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Abstract

Support Vector Machines (SVMs) have become one of the mgstilpo supervised learning-machines in the statisticalepat
recognition area. They are used for classificatioa (SVM) and regression analysisg Support Vector Regression, SVR).
However, when the number of samples available to model an /SVR problem supersedes the computational resourees (
large-scale problems where the number of dimensions orlgarape in the order of millions) the traditional methodsifafinding
the optimal solution to a classification problem based onagsion models. The reason for the typical failures is thasblution
finding process involves high-dimensional vector operatid he aim of this research is to overcome the natural ltraitaof large-
scale problems particular to SVR using dficéent convex linear programming framework. We propose aaetjl decomposition
method based on a linear programming support vector ragre P-SVR) approach. The proposed scheme uses an ineiid
method (IPM) to solve a sequence of smaller LP optimizatidngroblems given by the proposed decomposition strafElggn
we perform chunking (preserve the the support vectors)esth-problem at each iterate. We take advantage of the aficadite
of convergence of IPM on the proposed LP-SVR method to fineglbbal solution to the regressjofassification problem in few
iterates. Experiments were performed to solve the largéesonar mine-rocks detection problem show fast rate ofergence,
and very good performance when compared to other approaabbksas neural networks and PCA-based methods. The proposed
linear programming formulation isfécient from the mathematical point of view and the sequeniéaiomposition strategy using
IPM poses fast rate of convergence to make the proposed ralsdedficient from the computational point of view.

Keywords: Support vector machines, support vector regression Him@gramming, interior point methods, sequential
optimization.
2010 MSC: 62302, 62H30, 68T05, 68T10, 90C05, 90C51.

1. Introduction (SVR), derived from the concepts gfuctural risk minimiza-
) oo tion andempirical risk minimization. The training (setup) of

Real-life problems are dicult to model by finding a set of 5, qyR is equivalent to solve a Quadratic Program (QP) with
rules or a linear relationship. Such is the case of SON&@&as |inear constraints [4]. The number of data points (instrome
rescue or military missions as illustrated in Figure 1. Th®p o4 ings; calibration data) is equivalent to the numberaok v
lem we address here is the large-scale automatic detedtion gy|es for the QP problem. Hence, problems arise as therigaini
mines based on millions of sonar frequency-based data. Thgyi, set size grows to millions, as is the case of real-life en
mines subject of this study are typically cylindrically ged  5ineering applications, such as instrument calibratioititary
as ghown in Figure 2. Typ|call){ researchers and engineers C&quipment testing and certification, etc.
design methods to produce an image of sea surface and a quali-
fied technician may observe and detect possible threatard=ig ~ Currentapproaches|[4,5, 6, 7, 8, 9] assume that the follpwin
3 shows an example of this kind of technology. In our study weconditions are satisfied: (i) the number of data points aiée!
use frequency-based information at sonar range. The datase 10 train the SVR is manageable; (ii) the total number of suppo
information we use comes from Gormamisal. [1] previous Vectors (relevant information) is manageable. Howevers¢h
work using neural networks to detect mines. However, in oufonditions do not hold in some engineering applications- Pa

research we use a novel concept in the statistical and nechificularly, we aim to address condition (i) where the numtfer o
learning community. samples is in the order of millions.

Statistical learning theory concepts introduced by Vapnik e propose a training algorithm that takes advantage of Lin-
etal. [2, 3] leaded to Support Vector Machines for Regressionear Programming (LP)ficiency. We pose the SVR optimiza-
tion problem as an LP problem rather than a QP problem. We
Email addresses: privas@miners.utep.edu (Pablo Rivas-Perea), use an interior point methods (IPM) to solve a sequence of LP
grosiles@utep.edu (Jose G. Rosiles) problems that converge quadratically to the solution. Then
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Figure 1: Sonar instrument on-board a ship sensing the seaflo

Mine at seafloor

Mine at sonar -

Figure 3: A typical display or image produced by sonar-badgdrithms.

address the problem of sonar target detection using msllafn
sonar instrument readings.

