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The dust storm phenomenon is a growing research area motivated by the potential harm
that dust aerosols can cause to human beings, and by advances in remote-sensing tech-
nology. Nonetheless, formal studies on pattern recognition methods for dust aerosol
detection are lacking and necessary. In this article, we present dust aerosol detection
methods using statistical pattern recognition classifiers. Particularly, we investigate a
support vector regression (SVR) approach and a large-scale approach to SVR. The fea-
ture set consists of multispectral thermal emissive bands from the Moderate Resolution
Imaging Spectroradiometer (MODIS). We utilized four near-infrared bands: B20
(3.66–3.84 µm), B29 (8.40–8.70 µm), B31 (10.78–11.28 µm), and B32 (11.77–12.27
µm). Numerical performance evaluation shows that SVR outperforms other neural net-
work-based classifiers in terms of a balanced error rate. Visually, both SVR paradigms
accurately detect dust storms. The models demonstrated a strong ability to find non-triv-
ial relationships within the spectral bands. The proposed detection methods are shown
to be soil-independent and surface-invariant.

1. Introduction

Climate change exacerbates meteorological phenomena such as dust storms, which by
themselves represent an increasing health threat to human beings (Rivera Rivera et al. 2009;
Loomer 2006; Gail 2007). Therefore, an understanding of dust storm genesis, formation,
propagation, and composition is important to reduce their impact and also to study their
effect. Fortunately, advances in remote sensing such as in multispectral instrumentation
permit the imaging of atmospheric and Earth materials based on their spectral signature
over the optical range. In particular, dust aerosols propagated through the atmosphere in
the form of dust storms can be detected through current remote-sensing instruments.

Some of the most relevant systems are based on data from the Moderate Resolution
Imaging Spectroradiometer (MODIS) instrument and from the aerosol optical depth (AOD)
product, which is also provided by National Aeronautics and Space Administration (NASA)
(Levy et al. 2006; Sorek-Hamer et al. 2013). However, the production of the AOD prod-
uct requires a considerable amount of processing time that may introduce an unnecessary
delay before its information can be processed for aerosol analysis. Other approaches are
based on the so-called ‘band-math’, where simple operations between bands are used
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International Journal of Remote Sensing 7649

to provide a visual (and subjective) display of the presence of dust storms (Chen, Lin,
and Lee 2006; Ackerman 1997; Rivera Rivera et al. 2009). Other multispectral image-
based research focuses on the analysis of dust storm transport by observing its trajectory
(El-Askary et al. 2004; Mahler et al. 2006; Prospero et al. 2002; Rivera Rivera 2006; Lee
et al. 2009; Janugani et al. 2009). However, these findings require more accurate dust analy-
sis and detection methods (Khazenie and Lee 1992; Kanellopoulos, Austin, and Wilkinson
1997; Kast et al. 1977; Tso and Mather 2009; Hillger and Ellrod 2003; Agarwal et al. 2007;
Miller 2003; San-Chao et al. 2006).

Furthermore, given the large amounts of data produced by the MODIS instrument, it
is also desirable to have automated systems that assist scientists in finding or classifying
different Earth phenomena. For example, Aksoy et al. developed a visual grammar scheme
that integrates low-level features to provide a high-level spatial scene description of land
cover and land usage (Aksoy et al. 2005). As far as the authors are aware, only a few
similar automated schemes for dust aerosol detection based on statistical pattern recogni-
tion techniques have been reported (Rivas-Perea and Rosiles 2010; Rivas-Perea et al. 2010;
Chacon-Murguía et al. 2011).

This research selects features based on spectral signatures already known to express
dust aerosols (Ackerman 1997; Hao and Qu 2007; San-Chao et al. 2006). Such features
allow high performance, accuracy, and real-time detection of dust aerosols. These features
are analysed using a support vector regression (SVR) approach, and we include a compar-
ison with the maximum-likelihood (ML) classifier, a probabilistic neural network (PNN),
and a feed-forward neural network (FFNN). We will show that the SVR approach provides
better detection and representation of dust storm events.

This article is organized as follows. Section 2 discusses the features selected from
MODIS bands according to a literature review, as well as the event objects of study.
Section 3 presents an overview of the classification algorithm. Section 4 addresses a
numerical comparison of the results and discusses visual results over both land and ocean,
followed by a discussion of segmentation. Finally, Section 5 presents the conclusions of
this research.

2. Feature and event selection from MODIS data

The MODIS instrument is carried on board the NASA Terra and Aqua satellites. MODIS
provides Earth information over 36 spectral bands, easing analysis of the atmosphere,
ocean, land, and more. The data available in MODIS Level IB make possible dust storm
analysis. Dust storm visual assessment can be achieved using MODIS bands B1, B3, and
B4, since these match the human visual spectrum (Levy et al. 2006; Team et al. 1997).
For visualization purposes, we can produce RGB-like images by mapping R = B1, G =
B4, and B = B3. The colour images produced in this research were enhanced using a non-
linear function (Fanning 2012; Rivas Perea 2011). As an example, Figure 1 shows an RGB
(pseudo-coloured) image of the southwestern US area.

In 1997, Ackerman demonstrated that using bands B32 and B31 improves dust storm
visualization (Ackerman 1997). Later, Hao et al. established that a linear combination of
bands B20, B29, B31, and B32 can be utilized for dust storm visualization (Hao and Qu
2007). More recently, Alkhatib et al. demonstrated that B20 is particularly relevant in the
study of dust aerosols (Alkhatib and Cabrera 2011). Based on these findings, we designed a
classification scheme using the following MODIS thermal emissive bands: B20 (3.66–3.84
µm), B29 (8.40–8.70 µm), B31 (10.78–11.28 µm), and B32 (11.77–12.27 µm); our previ-
ous research using such bands can be found in Rivas-Perea et al. (2010), Rivas-Perea and
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7650 P. Rivas-Perea et al.

