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ABSTRACT 

Support Vector-based learning methods are an important part of Computational Intelligence techniques. Recent efforts 
have been dealing with the problem of learning from very large datasets. This paper reviews the most commonly used 
formulations of support vector machines for regression (SVRs) aiming to emphasize its usability on large-scale applica-
tions. We review the general concept of support vector machines (SVMs), address the state-of-the-art on training meth-
ods SVMs, and explain the fundamental principle of SVRs. The most common learning methods for SVRs are intro-
duced and linear programming-based SVR formulations are explained emphasizing its suitability for large-scale learn-
ing. Finally, this paper also discusses some open problems and current trends. 
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1. Introduction 

Statistical pattern recognition methods based on optim- 
ization methods have shifted the paradigm in the compu- 
tational intelligence area. The reason is that most learn- 
ing algorithms proposed in the past 20 years focused on 
heuristics or on analogies with natural learning systems, 
such as evolutionary algorithms (EA) or neural networks 
(NN). EAs and NNs were mostly the result of biological 
findings and experimental tuning of parameters. How- 
ever, the underlying reasons for their performance was 
not fully understood. Most of the work was based on 
designing heuristics to avoid local minima trapping in the 
training (design) process. In contrast, recent statistical 
pattern recognition algorithms overcome many of these 
disadvantages by using known theories in the mathe- 
matical sciences, e.g., Mercer kernels [1], Hilbert spaces 
[2], and Kernel expansion [3].  

In the last decade, a theoretical basis for learning ma- 
chines has been developed to explicitly maximize their 
performance [4]. The combination of learning machines 
with kernel functions has led to novel pattern recognition 
algorithms characterized by their formulation as convex 
optimization problems. Convex optimization problems 
have the advantage of being free from local minima. In 

particular, it is now possible to model non- linear pattern 
recognition systems under the convenience of a linear 
representation using kernel functions [3]. 

Support vector machines (SVMs) are arguably the best 
known example among kernel learning algorithms. Since 
their introduction in 1992 [5], SVMs have been studied, 
generalized, and applied to a number of problems. Cur- 
rently, SVMs hold records in performance benchmarks 
for handwritten digit recognition [6], text categorization 
[7], information retrieval [8], and time-series prediction 
[9] and are commonly used in the analysis of DNA mi- 
cro-array data [10]. Due to its novelty and potential, there 
are many areas of improvement, particularly in the area 
of numerical methods that helps with the problem posing 
[11] (e.g., vectorial calculus and algebra) and optimiza- 
tion [12] (e.g., quadratic and linear programming).  

In 1995, Vapnik et al. [13] and later Smola et al. [14] 
explored and developed the SVM approach for regret- 
ssion problems. This approach is commonly known as 
Support Vector Regression (SVR), which increased the 
application range of SVMs since SVRs can also perform 
multi-class pattern recognition [15]. This type of machine 
is typically formulated using quadratic optimization 
under the umbrella of convex optimization. In return, the 
solution is always global and is easy to compute for very 
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small problems. This paper is devoted to introduce, 
familiarize, and motivate the reader to the field of SVR, 
ultimately, for large-scale formulations posed as linear 
programs.  

The rest of the paper is organized as follows. The 
state-of-the-art on training SVMs is summarized in Sec- 
tion 2, emphasizing the number of the training samples 
used. Section 3 defines the fundamental principle of 
SVRs. The two major learning methods for SVRs are 
introduced in Section 4, while in Section 5 it is intro-
duced the linear programming-based SVR formulations, 
aiming to emphasize formulations suitable for large-scale 
learning. Finally, open problems, current trends, and 
conclusions are drawn in Section 6. 

2. Large-Scale Support Vector Regression 
Training 

The original training of an SVM [16] was only valid for 
small data sets and was designed to find the solution of a 
QP problem using a constrained conjugate gradient algo- 
rithm. The size of the problem is directly proportional to 
the number of training vectors, making its solution com- 
putationally intractable even for moderate size training 
sets.  

Later Vapnik et al. [16] improved this method by con- 
sidering only those variables associated to support vec- 
tors lying on the boundaries, whose gradient take them 
out of the feasible region. This modification allowed 
computational tractability of a limited number of large- 
scale problems (less than 5000 samples).  

