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1 Introduction

We investigated the problem of recognition of signs over the American sign language (ASL). The
proposed approach uses depth images of subjects making different signs, building upon the work
of B. Kang, et.al. in [1]. Typical approaches addressing similar problems involve the usage of
hidden Markov models [2], and a combination of them with other discriminative functions for fea-
ture extraction in multi-stage architectures [3]. Other major alternatives included the exploration
of neural strategies combined with fuzzy systems [4]. For a more detailed review of alternatives
for generic hand gesture recognition one can turn to the work in [5]. Deep learning, on the other
hand, has gained attention in the machine learning and the image processing for pattern recognition
communities [6, 7], motivating us to similarly explore this alternative. Recently, the authors in [1]
have explored a deep learning approach based on convolutional neural networks (CNNs) achieving
outstanding results in solving the problem that we address here. Nonetheless, the training of a CNN
and its deployment may be computationally expensive, inconsistent, and it may need a great deal
of experimentation in order to find successful architectures [8]; furthermore, other simpler and less
costly deep learning alternatives tend to be overlooked [9]. Our research aims to show that a simpler
deep learning approach based on stacked autoencoders in a dense neural network architecture is ca-
pable of solving the same problem with comparable results. We claim that this simple alternative
approach also achieves great performance and is naturally simpler [10].

2 Methodology and Results

We stack autoencoders and combine them with a feed-forward neural network in a five-layer archi-
tecture. The first two layers are a set of unsupervised autoencoders that minimize the loss func-
tion L = 1
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squared error, promotes sparsity of the weights, and also minimizes the Kullback-Leibler divergence.
The first layer, i.e., an encoding layer, receives as input N images of 256× 256 as row vectors, each
denoted as xn ∈ R65536, where n ∈ {1, 2, . . . , N}. The training phase encodes the attributes using
100 neural units to produce x̂n ∈ R100, and decodes back to the feature space using, intuitively,
65536 neural units; all neural units use logistic activation functions. Similarly, the third and fourth
layers are an encoder and decoder, respectively. The encoder in the third layer receives as input
an encoded version of the input coming from the first layer, denoted as x̂n, and encodes using 50
neural units producing a modified version of the feature vector denoted as x̃i ∈ R50. The decoder
in the fourth layer decodes using 100 neural units. In the last layer of the model we use a network
of 31 neural units with softmax activation functions. Each neuron is stimulated x̃n and is trained to
predict the probability of the n-th sample belonging to a specific class C ∈ {1, 2, . . . , 31}. Once
the process of training the autoencoders and the softmax layer, the network undergoes a last refined
training phase. In this last process, only the first, third, and fifth layers are fully connected and
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Figure 1: The working architecture when testing the system.

Table 1: Some experiments reported one subject left out of the training set and used for testing
purposes, we refer here to that as leave-one-out (loo).

Ref. Approach Year Class Type C. Size Input Type ACC

[11] FFNN 2004 Alphabets 24 Color Img 0.999
[12] CNN 2011 Gestures 6 Color Img 0.9677
[13] ANMM 2011 Gestures 6 Depth Img 0.9907
[14] Gabor + RF 2011 Alphabets 24 Depth Img 0.69
[14] Gabor + RF 2011 Alphabets 24 Color + Depth 0.75
[14] Gabor + RF 2011 Alphabets 24 Color + Depth 0.49 (loo)
[15] 3D + MLRF 2013 Alphabets 24 Depth Img 0.87
[15] 3D + MLRF 2013 Alphabets 24 Depth Img 0.57 (loo)
[16] Joint Info + RF 2015 Alphabets 24 Depth Img 0.90
[16] Joint Info + RF 2015 Alphabets 24 Depth Img 0.70 (loo)
[1] Deep CNN 2015 Alp.+Dig. 31 Depth Img 0.9999
[1] Deep CNN 2015 Alp.+Dig. 31 Depth Img 0.855 (loo)

ours Deep AE 2017 Alp.+Dig. 31 Depth Img 0.9889
ours Deep AE 2018 Alp.+Dig. 31 Depth Img 0.8549 (loo)

trained simulating a feed-forward neural network, as shown in Figure 1. The initial weights are
those obtained during the encoding-decoding learning phase and fine tuned using SCG descent to
minimize the cross entropy.

The overall cross-validated accuracy is 98.9%. Table 1 shows the state of the art on methodologies
that take on the general task of classifying hand gestures using different approaches. Our research
indicates that deep autoencoders have the capability of matching the performance of a convolutional
approach. Our main point is that a convolutional approach, while is adequate and performs well,
is an expensive measure to a problem that may have a simpler deep learning solution, such as an
autoencoder. By expensive we mean the amount of computations required to produce a solution
using a convolutional neural network. It is known that CNN-based architectures suffer from having
a massive amount of parameters to calculate during training [17], and often one sacrifices accuracy
to gain efficiency, by using pooling, for example [18]. However, autoencoders offer a simple solution
to the problem, as we have showed.
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