N

Figure 1. True colour RGB composite of the southwestern USA, 15 April 2001, 18:05 UTC.
Satellite: Terra. Instrument: MODIS.

Rosiles (2010), Rivas Perea (2011), and Chacon-Murguía et al. (2011). MODIS level 1B
data contain 16 bit scaled thermal emissive bands that need to be recovered to their original
scale in (W m−2 µm−1 sr−1) units (Kopp and Lean 2011). The recovery process is given by

L = κ (ι− η), (1)

where L ∈ R denotes the recovered radiance, k is the radiance scale factor, η is the radiance
offset, and ι is the scaled (i.e. raw) data. We select our feature vector as

F = [
LB20 LB29 LB31 LB32

]T
, (2)

which consists of the four recovered radiances corresponding to the bands described by the
superscripts of L; T denotes vector transposition.

In our experiments, we used 31 different events (i.e. multispectral images) corre-
sponding to the southwestern US and northwestern Mexico areas, as reported in Novlan,
Hardiman, and Gill (2007). All data samples1 were downloaded using NASA’s online
Warehouse Inventory Search Tool (WIST; Kobler and Berberi 1991). Each of the 31 events
produced 85 million feature vectors that were manually selected to be part of two possible
classes: dust present and dust not present. The feature set is unbalanced, in that the number
of vectors corresponding to dust is much lower than the number of vectors corresponding to
dust-free areas in an image. For classification purposes, the data were separated into three
sets: training, used to build the model; validation, used to determine the generalization
capabilities of the model; and testing, used to determine the numerical performance.
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3. Overview of pattern classification schemes

3.1. ML classifier

We introduce first the ML classifier, which has been extensively used by the remote-sensing
community. The ML classifier is a Bayesian classifier that relies on probabilistic arguments.
First, we define two possible events or classes, dust and background, for our particular
problem. We define a discrete random variable C with domain Sc = {c1, c2}, where the
two values are used to represent dust and background, respectively. The probability mass
function of C will be denoted as fC(c). Next, we let X be a random vector in R

n, which in
our case n = 4; X represents the observable evidence (i.e. feature vector) used for detecting
the presence of dust in the corresponding pixel. The class-conditional probability density
function (pdf) of X is defined as fX |C (x|c) .

Bayes decision theory provides the following two class classification rule (Duda, Hart,
and Stork 2001):

F ∈ c1 if ψc1 (F) > ψc2 (F) else F ∈ c2, (3)

for a feature vector F, where ψci(F) are discriminant functions defined as

ψci(x) = fX |C (x|ci) fC (ci) . (4)

Without further knowledge of the seasonal and/or meteorological conditions of the area
sensed by the MODIS apparatus, it is safe to assume that the dust and background classes
are equiprobable. Hence, the fC (ci) terms can be dropped, simplifying the classifier design
to providing only the class-conditional or likelihood functions.

A common approach is to assume that X follows a multivariate Gaussian distribution.
Furthermore, the problem is simplified using the log-likelihood of the Gaussian which
results in the well-known discriminant functions

ψci (x) = (
x − μi

)T
�−1

i

(
x − μi

) − det (�i), (5)

where μi is the mean feature vector for class ci, �i is the corresponding feature’s covariance
matrix, and det (·) is the determinant function. The mean vectors and covariance matri-
ces are obtained from training data using ML estimators. Mathematically, the discriminant
functions, ψci (·), are quadratic functions that measure the distance between a feature vec-
tor and a mean vector weighted by �i. Hence, a feature vector F will be classified to the
closest of the two classes.

3.2. PNN-based detection

Specht’s PNN is a neural network that learns (i.e. is trained) in a supervised manner
(Specht 2002). It is widely used in pattern recognition applications. The PNN is inspired by
Bayesian classification and does not require training (Chettri and Cromp 1993). The net-
work estimates the pdfs of the feature vectors assuming Gaussian distributions. The PNN
has a four-layered architecture, as shown in Figure 2.

The first layer is an input layer receiving the features, F ∈ R
n×4. The second layer con-

tains exponential functions, ϕ(·) , at each node, and the node’s count corresponds to the
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7652 P. Rivas-Perea et al.

Figure 2. Hybrid architecture of the probabilistic neural network. Note the probabilistic nature
embedded in a neural architecture.

number of κ samples belonging to the jth class. These nodes are called pattern units and
are fully connected to the input nodes. The pattern layer’s output is denoted by

ϕjk (F) = 1

(2π )
d
2 σ d

e
− 1

2σ 2

(
F−υF

jk

)T (
F−υF

jk

)
. (6)

The third layer contains summation units to complete the probability estimation. The num-
ber of summation units equals to the number of classes. The jth summation unit receives
input only from those pattern units belonging to the jth class. This layer computes the like-
lihood of F being classified as C. This is done by averaging and summarizing a neuron’s
output belonging to the same class:


j (F) = 1

Nj

Nj∑
k=1

ϕjk (F), (7)

where Nj is the number of examples in class j.
The last layer is called the ‘decision layer’. It classifies F’s pattern according to the

Bayesian decision rule given by

F ∈ Cj if Cj

(

j (F)

) = arg max
1≤i≤j


i (F). (8)

Thus, the maximum of the summation nodes’ output characterizes the PNN’s general out-
put. The function 
j (·) gives the probability of the jth class. This allows us to generate
probabilistic visualizations of dust storms.
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The parameter σ is estimated by the method of Srinivasan et al. (Ramakrishnan and
Selvan 2007). This method involves a pre-normalization phase consisting of two steps:
first, subtract the mean μF from the training feature vector F; second, divide F by its stan-
dard deviation σF . Then, σ would be the absolute difference between the two smallest
normalized variances. This completes the PNN modelling since it needs no training phase.