This paper is organized as follows: the fundamentals of SVR
are explained in Section 2. The linear programming formula-
tion for SVR is explained in Section 3. In Section 4 we deserib
the proposed strategy for sonar large-scale target deteddi-
nally, we draw conclusions in Section 5.

2. Support Vector Regression Theoretical Basis

In 1995, Vapniket al. [2, 3] and later Smola&t al. [10, 11]
explored and developed the SVM approach for regression prob
lems. This approach is commonly known as Support Vector
Regression (SVR), which increased the application range of
SVMs since SVRs can also perform multi-class pattern recog-
nition. This type of machine is typically formulated using
quadratic optimization under the umbrella of convex optamni
tion.

Let's consider the linear regression case where the depen-
dency of a scalar observalileon a regressor is denoted as

d=w'x+b, 1)

where the parameter vectarand the biad are the unknowns.
The problem is to estimate and b given the training sam-
ples{(x;, di)}i'\il where the vector elementsare assumed to be
statistically independent and identically distributeid)(i The
problem formulated by Vapnik is aimed to minimize thek
functional

1 N
§Mﬁ+Cg;M—dk @

which can be expressed as an optimization problem in itsgdrim
form as follows [12]:

My, SIWIZ+C XN, Iy — dile

d-vi < e+§
S.t. yi—di < e+§i*
&.& =2 0
for i=12---,N.

where the summation in the cost function accounts forethe
insensitive training error, which forms a tube where thaisol
tion is allowed to be defined without penalization, as shawn i
Figure 4.C > 0 is a constant describing the trad lbetween

d(x)
A

Figure 4: The epsilon tube where the solution is is allowdoktdefined without
penalization.



the training error and the penalizing teﬂw||§. The variable troduce a kernel functiok(:, -) mapping in the following way:
yi is the estimator output produced in response to the irput
that isy; = w'x; + b. The variableg; and¢' are two sets of X' xj = k(Xi,Xj) =" (X)p(X;), (6)
nonnegative slack variables that describedfiesensitive loss xi = k(%) =(x), )
function denoted as

where the map
3 o X—>H (8)

) ) ) o is known as feature map from the data spXdeto the feature
wheree is a prescribed parameter. This loss function is illus-spacez(. The feature space is assumed to be a Hilbert space of
trated in Figure 5 in relation with the data shown in Figure 4.;a3| valued functions defined dh The typical kernel functions

are as follows:

forld—-y| =€

_Jld-yi-€
Le(d,y) = { 0 otherwise,

L.(d,y) Polynomial : &/ x;+ 1)°, 9)
Radial : e a2l (10)
& > Sigmoidal : tanh{x| x; + k2). (11)

The kernek(xi, x,—) may also be referred as thieth element of
the symmetridN x N matrix

K = {k(xi,xj)}szl. (12)

—€ +€ d— Y The matrixK is called “kernel matrix.” It is positive definite
since it satisfies the conditioa' Ka > 0 for any real valued
vectora of dimension compatible witK. The matrix notation
of K is specially useful when posing the optimization problem

The objective function in the primal can be rewritten in term n matrlx-_vector fqrm._ ) ) )
of the slack variables and¢*, by observing the restrictions of ~ 1hen. introducing introducing kernel functions for the-pri
the primal and the definition of theinsensitive function, and mal case, the sole modification is on the restrictions whieh a
thus definingt = di - yi — e andé* = yi—di —e. Then one obtain  edefined as
another common version of the primal problem as follows:

Figure 5: Thes-insensitive loss function. Solution data-points are fized as
they go apart from the limits specified by the parameter

Wk(xi, ) +b—d < e+ (13a)
Mikee  SIWIE+CEN, (& +€) (4) d-w'k(xi,)-b<e+é& (13b)
Wixi+b-d < e+§
st { d — I\NTXi _ tl) < §+ 2* and for the dual problem the objective function is redefined a
g’ f* 2 0 sk * gk
for =12, N, e 3IWIE+ XY (6 + &) - 2l (né + 7€)