In 1997, Osuna et al. [17] proposed a decomposition 
method that achieves optimality by solving a sequence of 
smaller sub-problems from randomly selected samples 
out of a training dataset. The algorithm selects the sup- 
port vector coefficients that are active on either side of 
the optimal hyperplane (in a two class problem), then 
proceeds iteratively until the completion of the problem 
size. This algorithm performs satisfactory in applications 
of up to 110,000 data points.  

Later in 1999, Joachims introduced the concept of 
“shrinking” under the SVM training context and named it 
“SVMlight” [18]. The idea is to get rid of points that 
have less probability of becoming support vectors, 
thereby saving time in the optimization problem solution. 
Joachims’ method demonstrated to be faster than 
Osuna’s method. The author reported results for as many 
as 49,749 data points.  

Also in 1999, Platt extended Osuna’s work with an 
algorithm called “sequential minimal optimization” 
(SMO) [19]. This is a famous algorithm implemented in 
several commercial and open-source software applica- 
tions. The key idea behind Platt’s method is to decom- 
pose the large QP problem into a series of very small QP 
sub-problems. These sub-problems are as small as they 

can be solvewithout a QP solver, thus much faster. Platt 
reported as many as 60,000 data points.  

Collobert et al. [20] reported in 2001 an adaptation of 
Joachims’ method for SVR problems named “SVMT 
orch” (see Section 4). The authors show the implemen- 
tation of reduction algorithms and give mathematical 
proof of convergence. The authors also reported using as 
many as 60,000 data points.  

Rifkin presented the “SVMFu” algorithm in 2002 [21]. 
This work reviews and synthesizes Osuna’s, Platt’s, and 
Joachims’ work. The key idea is to divide the large 
problem into sub-problems such that their Hessian 
matrices fit within memory limitations. In QP, Hessian 
matrices are useful since they describe the second partial 
derivatives of an n-dimensional function. Rifkin reports 
as many as 60,000 data points.  

Mangasarian et al. in 2002 [22], explored the very first 
linear programming (LP) approach to kernel-based 
regression. The authors proposed a linear programming 
chunking (LPC) algorithm with guaranteed termination. 
The method demonstrated efficiency, but slow conver- 
gence solving linear programs with commercial optimi- 
zation software. The authors report solving linear prog- 
rams with as many as 16,000 data points in a total of 19 
days.  

In 2005, Drineas et al. [23] developed an algorithm to 
approximate a low rank kernel matrix. The overall com-
putational time is reduced. The authors report an inter-
esting derivation of their ideas based on the Nystron 
method.  

Continuing with QP-based methods, in 2006, Hush et 
al. [24] proposed an algorithm that produces approximate 
solutions without compromising accuracy in a QP SVM 
problem. The authors propose a first stage where the 
algorithm provides an approximate solution for the QP 
dual, and a second stage that maps the QP-dual problem 
to the QP-primal problem, based on the duality theorem. 
The authors report over a 100,000 samples data-set.  

In 2006, Sra [25] proposed an algorithm that explicitly 
takes advantage of the LP formulation for SVMs to pro- 
duce an efficient training method for large-scale prob- 
lems. The method converts the LP problem into a QP 
problem, applies Bregman [26] and Hildreth [27] de- 
composition, and then the QP problem is solved. The 
author reports solving a problem with as many as 
20,000,000 samples. 

For some time, no new LP approaches for SVR were 
developed until 2009, when Lu et al. [28] reported an 
SVR method based on a novel LP formulation. The 
authors present an alternative of the typical kernels and 
use wavelet-based kernels instead. The paper shows an 
application to nonlinear dynamical systems identification, 
but the authors do not elaborate on the data-set size.  

In 2010, by the time this paper was already in progress, 
Torii et al. [29] published work on a novel LP formu- 
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lation along with three decomposition methods for 
training an LP-SVM approach. The authors report as 
many as 60,000 data points.  

The development found up to date does not report any 
advances of sub-problem-based SVR approaches entirely 
motivated and aimed for large-scale LP-SVR formul- 
ations since Mangasarian et al. [22]. Even the idea from 
Sra [25] that seems to work for up to 20,000,000 samples, 
fails to take advantage of the efficiency of LP solvers and 
still works for only a limited number of samples.  