3.3. Feed-forward back-propagation neural network-based detection

Multilayered FFNNs are of particular interest in pattern recognition and classification appli-
cations because they can approximate any square-integrable function to any desired degree
of accuracy and can exactly implement any arbitrary finite training set (Hoogerheide,
Kaashoek, and Dijk 2003; Gallant and White 1988). Therefore, we designed an FFNN to
model a dust storm by approximating the true posterior pdf fC|x (C = j|X = F). A simple
FFNN contains an input layer and an output layer, separated by l layers (the set of l layers
is known as the hidden layer) or neuron units. Given an input sample clamped to the input
layer, the other units of the network compute their values according to the activity of the
units they are connected to in the previous layers. In this model, we consider the particular
topology where the input layer is fully connected to the first hidden layer, which is fully
connected to the second layer and so on up to the output layer.

Given an input F ∈ R
n×4, the value of the jth unit in the ith layer is denoted hi

j (F) , with
i= 0 referring to the input layer, i = l + 1 referring to the output layer. We refer to the size
of a layer as

∣∣hi (F)
∣∣ . The default activation level is determined by the internal bias bi

j of

that unit. The set of weights W i
jk between unit hi−1

k (F) in layer i − 1 and unit hi−1
k (F) in

layer i determines the activation of unit hi
j (F) as follows:

hi
j (F) = �

(
ai

j (F)
)

, (9)

where ai
j (F) = ∑

k W i
jkji−1

k (F)+bi
j, ∀i ∈ {1, . . . , l} , with h0 (F) = F, and �= sigm (·) is

the sigmoid activation function defined as sigm (a) = 1
1+e−a , which could be replaced by

any desired activation function. Given the last hidden layer, the output layer is computed
similarly by

o(F) = hl+1(F),

hl+1(F) = �
(
al+1 (F)

)
, (10)

where al+1 (F) = W l+1hl (F) + bl+1, and the activation function � is of the softmax type
in order to define probabilities of classes (see texts such as (Bishop 1995; Canty 2007) for
a detailed development). Thus, when an input sample F is presented to the network, the
application of (9) at each layer will generate a pattern of activity in the different layers of
the neural network and produce an output at the end.

The FFNN requires a training phase to build the model. In this training phase, we
used the ‘Levenberg–Marquardt’ algorithm along with with a back-propagation strategy
to update the weights W and biases b. As a learning function, we used the well-established
method of gradient descent with momentum weight and bias. The FFNN training phase
ends when any of the following conditions holds:
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7654 P. Rivas-Perea et al.

• a number of 100 epochs (i.e. training iterations) is reached;
• the actual mean squared error (MSE) is 0; and
• the gradient step size is less than or equal to 1 × 10−10.

A well-established technique for preventing over-fitting in the training was also imple-
mented. This technique consists of partitioning the training set into two sets, training (80%)
and validation (20%), such that when the MSE has not been decreased in the past five iter-
ations using the internal validation set, then the training phase stops and rolls back to the
weights associated with the previous minimum MSE.

3.4. Typical and large-scale linear programming support vector machines-based
detection

In this research, we also used a linear programming support vector regression (LP-SVR),
which was trained with a reduced training data set as described in the next section. We for-
mulate an l1 − SVR {i.e. norm-1 SVR) problem as the following constrained optimization
problem:

minα,ξ ‖α‖1 + 2η
∑N

i=1
ξi

s.t.

⎧⎨
⎩

jk − ∑N
i=1 αiK (Fk , Fi)− b ≤ ε + ξk∑N

i=1 αiK (Fk , Fi)+ b − jk ≤ ε + ξk

ξ ≥ 0
for k = 1, 2, . . . , N ,

(11)

where α is the Lagrange multiplier associated with the support vectors (SVs). The sum-
mation in the cost function accounts for the ε-insensitive training error, which forms a
tube where the solution is allowed to be defined without penalization. The constant η > 0
describes the trade-off between the training error and the penalizing term ‖α‖1 . The vari-
able ξi is a non-negative slack variable describing the ε-insensitive loss function. Finally,
the variable b is a bias and K (·, ·) is a valid kernel function (see (Mercer 1909; Courant
and Hilbert 1966)). The parameter vector α and the bias b are the unknowns and can take
on any real value.

Since, by definition, the requirement of an LP-SVR is to have the unknowns greater than
or equal to zero, we typically decompose such variables in their positive and negative parts.
Therefore, we denote α = α+ − α−, and b = b+ − b−. Then, in order to pose the problem
as a linear program in its canonical form and in order to use an interior point method solver,
Problem (11) must have no inequalities; thus, we need to add a slack variable u, which leads
to the following linear programming problem:

min
α±, b±, ξ , u

∑N

i=1

(
α+

i + α−
i + 2ηξi

)

s.t.