-2 ai (WTk(xi,-) +b—di + €+ &)

The SVR problem in the dual is obtained by the Lagrange
P y grang — 3N o (- WTK(x, )~ b+ e+ &)

multipliers method. The result is the maximization problem
(14)

MaXuge aa gy SIWIE+CIN, (6 +8) (5)
- 3N (vi& + 7€)
—Zi'ilai(WTXi+b—di+6+§i) ) _ )
_ ZiNzlai* (di —WTX —b+e+ fi*) 3. Formulation of aLinear Programming SVR

gife+&+di-y) = 0

fori,j=1,2,---,N.

Linear Programs are those problems that can be stated in the

@ (E +& +di - yi) =0 canonical form as:
S.t. (-C& =0
(y-C)g = 0 min, c'z (15)
&€, a,ay,y =2 0 ot Az = b
for i=12---,N. o z > 0

wheree, a*, y, andy* are the nonnegative Lagrange multipli- wherez € R" is a vector containing the unknowrnsse R" and
ers. b € R™ are vectors of known parameters, ahde R™" is a

Problems (4) and (5) solve the linear regression problemsnatrix of known coéficients associated toin a linear relation-
and for the non-linear regression case it simply followsnto i  ship.
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Let us re-state the original support vector regressionlprob By introducing the Lagrange multipliers,(s) into the primal
(4) using thef;-norm. The decision function can be expressedproblem above, we obtain the following dual:
by means ofx asd(x)) = w'x; + b. Thus, using Mercer’s

theorem[13, 14], we can replace the expressidw; + b, by max, b"a (23)
the following kernel expansion st ATd+s = ¢
" s > 0
N
dog) = ) aik(x, ) + b, (16)  whered is a vector of dual variables defined o®?", andsis
i=1 a slack variable vector iR¥N+2,
wherea, b can take on any real valuk(-,-) is a valid kernel The solution to the primal problem is denotedzasand the

function such as (9)-(11). Then, taking advantage of the geg>0!ution to the dual probIeTm*is denoted as, ¢"). The duality
metric analysis, which states thag = 0 in regression prob- theorem states that z2 = b" 2%, which means that the solution
! I

lems, it is sdicient to just introduce;, then the problem be- Z" also solves the dual, and the solution of the duglg’) also

comes solves the primal.
The Karush-Kuhn-Tucker (KKT) conditions, are a set of
ming ¢ llalls + 2C TN, & (17)  equalities and inequalities that for this problem are nemegs
dj - Zi’\il aik(xj,x) —b < e+§ and stficient conditions to establish optimality of the model.
s.t { SN kX, x)+b-dj < e+¢§ The KKT conditions for the LP problem are the following:
& 2 0 T
for j=12---,N. ATdl+s=c, (24a)
Az=b, (24b)
Then, since the requirement of a linear program is to have the zs =0, (24c)

unknowns greater than zero, we must then decompose such

variables in their positive and negative part. Therefore de- (2920, (24d)
notea = a* — @, andb = b* — b™. Then, in order to pose the i1=1,2,.,4N+2,

problem as a linear program in its canonical form and in order ] o ]

to use an interior point method solver, problem (17) musehay Where the e.quallty@ |mplles that one of both variables must
no inequalities; thus, we need to add a slack variablehich P& zero. This equality will be referred to as ttwnplementar-

