
perform classification over non-trivial problems; while atthe
same time it demonstrates a very fast rate of convergence. The
proposed research promises to be as robust and as efficient as
the best state of the art SVM training approaches, and also to
have many applications in engineering problems.
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