⎧⎪⎨
⎪⎩

−∑N
i=1

(
α+

i − α−
i

)
K (Fk , Fi)− b+ + b− − ξκ + uk = ε − jk∑N

i=1

(
α+

i − α−
i

)
K (Fk , Fi) + b+ + b− − ξκ + uk = ε + jk

α+
k , α−

k , b+, b−, ξk , uk ≥ 0
for k = 1, 2, . . . , N ,

(12)
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which is one of the formulations we used along with an interior point solver, a radial-basis
function (RBF) kernel with parameter σ = 0.125, a value of η = 0.5, and ε = 0.1; see
(Rivas Perea 2011) for more details regarding this formulation.

4. Results

To summarize the description from previous sections, the proposed dust detection process
consists of the following steps. First, multispectral data from MODIS Level 1B thermal
emissive bands B20, B29, B31, and B32 are recovered using (1). Second, for each image
location, a feature vector F is formed (2) and used as input to each classifier. Third, dust
detection is performed by observing the result of (3) for ML, (8) for PNN, (10) for FFNN,
and (12) for both the LP-SVR and its large-scale version LS LP-SVR. In this section, we
address the results of comparing the proposed dust storm detection models.

4.1. Classifier training

As explained in Section 2, in our experiments, we account for approximately 85 million
feature vectors from 31 events. Some pattern recognition approaches like the PNN are
very limited by the number of samples that can be used to construct the model. As will
be recalled, the PNN requires as many neurons as the number of samples provided times
the number of classes. Therefore, we aim to use the least possible number of samples for
training the classifiers.

In this article, the training set selection is based on Mather’s criteria (Mather, Tso,
and Koch 1997; Kanellopoulos, Austin, and Wilkinson 1997) and the Karhunen-Loeve
Transformation (KLT). Mather’s criteria establish that the number of training samples for
each class must be at least 30 times the number of bands used as features. In our case, we
selected 60 × 4 feature vectors per class (the feature vectors consist of four features). This
decision was driven by the fact that we want neural models with low complexity and, hence,
cheap hardware implementation capabilities. Furthermore, the number of 240 samples per
class matches a confidence level of 99.9% according to a well-established sample number
selection criterion described in Congalton and Green (2008). Thus, for each class (dust and
non-dust), we have 240 vectors. The selection of the training set was performed with KLT
(i.e. principal component analysis). In this case, the KLT was used to find the most repre-
sentative feature vectors. For each class, we computed the covariance matrix and then used
the KLT to identify those feature vectors associated with the largest initial 240 eigenvalues.

4.2. Comparison between classifiers

We selected four performance metrics to evaluate the three proposed classification methods.
These metrics are processing time per feature vector, precision, accuracy, and the area under
the receiver operating characteristics (ROC) curve (AUC). The AUC is a widely used metric
because of its superiority in reflecting the true performance of a classification system. The
precision and accuracy metrics can be computed as follows:

Precision = TP

TP + FP
, (13)

Accuracy = TP + TN

TP + FN + FP + TN
, (14)
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7656 P. Rivas-Perea et al.

where TP is the total number of ‘True Positives’, FP is the number of ‘False Positives’, and
TN (‘True Negative’) and FN (‘False Negative’) represent similar quantities.

Sometimes these metrics may become biased towards false positive counts, and consid-
ering we have many examples of the non-dust class, we use the balanced error rate (BER)
defined as follows:

BER = 1

2

(
FP

TN + FP
+ FN

FN + TP

)
. (15)

Clearly, the BER meets the classical misclassification rate if there is an equal number of
positive and negative examples, in which case TN + FP = FN + TP (see Cawley 2006).

For this evaluation, we selected eight worldwide events from the NASA WIST database.
Reduced training and validation feature sets were selected using the procedure described
in the previous subsection. Each of these sets consisted of 240 feature vectors. All of
the remaining feature vectors were used as test and validation sets divided evenly, i.e.
42.5 million each.

To reduce computational cost and keep similar constraints to the estimation of classifier
parameters, we decided to use the reduced training sets on the ML, PNN, FFNN, and LP-
SVR. Note that the ML and FFNN can handle larger training sets compared with the
PNN and LP-SVR, whose training and model complexity grow with the data; however,
since the reduction of the feature vectors number is performed with a statistical method
aimed to preserve the statistical properties of the data, there is not much gain in using
the large training set for ML and FFNN; moreover, in using the same reduced training set
for the four classifiers, we achieve fairness in comparing performance results. The per-
formance metrics were computed using only the validation set that produced the results
shown in Table 1. Note that since we have a large number of test samples, it is sufficient
to use these overall metrics to compare classifiers, i.e. we do not have a problem with data
insufficiency.

For comparison purposes, we decided also to test a large-scale method based on a LP-
SVR (LS LP-SVR) scheme recently proposed by Rivas et al. (Rivas-Perea and Cota-Ruiz
2012; Rivas Perea 2011). LS LP-SVR allows us to perform learning with the complete
training set (i.e. 42.5 million feature vectors) rather than the reduced set. We use this for-
mulation to compare results to those classifiers trained with the reduced training set. The
proposed scheme uses an interior point method (IPM) to solve a sequence of smaller LP
optimization sub-problems according to a decomposition strategy. Then we perform chunk-
ing, preserving the support vectors of the sub-problem at each iteration. We take advantage
of the quadratic rate of convergence of IPM on the proposed LP-SVR method to find the
global solution to the regression/classification problem in fewer iterations. LS LP-SVR was

Table 1. Classifier performance. Rank of classifiers is shown in parenthesis.