results on the following problem ity condition. Note that the problem depends on the variables
(z,4,9), and if the set of solutiong{, 1", s*) satisfy all the con-
min N, (a_+ +ar + 2C§i) ditions, the problem is said to be solved. The vecy ', s%)
at.embrb gu N '; Lo is known as grimal-dual solution.
= Zina (@ — ap)k(xj, X)) The dual problem (23) in its extended form is
—b++b7—§j+Uj = E—dj
S.t. Zﬁl(ar - a’;)k(X]—, Xi) n}lsn leil Ai (e —d) + Z:\il Aisn (€ + i)
+b* —b™ - ¢ +uUj = e+d; :
ot e, b, b-g,lgj, Go> 0 T Ak %) = T Ak )+ = L
for P12 N Zizg Ak}, %) = Xiz Apenk(Xj, X0) + Sjan = 1
T (18) Ziﬁl Aiin—Adi+Sn1 = 0
which is finally an acceptable problem to be solved. Note that St izt i — At Sne2 = 0
(18) allows us to define the following equalities: —4j = Adjen + Sjanez. = 2C
Aj+AjeN + Sjeane2 = 0
-K K -1 1 -l 1 s 20
Az( K -K 1 -1 - | ) 19 for j=12---,N
(25)
le —d The KKT conditions (24) in their extended form are
b= le+d )’ (20)
N N
7= ( " a b" b £ u )T (21) Z/ljJrNk(Xj’Xi) - Z’ljk(xi,xi) +Sj= 1] (26a)
’ i=1 i=1
T N N
=(1 1 0 0 2C 0) . 22
c=( ) (22) DAk = D dnk(Xi ) + Sn = 1) (26D)
i=1 i=1

Then, we have posed the problem in the LP canonical form (15).

Note that the problem hasi#-2) variables and ¥ constraints. N
Aisn— A+ SN2 =0 (26¢)

This is a definition more accurate than the one described by i=1

Lu et.al. in late 2009 [15], and also it is a generalized and N
extended version of the LP-SVM work presented by Teiral. Z Ai—Adizn + SN2 =0 (26d)

in early 2009 [16] and by Zhang in early 2010 [17]. i=1



—Aj — Aj+N + Sj+2n+2 = 2C  (26€)

Aj + AjeN + Sj4an+2 = 0; (26f)
N
= Y (@ = @) K(xj, xi) — bt + b7 = &5 + U = e~ d
i1
(269)
N
21(04+ —a))K(Xj, X)) + b" —b™ — & + Uj = e+ dj
i=1
(26h)
Sj@| + SjiNa] + SN+1D” + Soniab”
+Sjion+2€] + Sj+an+2Uj =0 (26i)
s,a}’,aj‘,b*,b‘,fj,uj >0 (26))

forall j=1,2,--- N, andi =1,2,--- ,4N + 2

where the equalities (26a)-(26f) come from the expansion of
(24a), the equalities (269)-(26h) come from the expansion o

(24b), the complementarity condition (24c) results in thle e

pansion (26i), and the inequalities in (24d) are the ones tha

force positivity in (26j).

4. Sonar Large-Scale Target Detection using LP-SVR

In this section we explain the proposed solution of (18)),(25
and (26a)-(26f) for the large scale sonar-based minestiatec
problem. The idea is to divide the training &t d;}ict, for T =
{1,2,...,N}in two subsets. The firstis thveorking set {x;, di}ics,
for B c T, |B| < |T|. The second set is the remaining of the
data{x;, di}iem, forM c T, |B| < M| < |T|, andB+ M = T.
Then, it follows to define

at,ag =q,q;, foralli e B,
ay,ay = aj*,aj’, forall j e M,

respectively. In this proposed formulation, the set of rigring
variables are fixed?,a; = 0, forall j € M, This follows the

the corresponding dual problem to be

r’gisn Yieg Ai (€ = di) + Yicp Aivp (€ + di)
Yies Ai+BKXj, Xi) — Yieg AiK(Xj, X)) +8) = 1
Yies AiK(Xj, Xi) = Yicg AisigK(Xj, Xi)
+Sjug =~
st i disp —Adi+Spr1 = 1
- Diesdi — digg + S22 = -1
=Ai — digg + Sjs2B+2 = 2C
Ai + digp + Sjeap2 = 1
s > 0
forallje B
(28)
and the KKT conditions are rewritten as follows
Z AisgK(Xj, Xi) = Z AiK(xj, %) + s = 1 (29a)
ieB ieB
Z Aik(xj, Xi) — Z Ai+gK(Xj, Xi) + Sj+jg = —1; (29b)
ieB ieB
Z Aizg—Ai+ g1 =1 (29c¢)
ieB
Z Ai = Aiyp + g2 = —1 (29d)
ieB
—Aj = Ajup + Sj+28+2 = 2C; (29e)
Aj + Ajug + Sj+3pr2 = 1 (29f)
= Y (o — oKX, xi) —b* + b7 £+ uj=€e—dj  (299)
ieB
Z(ar—ar)k(xj,xi)+b+—b-—§,» +uj=e+d; (29h)
ieB
Sja} + Sjxp@] + Sg+10" + Spypa2b” (29i)
+Sj+2B1+2&i + Sj+3B+2Uj = 0 (29))
S,a}r,a;,b+,b7,§j,Uj >0 (29K)