In spite of all these advances in SVMs and SVRs, 
training schemes for large-scale applications are still 
required. It is of high importance to address the problem 
of large-scale training as technology advances and large 
amounts of data is being stored for further analysis. For 
now, let us review briefly the concept of SVR. 

3. Support Vector Regression Fundamental 
Principle 

To begin with, let us consider the linear regression case 
where the dependency of a scalar observable  on a 
regressor  is denoted as follows: 

d
x

,Td  w x b                    (1) 

where the parameter vector  and the bias  are the 
unknowns. The problem is to estimate  and  given 
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The structural functional (2) can be expressed as an 

optimization problem in its primal form as follows [30]: 

2

2, ,
1

s.t

1
min

2

, 0

for ,

.

1,2,

N

i i
b L

i

i i i

i i

i i i

C d y

d y

y d

i N


 








 

  


  








w

w








Λ

 

where the summation in the cost function accounts for 

the -insensitive training error, which forms a tube 
where the solution is allowed to be defined without 
penalization, as shown in Figure 2 for the linear case, 
and in Figure 3 for the non-linear regression case. The 
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Next, we define the dual problem using the Lagrange 
multipliers method, where the following Lagrangian 
function is defined: 
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where , , ,i i i    and i
  denote the Lagrange multi- 

pliers associated with the objective function and constr- 
aints respectively. The associated stationary points are  
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Figure 1. Illustration of the -insensitive loss function. 
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defined by the following partial derivatives: 
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and the following problem is the expanded version of 
problem (7) above: 
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However, it is possible to remove three constraints by 
noticing from (6a) that one can solve for  as follows: w
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Problems (4) and (10) solve the linear regression prob- 
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lems, and for the non-linear regression case one just 
introduces a kernel function formulation. For the primal 
case, the sole modification is on the restrictions which 
are redefined as follows: 
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This formulation is used to implement learning methods 
discussed next. 

4. Support Vector Regression Learning 
Methods 

Support Vector Machines for Regression (SVRs) share 
the same advantages and disadvantages as SVMs. That 
means, SVMs training methods can be extended to SVRs 
whenever they are not directly dependent on the 
particularities of the SVM problem. Since most SVM 
training methods depend on the particular mathematical 
formulation of SVM, very few of them can be extended 
to SVR.  

Collobert et al. reported in 2001 an adaptation of Joac- 
hims’ SVM method for SVR problems [20]. The authors 
start with the primal problem in (4), and then they 
reformulate the dual (10) with a vector-matrix notation in 
order to have the following Quadratic Programming (QP) 
minimization problem: 
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where  is a kernel matrix.  K
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

  


 


  
  
  


 





p

p p
   (14) 

where  1 1, , , , ,N Np p p p p Λ Λ , and the size of the 
working set is given the by ip  for all 0ip  . 

Finally, the authors give proof of convergence 
following Platt;s SMO idea selecting a working set size 
of 2 samples. The problems with this implementation are 
inherited from Joachims’ and augmented due to the 
complexity of the SVR definition. Particularly, the issues 
with this algorithm are the inherent QP solution process 
and the additional steepest descent process. Furthermore, 
they introduced the concept of shrinking, that is, to 
permanently remove from the working set the bounded 
support vectors after a number of iterations. Although the 
heuristic of shrinking dramatically speeds up the training 
process, convergence is not guaranteed anymore. How- 
ever, Collobert’s et al. shrinking method is still the most 
popular large-scale SVR training strategy.  

5. Linear Programming Support Vector 
Regression 

Linear Programing (LP) problems can be stated in the 
standard form 

s.t

max

. ,

n
T



  0
z

c z

Az b z
            (15) 

where  is a vector containing the unknowns, 
 and  are vectors of known parameters, 

and 

nz 
b

m n

nc  m
A 
z

 is a matrix of known coefficients assoc- 
iated with  through a linear relationship. However, 
there is also the canonical form 

s.t

min

. ,

n
T



  0
z

c z

Az b z
            (16) 

In fact, there is currently no agreement as to which of 
the previous problems is the canonical or standard form. 
In this paper, problem (16) will be regarded as the LP 
primal in its canonical form. 