Precision Accuracy AUC BER
Processing time

(millisecond)

ML 0.5255 (5) 0.6779 (5) 0.4884 (5) 0.2259 (5) 0.0141 (1)
PNN 0.8080 (2) 0.8816 (2) 0.7035 (3) 0.0536 (3) 0.2393 (5)
FFNN 0.7664 (4) 0.8412 (4) 0.6293 (4) 0.0729 (4) 0.0459 (2)
LP-SVR 0.7907 (3) 0.8678 (3) 0.7117 (2) 0.0502 (2) 0.0809 (3)
LS LP-SVR 0.8295 (1) 0.9104 (1) 0.7349 (1) 0.0318 (1) 0.0974 (4)

Note: Bold type numbers indicate the best two cases per column.
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thus trained using the complete training set, and once the SVs were identified, the remain-
ing non-SVs were used as part of the testing set; also let us recall that this is only used for
comparison purposes.

From Table 1, we observe that among the neural classifiers, the PNN always outper-
forms the FFNN. Among the statistical classifiers, LP-SVR clearly outperforms the ML
classifier. In fact, the ML classifier should not be used according to the results because it
misclassifies samples almost half the time. This could have different causes, e.g. the mul-
tivariate Gaussian model is not adequate, or perhaps the training data set was not large
enough to provide good parameter estimates. From the table, we can also see that LP-SVR
is the best performer from the four classifiers of interest; this is attributed to the fact that the
training stage of LP-SVR solves an optimization problem that finds the best classification
(based on regression) function from the training data available. The PNN also performs
fairly well, and we could attribute this success to the fact that the PNN is very close to
a mixture of Gaussian classification problem formulation which is also known to perform
very well in binary classification problems (Yang, Zwolinski, and Chalk 1998; Yang and
Chen 1998). Overall, the FFNN and LP-SVR show a good balance of speed, little error,
and good accuracy and precision. Finally, we see that there is a benefit to using a large
training set from the LS LP-SVR classifier; the metrics are better compared with all oth-
ers. However, the resources to train the LS LP-SVR are substantially higher and the metric
improvements are rather modest for our purposes. Since the training is done off-line, it
could also be considered a good alternative when the resources are available.

The processing time is an important measure while modelling real-time processing sys-
tems. In the case of the MODIS instrument, a complete scan (i.e. 10 × 1053 pixels at
36 bands at 1 km resolution) is produced every 6.25 seconds. In accordance with the fea-
ture vector used in this research, MODIS would produce approximately one feature vector
every 0.5 milliseconds. Thus, a real-time system must perform a classification in less than
or equal to that time. Table 1 also shows the processing time per scan in milliseconds.
Therefore, since for all classifiers the time required to classify a feature vector is less than
0.25 milliseconds, they can be considered suitable for real-time detection at 1 km resolu-
tion. In contrast, the typical MODIS AOD product would take much longer and, moreover,
it is released at 10 km resolution.

In addition to the typical comparison of methods, we can measure the statistical signifi-
cance of the results shown in Table 1, employing the Friedman test (see Demšar (2006) for
more details), and rank the classifiers according to their performance. Table 2 shows the
rankings and average rank for each classifier in the sixth row.

Clearly, the two proposed LP-SVR classifiers are better ranked than all of the other
classifiers in the average case. Using the Friedman test, we conclude that the classifiers

Table 2. Classifier ranking according to Friedman test.

ML PNN FFNN LP-SVR LS LP-SVR

Precision 5 2 4 3 1
Accuracy 5 2 4 3 1
AUC 5 3 4 2 1
BER 5 3 4 2 1
Processing Time 1 5 2 3 4
Average 4.2 3 3.6 2.6 1.6

Critical difference CD = 1.960
√

2 × 3
6 × 5 = 0.876

D
ow

nl
oa

de
d 

by
 [

B
ay

lo
r 

U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 1
1:

40
 2

4 
Se

pt
em

be
r 

20
14

 



7658 P. Rivas-Perea et al.

perform differently and the null hypothesis is rejected, showing a chi-squared Friedman
statistic of x2 = 7.840 with probability p = 0.0976. Focusing on the two better ranked
classifiers (i.e. LP-SVR and LS LP-SVR), we computed the critical difference (CD)
between any two different classifiers, which is 0.876. The actual difference between the
two best classifiers is 2.6–1.6 = 1. Therefore, since the difference between the two best
classifiers is beyond the critical difference, i.e. CD = 0.876 < 1, we conclude that the LS
LP-SVR approach is significantly better than the second best classifier. The same conclu-
sion that the LS LP-SVR performs significantly better than any other classifier applies to the
remaining classifiers and there is no need to compute the remaining differences. The critical
difference value was computed using a significance level of α = 0.05. Note, however, that
the difference between the rankings of the LP-SVR (without the large-scale approach) and
the PNN is not greater than the critical difference, meaning that they are not significantly
different and they perform very similarly, in a statistical sense. Nonetheless, the LP-SVR
still performs significantly better than the FFNN and ML. For more details of the statistical
analysis presented here, the reader is encouraged to consult Demšar (2006) and García and
Herrera (2008).

In terms of the visual assessment of dust storm detection, we divided the results into
two categories: dust over land, and dust over ocean. This division is intentionally made
since the methods were modelled using only dust over land data. Thus, the validation
using events with dust over ocean will demonstrate the generalization capabilities of the
methods.

4.3. Generalization of dust detection over land

A major difficulty in detecting dust over land is the variability of the dust physical properties
depending on the region. Thus soil variability can adversely impact the performance of
the classifiers. The reader must recall that the models were constructed using data from
southwestern US events. Therefore, here we demonstrate that the classifiers trained with
these data have the ability to detect dust independently of soil type (i.e. the same classifier
parametrization can be used for different regions around the world regardless of variation
in soil composition).