foralli, j € B.

The initial working setB is assumed to be smaller than the
original problem since we kept onlB| data points and |B|
constraints for the primal. For the dual, we hayB|2ut of
2N data points and|B| + 2 out of 4N + 2 constraints. And,
also it is assumed that the set of paramefértf(, C, ¢, o, t*, u)
are given. The first paramet€ris the trade-& between over-
fitting or relaxing the solution. The parametercontrols the

idea of the well known QP-SVM methods, such as [4, 5, 6, 7 characteristics of the kernel function like the RBF in (10he

8, 9]. Under this formulation, the subproblem to solve beesm

min
af.ag,bt b £p,Us

2ieB (ar —a+ ZC&)
~ Ziea(]” — a1 )k(x;, )

-b*+b —¢+u; = e—d;
s.t Yies(@ — a7 )K(Xj, xi)
+b* —b -¢+u; = e+d;
a}',a/j‘,b*,b‘,fj,uj' > 0
forallje B
(27)

Then, we can solve this problem by finding a feasibie=
[ef, ag’, b, b7, &g, ug]. Using the same argument, we find

5

parametet® is the maximum number of iterations allowed.
Under this formulation, we start by fixing® = 0,Vi € M,
and proceed to solve the subproblem (27),(28) satisfyirg th
KKT conditions (29a)-(29k) of the subproblem. If the suldpro
lem is solved, then check if the KKT conditions are satisfied
for alli € M. To do this we have to restate the KKT condi-
tions, such that the missing values in the objective fumcdiod
constraints are estimated according to the subprobleni@olu
First, assume that the primal subproblem inequalitiesatre s
isfied, then remove from the sBtthose indexes that are not
associated with support vectoise( those indexes € B such
thate; = 0). Then, the values for the primal variablggndu



fori € M can be estimated according to the following cases:
Case 1: When the following inequalities holds true fpe M

- Z(ar —a)k(Xj,x)-b"+b —e+d; >0  (30a)

ieB

3@ —apkix;.x) +b* —b" —e~d; >0, (30b)

ieB
then the values for thgth index are computed as follows

uj = 2| Y (@ — oy k(xj, xi) + b* — b~ —dj|,

ieB

(30c)

& =0. (30d)

into B. We maintain record of which indexes has been moved
from M into B. The number of indexes moved from to B

is proportional to the number of indexes moved out frBrto

M. In the case that all the constraintsBrare active i(e. those
whoseq; # 0), then the size oB is incremented by a scaling
exponent as follows

IBlt+1 = [Blt + 1+ [log|Blt], such that:|Bji,1 < [M};  (31)
allowing the consideration of more indexes. This ends tlsé fir
iteration,t = 0. And it should be repeated until convergence.
After t > 10 iterations, we check if there exist any sample in-
dexes that have been moving frash into B for at least five
times. If this condition is true, the indexes will be heldBn
without being removed until the algorithm converges. Thaco

Case 2: When the inequalities (30) holds false, then the value!€t€ pProcess can be summarized in the following steps:

for the j-th index are computed as follows:

uj =0, (30e)

& =-2| > (o - )k(x;,x) +b" —b™ —dj|.
ieB
Here the values for the dual variable = 0 fori € M, and
the values for the dual slack fori = 1,2, ...,4|M| + 2 can be
estimated as follows:

(30f)

sj=1j- Z AingK(Xj, Xi) + Z Aik(x;j, xi) (309)
ieB ieB
Sy = =1 = ) AKX, %) + D digk(x;,x)  (30h)
ieB ieB

Sog1=1- Z Ay + Ai (30i)

ieB
Sp+2 =—-1- Z Ai + A (30j)

ieB

Sj+2B+2 = 2Cj + ) + Ajugy (30K)
Sj+aB2 = 1j = 4 = Ajuipy (301

forall j € M.