By introducing the Lagrange multipliers  ,λ s
 

into 
the primal problem above, one obtains the following dual 

s.t.

m x

,

a T

T



   0

b λ

A λ s c s
           (17) 

where  is a vector of dual variables defined over  λ m
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and s is a slack vector variable in .The solution to the 
primal problem is denoted as , and the solution to the 
dual problem is denoted as  . The duality 
theorem states that , which means that the 
solution  also solves the dual, and the solution of the 
dual  also solves the primal [31]. 

n

,λ s


z

T λ




 

T  c z b
z

 , sλ

m

The idea of Linear Programming Support Vector 
Regression (LP-SVR) is to pose the SVR problem (4) as 
a linear program either in its canonical (16) or standard 
(15) forms. Before we continue with linear programming 
and SVRs, we need to inform the reader of the com- 
plexity of the typical SVR problems to justify further 
implementations with interior point methods. The fol- 
lowing paragraphs will inform the reader in regard to the 
computational expenses on SVR learning methods. 

5.1. SVR Learning 

Let  and  be the number of variables and cons- 
traints respectively in an SVR-based optimization prob-
lem. To solve such optimization problems, there are three 
known strategies. First, if the problem can fit within sys- 
tem memory, the strategy is to directly use interior point 
methods which have memory consumption of 

n

 2n . 
Second, if the problem is of medium size, active-set 
methods are proven to be more appropriate [32]. They 
need  memory, where SVsn  is characterized by 
the number of support vectors of the problem. That is, 
active-set methods deal with the complete set of support 
vectors only. Third, for very large datasets, one currently 
uses working set methods (i.e., decomposition methods). 
Among these are Collobert's [20] or Mangasarian’s [33]. 
These methods have memory consumption of 

 2
SVsn 

 n . 
The training strategies are summarized in Figure 4.  

Now, let us review the most common LP-SVR formu-
lations that will provide the reader with the general 
knowledge on LP-SVRs.  

5.2. v-LPR 

Smolaetal in 1999 [34], first introduced a linear pro-
gramming approach for SVR. Their formulation uses the 
following  -SVR model: 

   

 
1

1

1

,

1

, ,

2, ,

N

i i
i

N

j i i
j

N

i i
j

i i

C

b

b

i N

 

 
, , 0

,

i i

i j

i j

i i

d k  

,

,j

C

N N, ,, ,
min

b 

s.t.

for

 

1,



j

j

d k

    

  

  













 

 

   

  







Λ







 

  







 

 

 





 



 












x x

x x

 (18) 

where 0, 1  can be used to control the number of 

errors in  .  this way, the value of   is automatically 
estimated. The 

 In
 -SVR comes rom a special type of 

SVM called 
f

 -SVM [32]. he authors named their 
formulation as “

T
 -LPR”, as in “nu-linear programming 

regression”. Smola et al. poses problem (18) as a linear 
program in the following form: 

mi

s.

n

t. 0 0,,

T

    Br b u z
z

c z

Az u
       (19) 

where 4 1N  , r  , , and the matrices 2Nu 
2 4N N 1 A  , ,  are denoted as 

follows: 

2N,B b 4 N 1c 

 1 1 1 1 ,C C NCc        (20a) 

 1 1 1 1 ,C C NC
 
 
 



A

c        (20b) 

1 0 1
,

0 1 1




K K

K K
       (20c) 

1
, and .

1

  
   
  

B

 

d
b

d
       (20d) 

The dual problem is derived in order to use a primal-dual 
interior point solver with a predictor-corrector strategy. 
In doing this, they also derive the corresponding 
Karush-Kuhn-Tucker (KKT) conditions.  

Smola et al. [34] suggest that the parameter   is 
proportional to the number of support vectors. Although 
the main contribution is to show the efficiency of an SVR 
using LP, a critique is that the authors eliminated one 
parameter by adding another, i.e.,   instead of  
Moreover, the problems with LP-SVR models is that the 
program dimension is very large, i.e., 4

.

2N  . As a 
consequence, the authors report performing regression 
with training sets consisting of only 50 and 80 data 
points.  

5.3. LP-SVR with Modified LPC 

Mangasarian et al. [22] in 2002 pioneered the linear 
programming formulations for large-scale SVRs. The 
authors analyzed the  -LPR [34] method and provided 
means for training with large-scale datasets. The SVR 
formulation they use is the following: 

   

   

 

1

j

j

t C

 

,

1

,

s.t.