We consider a case of dust storm detection from 10 April 2001, covering the North of
Mexico, Texas, and New Mexico. A pseudo-coloured image is shown in Figure 3(a), with
the region of interest (RoI) depicted in Figure 3(j). Figure 3(b) shows the result reported by
the MODIS AOD level 2 product, where higher intensities are associated with more dense
aerosols. Figures 3(c) and (d) show the result using the approaches of Ackerman and Hao,
respectively (Ackerman 1997; Team et al. 1997; Hao and Qu 2007). With Hao’s method,
brighter intensities are associated with a higher thermal dust index (TDI). These methods
are well-established visualization methods and not classification methods; in other words,
they do not automate the task of finding a dust storm. Here we use them to ease the visual
location of the dust. Figures 3(e)–(i) depict dust storm probability using ML, PNN, FFNN,
LP-SVR, and LS LP-SVR, respectively. Clearly, PNN, FFNN, and SVR approaches per-
form well from the visual assessment perspective, while the ML method shows conservative
results.

Figure 4(a), however, shows a dust storm that occurred in a very different region and
soil type. This dust storm event is from 5 June 2009, which covered a very large area in the
Middle East. As before, RoI is shown in Figure 4(j). Figure 4(b) shows the result reported
by the MODIS AOD product. Figures 4(c) and (d) show results using the approaches intro-
duced by Ackerman and Hao, respectively, where brighter intensities are associated with
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(a)

(b)

(e)

(h) (i)

(f) (g)

(c)

(j)

(d)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

Figure 3. Dust storm over the southwestern USA, 10 April 2001, 18:05 UTC. Satellite: Terra.
Instrument: MODIS. (a) True colour image. (b) MODIS AOD. (c) Result using Ackerman’s method.
(d) TDI according to Hao’s method. (e)–(i) Dust storm probability using ML, PNN, FFNN, LP-SVR,
and LS LP-SVR, respectively. (j) Region of interest.

a higher TDI. Dust storm probability using ML, PNN, FFNN, LP-SVR, and LS LP-SVR,
respectively, is presented in Figures 4(e)–(i). Clearly, the classifier models have the capacity
to detect different types of dust.

4.4. Generalization of dust detection over ocean

Dust storms can travel over hundreds of miles and in many instances propagate across
oceans. It is possible for a satellite to pass over a region once the dust plume has moved
from land to water. Since we are using thermal emissive information from multispectral
data, there is an inherent change in dust reflectivity when measured in the ocean. Changes in
reflectivity can have a direct impact on the statistical properties of the feature set and hence
require training of a different set of classifiers to detect dust over ocean. This situation
increases system complexity since now two sets of classifiers would be needed and the
system will need an additional step to determine whether the background is land or ocean.
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(a)

(b) (c) (d)

(g)(f)(e)

(h) (i) (j)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4. Dust storm over the Middle East, 5 June 2009, 07:50 UTC. Satellite: Terra. Instrument:
MODIS. (a) True colour image. (b) MODIS AOD. (c) Result using Ackerman’s method. (d) TDI
according to Hao’s method. (e)–(i) Dust storm probability using ML, PNN, FFNN, LP-SVR, and LS
LP-SVR, respectively. (j) Region of interest.

Obviously, we would like to evaluate the generality of the classifier models in relation
to this change in background class. We present two events of dust over ocean in Figures 5
and 6. We evaluate the classifiers trained with dust and land background (see previous
subsection) directly with test data obtained from these events. The visualizations show that
dust aerosols can be detected with the classifiers.

We note that despite their different geographical locations (Argentina and Australia),
the two dust events were detected despite significant differences in dust composition.
Furthermore, the methods can accurately discriminate similar signatures like smoke
and clouds. It is evident that the methods provide a strong ability to infer non-trivial
multispectral data relationships. In particular, PNN, due to its hybrid neuro-statistical
nature, performed better than ML.

4.5. Testing a dust propagation period

The methods presented in this research can also be tested using MODIS data for consec-
utive days belonging to the same dust event. The aim of this analysis is to determine the
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(a)

(b)

(e)

(h) (i) (j)

(g)(f)

(d)(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5. Dust storm over Argentina, 24 January 2010, 14:40 UTC. Satellite: Terra. Instrument:
MODIS. (a) True colour image. (b) MODIS AOD. (c) Result using Ackerman’s method. (d) TDI
according to Hao’s method. (e)–(i) Dust storm probability using ML, PNN, FFNN, LP-SVR, and LS
LP-SVR, respectively. (j) Region of interest.

ability of classifiers to follow dust aerosols as they are transported across different geo-
graphical regions. The case study is a dust event within the USA. This event initiated on
18 October 2012 and was first captured by MODIS at 16:55 UTC near Nebraska, Colorado,
and Kansas, as shown in Figures 7(a) and (j). The figure depicts the response with the
same eight methods shown in previous figures. The pictures show the dust storm as it was
observed in two different overpasses (i.e. 16:55–17:00 and 18:35 UTC). These occurred
after the satellite had scanned the Earth with a complete turn. Since the dust storm was
captured first by MODIS detectors near the western side of the instrument with respect to
Earth, and then after a complete turn, it was captured with the detectors near the eastern
side, this may cause a few issues. For instance, when aerosols, clouds, or other elements
have moved, or reflectivity properties have changed with respect to the previously acquired
data for that geographical region, this issue causes one group of pixels to look different to
others (Figures 7(a) and (j)). One solution could be to preserve only the most recent data
and ignore the previously acquired data that overlap the geographical region previously
covered by MODIS sensors. However, we decided to preserve all the more recent data only
when MODIS detector data overlap on a particular geolocation; otherwise, the data from a
previous overpass are preserved. The intention of this is to test the method’s ability to clas-
sify in the case of potentially changing thermal emissive data. Clearly, in the visual range,
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(a)