Once we have estimated all the values for theMetsing (30),
we must verify the KKT conditions; particularly the folloag
conditions

zs =0
(z,9 =0
i=12 ., 4M|+2

Algorithm 1 Decomposition Strategy for Large-Scale LP-SVR
Training

1: SetB with the first|B| indexes from the data set.

2: For all indexes irB Solve L P sub-problem.

3: Verify if the current solution satisfy the KKT conditionstfo
the indexes irM. If so, thenStop.

4: Those indexes that have been at ldatsitnes in and out of
the working seB are moved permanently in®.

5: If the number of variables violating the KKT conditions
increased, thenpll-back the indexes that were moved out
from B to M at iterationt — 1, and go to Step 2.

6: Move theworst 1 + [log|B]|] violating indexes fronM to
B. Go to Step 2.

The fact that our algorithm stops when the KKT conditions
are satisfied, guarantees the convergence to an optimal solu
tion. Furthermore, our algorithm avoids a possible infifotep
by limiting indexes from going in and out of the d&for a lim-
ited number of times. This guarantees that the algorithrh wil
converge in finite number of iterations. Of course, the $ofut
will be sub-optimal if the algorithm stops when the maximum
number of iteration$® is reached.

In the following subsection, we explain how the optimalgy i
reached, and why the function is decreasing at each iteratio

4.1. Convergence and Optimality Conditions

Problem (27) is solved using Interior Point Methods (IPM).
A more extensive reference for IPM can be found in [18]. For
this case we use amfeasible IPM within the path-following
framework, which means that the algorithm will follow thetipa

because they ensure that both the primal and dual problems &0 the solution instead of looking at the vertex of each awust

being solved simultaneously, and that the solutions aietlgtr
non-negative. If there were no violations, the problem hesenb

e.g. the simplex method. For promoting a fast rate of conver-
gence goredictor-corrector strategy in computing the Newton

solved for both setB, M, and the method has converged for the step was chosen.

set of parameters given. However, if there were violations i

M, we look for those inactive constraintsii.e. those whose

First, let us consider the KKT conditions (26a)-(26j) estab
lished for our problem (18). Let us recall that the problefd)(1

a; = 0) and move them intd1 and replace those indexes with is equivalent to (18), and that the KKT conditions (24a)dR4

the indexes that violate the complementarity conditioomfiM

are also equivalent to (26a)-(26j). IPM considers the KKii-co



ditions as the following function

ATd+s-c
F(z,4,9) = Az-b =0, (32a)
XS1
(z,9=0 (32b)
where X = diag@,2,...,z,), and S = diag(s, &, ..., S)-

The IPM generates a set of solutiors, {',s") at each itera-
tion t. The key idea is to find solutiong!(1', ") that satisfy
F(Z, ', ) = 0 and more importantlyz, ") being strictly pos-
itive, except at the solution whersor s may be equal to zero.