,

, 0

for , ,

mi i i i

i j j i i

i j j i i

i

C

N N

d k b t

d k b t

i N

 
  

 

 

 

 

 



 

  
, , ,

n
b


1

1, 2,

N

i

i i 



 

1

1

, ,

N

j

N

j

t



 



Λ

   

    





x x













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t 


x x

 (21) 

where  0,1   is a positive parameter that drives the 
tolerance error : if  1   the errors are highly
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Figure 4. Depending on the problem size, one may find 
three different strategies for SVR training. 
 
penalized. If one take a closer look to problems (18) and 
(21), one notices that i i it     . In fact, the authors 
show that problems (18) and (21) are equivalent. The 
significance of this formulation is the use of a modified 
version of the Linear Programming Chunking (LPC) 
algorithm [33]. The LPC algorithm was originally 
utilized to solve the problem with a subset of the 
constraints. However, Mangasarian et al. also proposed a 
modified version that constraint the variables as well. 
This modification promotes a smaller version of the 
problem, hence faster computations in terms of memory 
allocation. 

5.4. Wavelet Kernel-Based LP-SVR 

In 2009, Lu et al. [28] reported an SVR method based 
entirely in the LP primal in its standard form. The authors 
present an alternative to the typical kernels and use 
wavelet-based kernels instead. The paper shows an 
application to nonlinear dynamical systems identification 
[28]. The authors start by changing the 2

2λ -norm by the 

1λ -norm, and also use the notion of the kernel functions 
for nonlinear problems; and they reformulate problem (4) 
as follows: 

 

 

 

1
1

1

1

1
min

2

,

s.t. , 0

,

for 1, 2, , ,

N

i i
i

N

i j j i i
j

N

i j j i i
j

C

d k

d k

i N

  

 
 

 





 





 


  

 
   









x x

x x

Λ





  (22) 

where   comes from the Representer Theorem nota-
tion [35]. Then, the authors arrive at the following LP 
problem in its primal standard form: 

 
, ,

1 1 2

1
s.t. ,

1

min
  









 









 
 
 
 
 

  
      

         
 

C

K K I d

where ii i     ; that is, the decomposition of the 
positive i

  and the negative i
  part of i . Then, 

the authors show that this formulation performs around 
25 times faster than the QP-SVR. No details were given 
with respect to the solver used, and no proof of 
convergence was addressed. The authors also show that 
in measuring the root mean squared error (RMSE), the 
QP-SVR performs better than their LP-SVR approach. 
However, they also report that this formulation requires 
fewer support vectors. Hence, a sparser solution is 
obtained, having the advantage of a reduced number of 
support vectors, which also represents computationally 
efficient solutions.  

5.5. 1λ -Norm LP-SVR 

In 2010, Zhang et al. [12] performed a study in regard to 
the sparseness of 1λ -norm-based SVMs and SVRs. The 
authors reported the following formulation of an 1λ - 
norm SVR: 

    
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   
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  
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




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





Λ

u

x x

x x









    (24) 

where    (typically small: ) is used to 
avoid possible infinite optimal solutions, and ui is a slack 
variable. Then, defining 

111 10  

 1 1 1 1 0 0C C       c      (25a) 

  ,b b        z α α u u    (25b) 

1 1 0 0

1 1 0 0

   
    

K K I I
A

K K I I



    (25c) 

1
,

1

 
   

d
b

d




               (25d) 



K K I d





   (23) the authors proceeded to solve the following linear 
programming variation: 

max

s.t. .

T

  0
z

c z

Az b z
        (26) 
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The evident problem with this formulation is the size of 
the problem:  variables and  constraints. 
Therefore, the author only reports experiments for small 
size problems; e.g., 351, 297, and 345 data points, using 
an RBF kernel. The poor formulation makes the size 
problem more evident since the authors used the simplex 
method. As a consequence very large training times will 
be experienced. One obvious critique is the inclusion of 

6N  2 2N

 , making the set of hyper-parameters  , , ,C    to 
be chosen more heuristically.  