(b) (c) (d)

(g)(f)(e)

(h) (i) (j)
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Figure 6. Dust storm over Australia, 26 September 2009, 00:35 UTC. Satellite: Aqua. Instrument:
MODIS. (a) True colour image. (b) MODIS AOD. (c) Result using Ackerman’s method. (d) TDI
according to Hao’s method. (e)–(i) Dust storm probability using ML, PNN, FFNN, LP-SVR, and LS
LP-SVR, respectively. (j) Region of interest.

the picture will look strange because the most recent overpass (upper left diagonal side)
will reflect sunlight differently (Figure 7(j)). Also, note that the AOD and the methods of
Ackerman and Hao also suffer because of possible changes in thermal emissive properties
of aerosols and land (see Figures 7(b)–(d), respectively). The classification methods we
explore in this research seem to be robust to these changes, except for the ML method (see
Figures 7(e)–(i)). However, there seems to be an inverted diagonal crossing the picture that
presents several false positives. These false positives are associated with MODIS detec-
tors that are scanning on far edges, at large angles, or inclinations. Nonetheless, FFNN,
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(a)

(b) (c) (d)

(g)(f)(e)

(h) (i) (j)
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Figure 7. Dust event in central USA, 18 October 2012, 16:55, 17:00, and 18:35 UTC. Satellite:
Terra. Instrument: MODIS. (a) True colour image. (b) MODIS AOD. (c) Result using Ackerman’s
method. (d) TDI according to Hao’s method. (e)–(i) Dust storm probability using ML, PNN, FFNN,
LP-SVR, and LS LP-SVR, respectively. (j) Region of interest.

LP-SVR, and LS LP-SVR seem to perform well, even displaying dust aerosols not trivially
visible in the true colour picture and elucidating the dust plume’s origin.

The dust event that started on 18 October 2012 produced large amounts of dust aerosols
that were transported from the centre to the south and then to the eastern region of the
USA, on the following day. Strong winds facilitated the transport of dust aerosols and even
changed the trajectory that was originally thought to be southeast to northeast. This can be
observed in Figures 8(a) and (j), which depict the same dust event but one day later. From
these figures, we can conclude that dust aerosols were transported across Texas, Oklahoma,
Arkansas, and Louisiana. At the time of MODIS overpass, on 19 October, the dust seems to
have reached the states of Mississippi, Alabama, Georgia, Tennessee, and North Carolina.
MODIS data correspond to 16:00–16:05, and 17:40 UTC. Figure 8(b) indicates that the
AOD product provides significant data indicating high concentrations of aerosols. The
methods of Ackerman and Hao, as well as the FFNN, provide a poor visualization of the
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(a)

(b) (c) (d)

(g)(f)(e)

(h) (i) (j)
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Figure 8. Dust event near the east coast of the USA, 19 October 2012, 16:00, 16:05, and 17:40 UTC.
Satellite: Terra. Instrument: MODIS. (a) True colour image. (b) MODIS AOD. (c) Result using
Ackerman’s method. (d) TDI according to Hao’s method. (e)–(i) Dust storm probability using ML,
PNN, FFNN, LP-SVR, and LS LP-SVR, respectively. (j) Region of interest.

dust (see Figures 8(c), (d), and (g), respectively). The LP-SVR approach in either of its ver-
sions (classic or large scale) is able to provide a good detection of dust aerosols, as shown
in Figures 8(h) and (i). In contrast, the PNN and the ML approaches fail to provide helpful
information about the presence/absence of dust aerosols, especially the ML approach (see
Figures 8(e) and (f )).

The same dust event observed on different, yet sequential, dates is typical of large dust
storms such as the one presented here. Other typical big dust storms occur frequently in
northwest Africa and in the Middle East. For such events, the LP-SVR approach seems to
be a good alternative over other methodologies, as demonstrated here.

4.6. Segmentation

There is a one-to-one relationship between a feature vector and a pixel spatial loca-
tion. This automatically converts the detection algorithms into an image segmentation
method, and can be seen in the examples of the previous subsections. Besides the binary
classification/segmentation, it is possible to provide more useful segmentation results for
the analyst by taking advantage of the classifier characteristics. As we have seen in the pre-
vious subsection, the classifiers are capable of separating dust from background. Once each
decision is mapped to its spatial location, a segmented image is automatically obtained,
which can be used as a thematic map for further analysis.

Consider the ML, PNN, and FFNN classifiers. It is well known that these schemes
aim to approximate the posterior class pdfs fC|X (cj|x) for j = {1, 2} . The two-class Bayes
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(a)

(c)(b) (d)

Figure 9. Dust storm over southwestern USA and northwestern Mexico, 6 June 2001, 18:30 UTC.
Satellite: Terra. Instrument: MODIS. (a) True colour image. (b) Region of the dust storm. (c) Dust
storm probability using PNN. (d) Classification/segmentation regions found using t = 0.5, t = 0.8,
and t = 0.9.

classification rule can be also interpreted under the hypothesis testing framework, where
ratio tests of class-conditional pdfs (i.e. likelihood ratios) have been used extensively. For
instance, when there is no access to prior probability information, the Neyman–Pearson
decision rule can be applied using a threshold γ value, which is selected to achieve a certain
false alarm rate (Duda, Hart, and Stork 2001).