Then, IMP uses a quasi-Newton's method to approach th 1

solution of problem (32a). The most remarkablfetience be-

tween Newton's method and IPM, is that the former does no o

care of keepingz, s) > 0, while the latter does. IPM surrounds

the current point in a linear model in order to obtain the stef-:1-— ‘ ‘ ‘ ‘

direction Az, A4, As) as follows:

(33)

Az
J(z, 4, s){ Ad ]: -F(z,4,9),

As

whereJ(z, A, 9) is the Jacobian o (z, 1,s). Then the step di-
rection (using a predictor-corrector strategy) becomes

0 AT | Az ¢
A 0 0 Al | = —Ip s
S 0 X AS —XS1 - AXATAS] 4 oul

wherer. = ATA+s—candr, = Az—b are residualsA X, ASH
are the #ine-scaling directiory is the duality gap, and is an
adaptive line-search parameter depending.ofhe new iterate
is therefore

(z, 4,9 + a(Az,AA, As), (35)

wherea € (0,1] is appropriately chosen in order to main-

Average and Standard Deviation of KKT conditions for Non-Separable problems
T T T T T T T T T T

—— log(llAX-bll,) 4

log(||A'A+s~c]|,)
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Figure 6: Behavior of the KKT conditions as the number ofatems progress.
The primal, dual, and complementarity condition must cogeeo zero. The
results shown represent the average value and the stanelaati@h over sev-
eral experiments.

measurements collected from a metal cylinder and a cyhndri
cally shaped rock positioned on a sandy ocean floor. Both tar-
gets were approximately 5 ft in length. Readings were taken a
arange of 10 meters and obtained from the cylinder and rock at
aspect angles spanning 90 and 180 degrees respectively.

The preprocessing of the raw signal was based on experi-
ments with human listeners. A set of sampling aperturesrsupe
imposed over the spectrogram of the sonar measurement. The
dataset was composed of 60 spectral samples, normalized to
take on values between@and 10.

There have been more recent approaches to solve this prob-
lem. Reid [19] reported an 82% of accuracy with his Random

tain (z, s) strictly positive. As mentioned before, the predictor- Forest algorithm.
corrector strategy promotes a very fast rate of convergence In 2009 [20], Siddiquiet.al. attempted to use sparse trans-

which is desirable. In fact, theoretical studies demonstizat
IPM is g-quadratically convergent to a feasible solutiore. it
is equivalent to the Newton method. Evenlifz, 4, 9) is de-
generate, the IPM ig-superlinearly convergent. In contrast,

formations and dimensionality reduction techniques, h@are
the maximum accuracy obtained was 83%. Altough they obtain
slighly better results than Gorman, they have achieveditttis
only 25% of the dataset.

the simplex method which is typically used in most decompo- Malzahnlet.al. [21] achieved in 88% accuracy in average as

sition strategies in large-scale SVM, is of exponential pax-

they incremented (via bootsrapping) the original dataset.

ity. Figure 6 shows how the IPM iteratively minimizes the KKT ~ Now, to improve existing methos, we propose a sequential

conditions at an arbitrarily three-class non-separalsissifica-
tion problem.

4.1.1. Sonar Large-Scale Target Detection Results

decomposition model for sonar target detection problemgusi
SVR, the approach shown in Algorithm 1, and the interior poin
method with predictor-corrector in the form of (34).

The classification problem is defined by a large-scale sonar

The problem of sonar target classification was introducied in dataset that consist of two classes non-separable, withiammi
tially by Gorman [1]. In his study, a neural network approachof samples each. For training we have two million, and far-tes
was applied to a sonar target classification problem. Thb-pro ing we have another two million readings. This dataset dsfine
lem was to classify readings of sonar returns from an undersehe set(x;, d}'3*°°*°%, with x € 2 andd € {0, 1, 2}.
metal cylinder and a rock with a very similar shape and size. The reader must be aware of the high degree of non-
He obtained an 82% of accuracy, and compared this results toseparability of the data. To illustrate this, we have used PC
trained human listeners that achieved an accuracy of 88%. to make the dataset iid. A few readings projected in PCA and

The sonar data used for Gorman experiments were sondne resulting hyperplane using only two dimensions is shiown
7



Figure 7. The decision boundaries found using PCA reductioport vectors that promote the solution of the global optatign
to two dimensions and SVR illustrate the complexity in the-se problem is comparable and in most cases improves previeus ef
aration of the two classes, even using optimal classifietseW forts to solve the problem of sonar mines-rock detection.