5.6. Large-Scale LP-SVR 

Recently, in 2011, Rivas et al. [36-37] attempted to solve 
the difficulties of previous formulations, particularly 
those that may hinder the learning phase. Similarly to 
previous formulations, the authors [36-37] assumed that 
the slack variables ,i i    can be expressed as simply 
2 i  (since ). Then, introduced a slack variable 

 to avoid inequalities in the SVR formulation. As a 
consequence of these assumptions, the following 
optimization problem was proposed: 

0,i i   
u
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      (27) 

Then problem (27) was posed as a linear programming 
problem by defining the following equalities: 

 1 1 0 0 2 0 ,c C






      (28a) 

 ,b b    z α α u
      (28a) 

1 1
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1 1
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K K I
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K K I I
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      (28c) 

1
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d
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d



               (28d) 

 

where    2 4 2N N A  , , . 2Nb  4 2, N z c 
In comparison with the  -LPR formulation by Smola 

et al. [34], problem (27) 1) uses the canonical formulation, 
2) computes , and  implicitly, 3) does not compute 

 implicitly, 4) does not require the parameter 
b u

  , 5) 

promotes efficiency in the sense of using only one  , 
and 6) is a lower dimensional problem.  

In comparison with Mangasarian et al. [22], problem 
(27) 1) uses the canonical formulation, 2) computes  
implicitly, 3) does not compute  implicitly, and 4) 
does not require the parameter 

b

 . By 3) and 4) the 

experimenter has more control of the sparseness of the 
solution [12]. In this case sparseness means fewer 
number of support vectors.  

Similarly, problem (27) in comparison to Lu et al. [28] 
Rivas’ et al. [36-37] LP-SVR formulation (27) 1) uses 
the canonical formulation and 2) computes b  implicitly. 
By 2) the linear program (LP) size is reduced by a factor 
of 2N N . In comparison with the 1λ -norm LP-SVR 
formulation by Zhang et al. [12] problem (27) does not 
require parameter   and is more efficient in several 
ways: 1) uses only one  , 2) avoids penalization of , 
3) reduces computational efforts by forcing positivity in 

 which reduces the LP problem size by , 
and 4) is a smaller problem. Finally, in order to find the 
solution to the problem, Rivas et al. [36-37] use an 
interior point methods-based solver to find the variables 
that satisfy the following KKT conditions: 

b

N Nu 22 2

,T  A λ s c               (29a) 

,A z b                (29b) 

0,i iz s                 (29c) 

 , 0z s ,



              (29d) 

for 1,2, , ,i n Λ

z s

 

where the equality i i  implies that one of both 
variables must be zero. This equality is typically referred 
to as the complementarity condition. Note that the KKT 
conditions depend on the variables , and if the 
set of solutions 

 , ,z λ s
 , ,  sz λ  satisfy all the conditions, the 

problem is said to be solved. The set  , ,  λ sz  is 
known as a primal-dual solution.  

6. Conclusions, Current Trends, and Open 
Problems  

In this paper we have explained the efforts being made 
towards a solution of large-scale learning using SVRs. 
We have reviewed the most commonly used formulations 
of SVRs emphasizing its usability on large-scale applica-
tions. We reviewed the general concept of SVMs, ad-
dressed the state-of-the-art on training methods SVMs, 
and explained the fundamental principle of SVRs. The 
two most common learning methods for SVRs were in-
troduced and linear programming-based SVR formula-
tions are explained emphasizing its suitability for 
large-scale learning. The Support Vector learning field is 
still very active. As a consequence, the treatment of 
large-scale SVM remains being of interest to researchers  
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in the field (see reference [38]). However, a number of 
open issues that have to be addressed still persist. Al-
though recently, SVR algorithmic development seems to 
be at a more stable stage, one issue is to find whether 
linear programming SVR approaches will lead to more 
satisfactory results [12,14]. The problem of empirical 
tuning [3,14] of SVR hyper-parameters (e.g., ,C  ), has 
to be devised to make SVRs less dependent on the skill 
of the experimenter [14,39]. Optimization techniques 
developed within the context of SVRs are also required 
in order to improve treatment of large datasets [14]. This 
may be done in combination with reduced set methods 
for speeding up the training phase for large datasets. This 
topic is of huge importance as machine learning applica-
tions demand algorithms that are capable of dealing with 
datasets that are at least larger than 1 million samples 
[14]. Other problems still considered open include the 
following: more data dependent generalization bounds, 
efficient training algorithms, and automatic kernel selec-
tion procedures. The authors would like to kindly invite 
highly motivated researchers to contribute in these areas 
as they can lead to a settlement on large-scale SV-based 
learning methods.  
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