We can use a similar system where the posterior probability estimated for dust,
fC|X (c1|x) output by a classifier can be threshold to a preselected probability value.
Threshold γ can be perceived as the assumption that a given pixel corresponds to dust.
Then, the decision rule is set as

X is dust if fc1|x (C = j|X ) > γ

X is background otherwise,
(16)

where γ denotes the threshold in the interval 0 ≤ γ ≤ 1, establishing the desired con-
fidence level. As an example of segmentation let us consider the case of the dust
storm of 6 April 2001, whose pseudo-colour image and region of interest are shown in
Figures 9(a) and (b), respectively. The posterior probability of dust as approximated by
the PNN approach is shown in Figure 9(c). The (superimposed) segmentations, using three
thresholds, γ = [0.5, 0.8, 0.9] , are shown in Figure 9(d).

There are several implications in the use of γ for segmentation. First, this parameter
can be easily controlled by an image analyst to gain understanding of the extent and dis-
tribution of the dust storm. From Figure 9(d), we can conclude that the posterior pdf maps
into a spatial distribution of dust which shows a strong and compact concentration of dust
over the region given by γ = 0.9, and decreases as the distance to the dust storm ‘cen-
troid’ increases. The way the map is displayed is also very informative; for instance, the

D
ow

nl
oa

de
d 

by
 [

B
ay

lo
r 

U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 1
1:

40
 2

4 
Se

pt
em

be
r 

20
14

 



7666 P. Rivas-Perea et al.

concentric regions could be established according to some pre-defined intervals of γ val-
ues in order to establish the impact of a dust storm on asthma cases as it spreads over an
urban area. Finally, we could envisage using this segmented output in an automated image
analysis system, which could extract size, shape, direction, and other parameters of interest
according to the remote-sensing application.

4.7. Impacts on human health

As recent studies have shown, there is a direct correlation between exposure to high levels
of aerosols and increase in mortality rate from cardiovascular and respiratory illnesses and
lung cancer (Rivera Rivera et al. 2009). Particularly, dust storms are an inadvertent cause of
severe environmental and economic hazards. Therefore, our findings will help researchers
in the further study of the dust storm phenomenon. The LP-SVR method, proposed here,
will help in the understanding of dust storm genesis, formation, and propagation. This
research, if implemented in near-real-time (NRT) systems, could be used to alert commu-
nities to the severity of dust events, and also has the potential of working under NASA’s
Land Atmosphere Near Real-time Capability for EOS (LANCE). Thus, if this research is
implemented within the LANCE framework, it could be used to warn communities in a
timely manner, especially if such communities lack high-resolution radar. Further research
will include our findings in the area of implementing the proposed method in the LANCE
framework. A prototype version is under test at the moment of writing this article, and
further information about this can be found in the blog www.ismmalab.com, which details
many other dust events and related information.

5. Conclusion

We compared four methods for dust storm detection: the ML classifier, the PNN, the FFNN,
and the LP-SVR. ML and FFNN are classic mechanisms, while PNN is a hybrid probabilis-
tic inference mechanism embedded in a neural architecture that in this case demonstrated
good performance; we also explored an SV learning approach based on the solution to a
linear program for regression (LP-SVR). Comparison among classifiers was made using
different performance metrics, after the classifiers were modelled using a reduced training
data set. This comparison also included a large-scale approach to LP-SVR (LS LP-SVR),
which allowed us to use the complete (non-reduced) training data set. Numerical results
showed that the reduced training data set contains significant data for modelling and per-
forming dust detection based on very few feature vectors. More explicitly, we extracted
features from MODIS thermal emissive spectral bands B20, B29, B31, and B32. Sample
feature vectors were reduced following the concept introduced by Mather. The reduc-
tion involved the usage of KLT to preserve the statistical distribution of the features. The
model’s parameters were estimated from these reduced sample feature vectors, aiming to
approximate true posterior class membership probabilities.

Among the neural network-based classifiers, the hybrid approach, PNN, performed bet-
ter than the FFNN after a numerical evaluation of different performance metrics; however,
neither was significantly better in the statistical sense. The LP-SVR approach was demon-
strated to be better than the ML among statistical classifiers. Visually, all four methods
performed accurate detection.

ML, PNN, FFNN, and LP-SVR were modelled using known cases from the
southwestern USA and northwestern Mexico over land observations. Nevertheless, the
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methods provided accurate detection when tested over land at different geographical regions
with different soil types. Furthermore, all methods were able to classify dust storms over
the ocean. Numerical and visual results suggest that the ML, PNN, FFNN, and LP-SVR
classifiers are soil-independent, which in turn suggests that dust aerosol physical properties
over land and ocean are very similar when analysed within the near-infrared spectral range.

Moreover, tracking low-probability dust aerosols may provide seminal dust transport
information, i.e. dust storm impact and geographical extent can be addressed by means of
low-probability dust detection analysis.

Furthermore, the four methods currently output 1 km spatial resolution results, which
improves traditional AOD-based methods at 10 km spatial resolution.

In general, the four methods can be effectively utilized in the analysis of stratospheric
dust, thereby helping researchers in the understanding of dust aerosol activity and transport.
Among the four methods, however, an LP-SVR-based approach would be the best choice
for the researcher.
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