“Mines ROC curve. AUC=0.95089
+Rocks 1 R —

09t - 1

0.8F | )
; —ROC
0.71 - - - -ROC Convex Hull []

0.6, B

0.5F) 1

true positive rate

0.3F 7

0.2 B

0 0.2 04 0.6 0.8 1
false positive rate
Figure 7: PCA-based decision hyperplane found by the LP-@@gpRroach.

Note the non-separability of the data in two dimensions WIGA Figure 9: ROC curve using no PCA dimensionality reductiohe ROC is not

) . as smooth as when PCA is used; however, the performance emaea under
we performed an analysis of the area under Receiver Operate ROC curve is greater.

ing Characteristic (ROC) curve, by varying the dimensidypal

reduction rate, we can appreciate how intuitive is that B+ pr  In Table 1 we present the summary of the classification per-

serving most of the information the detection rate (in teahs formances for the large-scale sonar mines-rocks detegtain

the area under the ROC curve) improves and hence, better riem. The variables shown are: dimensionality of the problem

sults are produced. This behavior is illustrated in Figure 8 number of samples, accuracy, in percentage; accuracyitn tra
ing (in parenthesis); and average time, in seconds; itslatan

1 > deviation; and the total number of iterations (in paren#)es
091
0.8 Table 1: Classification performance over large-scale soniaes-rocks detec-
tion. The variables are: dimensionality of the problem, bemof samples,
o 07F accuracy (in testing), number of SVs, and the average iberéitme, and num-
= ber oft iterations between parenthesis.
2; 0.6 PCA Dim. N Accuracy SVs  Timet]
I*(% 05 60 to 2 (40%) Yes 2 4% 10° 581 22 054(17)
g ~—~ 60 to 7 (80%) Yes 7 4% 10° 623 28 060(15)
g 04 — 60 t0 28 (99%) Yes 28 4x 10° 715 39 090(16)
E 60 to 60 (100%)
E s | Yes 60 4x10° 888 39 109(18)
No 60 4% 10° 936 39 108(18)
0.2 i
0.1} ] From Table 1 we can observe that the number of iterations re-
‘ quired to reach a solution is very small for this problem. ke

0 0.2 o4 06 08 1 pectation of the algorithm from preliminary results arerpis-
false positive rate . . . .
ing from current evaluation of our algorithm. In comparison

Figure 8: Receiving Operating Characteristic curve fdfedent reduction a typlcal S|mplex method will take several thousands oBiter

amounts using PCA. The more information is kept the moresothe detec- 1ons.
tion is. Note that the dimensional increase is not lineahwéspect to the ROC
behavior.

5. Conclusion
When we used no PCA projections, and kept the proposed
large-scale algorithm we observed an accuracy o6%3and In this paper we propose to approach the problem of non-
the area under the ROC curve wa83D9 (see Figure 9). These linear classification of sonar targets (mines versus roosk&n
results suggest that the iterative optimization that presesup-  the very large number of samples available make the typical
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SVR model computationally intractable since the solutiodfi  [18]
ing process involves highly-dimensional vector operatidrhe

aim of this research is to overcome the natural limitation of{;g%
a large-scale problems particular to SVR with a real-life ap
plication. We propose a sequential linear programming sup-
port vector regression (SLP-SVR) approach that uses amdnte [21]
point method (IPM) to solve the LP optimization problem. The
proposed idea consists of a sequential selection of datdaspoi
and then solve the sub-problem associated to these dats.poin
Then we preserve theipport vectorsat each iterate (chunking).

We use the proposed IPM-based LP-SVR approach to find the
optimal solution to the classification problem iteratively by
taking advantage of the quadratic rate of convergence of IPM
To improve the rate of convergence, we use a predictor cor-
rector scheme for IPM. Experiments demonstrate the albdity
perform classification over non-trivial problems; whilethe

same time it demonstrates a very fast rate of convergenae. Th
proposed research promises to be as robust anflieet as

the best state of the art SVM training approaches, and also to
have many applications in engineering problems.
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