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Abstract— In this paper we address the problem of hand
gestures recognition in the American Sign Language using
machine learning. We propose a five layer unsupervised
encoder-decoder neural model. We use a dataset of seg-
mented images captured with a depth-sensor camera for
different subjects. The average accuracy obtained was of
98.9% and as high as 99.4% on unseen data.
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1. Introduction
Language is an essential part of being human as it enables

us to communicate with others. Some people have to develop
additional means of communication for different reasons. A
popular alternative language is through signs. This type of
language is based on hand-produced symbols or figures.

Sign language recognition is a task that has been studied
in the last few years [1]. We believe this is an important
problem to address because it directly affects the quality of
life of people who need to communicate using sign language.
The task is to develop algorithms that can recognize different
signs in an alphabet and that can do so in an efficient manner.
Ideally, the methodologies should be fast to the point of
enabling the near real-time processing of signs [2], [3].

In this research we deal with the recognition of signs
over the American sign language (ASL). The proposed
approach uses depth images of subjects making different
signs, building upon the work of B. Kang, et.al. in [4].

Typical approaches addressing similar problems involve
the usage of hidden Markov models [2], and a combination
of them with other discriminative functions for feature ex-
traction in multi-stage architectures [5]. Other major alterna-
tives included the exploration of neural strategies combined
with fuzzy systems [6]. For a more detailed review of
alternatives for generic hand gesture recognition we can turn
to the work in [7].

However, with the dramatic attention that deep learning
has gained recently in the machine learning and the image
processing for pattern recognition communities [8], [9], we
are motivated to similarly explore this new algorithmic al-
ternative to see if it offers better solutions to open problems.
Most recently, the authors in [4] have explored a deep
learning approach based on convolutional neural networks

(CNNs) achieving outstanding results in solving the problem
that we address here. Nonetheless, the training of a CNN
and its deployment may be computationally expensive and
inconsistent [10]; furthermore, other simpler and less costly
deep learning alternatives tend to be overlooked [11]. The
research presented aims to show that a simpler deep learning
approach based on stacked autoencoders in a neural network
architecture is capable of solving the same problem with
comparable results. We will show that this simple alternative
approach also achieves great performance and is, in nature,
more efficient [12].

The rest of the paper is organized as follows, Section 2
discusses the state-of-the art in machine learning approaches
to classify hand gestures. Section 3 discusses the dataset
and proposed architecture, while the experimental setup us
addressed in Section 4 along with a discussion of the results.
Finally, conclusions are drawn in Section 5.

2. Background and Related Work
Recently, J. Nagi et.al. [13] studied a deep neural network

approach for recognizing six different hand gestures given
to a robot. Using CNNs the authors achieve a 96% accuracy
rate. Then, M. Van den Bergh et.al. [14] explored the idea
of using depth-sensor imagery to establish an algorithm
for hand segmentation. The authors ultimately used this to
recognize six different hand gestures in 3D. They achieved
a 99.07% recognition rate. Some of the key components of
the overall architecture were the usage of Haar wavelets
for image filtering in a classifying methodology known
as Average Neighborhood Margin Maximization (ANMM).
Van de Bergh’s work is similar to an earlier work by Isaacs
and Foo in 2004 [15], where the authors use different
wavelets to extract features and later feed these features to a
feed-forward neural network claiming to achieve a 99.90%
recognition accuracy rate, but there is no evidence to support
this result.

N. Pugeault et.al. also studied this issue [16]; they
combined both segmented color images and depth images
processed with Gabor filters [17] as a means to extract
features. They classified the processed images using the
Random Forests (RF) learning algorithm. The authors report
achieving a 69.0% recognition rate using only depth images
and a 75.0% using both depth and color image data.



Later, A. Kuznetsova et.al. [18] makes use of 3D modeling
to represent depth images and then extract features using
such 3D models. These features are then used to train a
multi-layered random forest (MLRF). The authors report that
their highest recognition rate was 87.0% using half of the
data for training and the other half for testing with samples
chosen at random.

In 2015, Dong et.al. [19] used depth images and deter-
mined the position of each hand joints; they used the joint
information to calculate the angle of the joints and used this
as features. The authors used an RF classifier and reported
accuracies of up to 90%.

Moreover, B. Kang et.al. [4] took advantage of the recent
success of CNNs for pattern recognition over images. They
propose a system that makes use of depth-sensor images to
study further the problem of hand gesture recognition. When
recognizing signs within the same subject they averaged a
99.99% accuracy rate over five subjects. However, when
recognizing signs across different subjects, their accuracy
rate dropped to 83.58%.

Our research aims to further study the problem posed in
[4] of increasing accuracy rates over different subjects. In
the next section we discuss the dataset used and propose
a deep learning approach using autoencoders and a neural
network.

3. Methodology
3.1 Data

This research focuses in the ASL as a case study [20].
The ASL has 26 hand gestures corresponding to the letters
in the English alphabet; it also contains 9 hand gestures for
every single number. Figure 1 depicts the gestures pertaining
to our study.

We use the data provided in [4] that was released in
2015. This dataset consists of images acquired with a three-
dimensional depth-sensor camera. There is a total of 31, 000
images available with a resolution of 256×256. The images
correspond to already segmented dept-images that contain
the area of the hand. The authors use a rather simple
algorithm to make the segmentation based on the fact that in
all depth images the hand is the closest object with respect
to the camera.

Not all the 35 signs (26 letters and 9 numbers) were
considered in this study. Some signs were excluded and
others considered jointly as follows.

The signs corresponding to J and Z clearly require a
sequence of images rather than a single instance, as can be
seen in Figure 1. This goes beyond the scope of this project;
although the detection of signs from live-video sequences is
part of a bigger project, we will not address it in this paper.
For that reason these two signs were excluded.

The signs corresponding to V and 2, by observation,
are nearly identical and their distinction requires contextual

information. Similarly, the signs for letter W and number 6
require being interpreted in context. For this reason, these
signs were considered as the same sign, for a total of 31.

There is a total of five different subjects and each subject
produced 200 images of each sign. This represents a total
1,000 images per sign and 31,000 images overall. The
images collected capture each subject making a hand gesture
moving across the horizontal axis and varying inclination of
the hand gesture, as depicted in Figure 2.

3.2 Sparse Autoencoders
A sparse autoencoder is usually categorized as a neural

network with unsupervised learning [21]. In a general sense
an autoencoder is trained to output an approximation of
the input provided a deep architecture of layered neurons
that encode and decode based on the input stimuli. In
our research we use a sparse autoencoder that specifically
minimizes a modified loss function based on the mean
squared error.

Let x ∈ Rd be a d-dimensional input vector. Then the
loss function of the common sparse autoencoder is defined
as follows:
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where N is the total number of training samples; x̂n is
the learned (or encoded) approximation of the n-th input
vector xn; θw controls the sparseness of the weights of
the network, w ∈ Rd; L denotes the number of layers in
the deep network; θs regulates the sparsity of the activation
functions’ output, α, in every neuron in the network; M
is the total number of neurons in the deep network; and
KL(·) is the Kullback-Leibler divergence function [22] used
to measure how much the observed average activation of the
m-th neuron, ᾱm, actually deviates from the desired average
output, θα.

The Kullback-Leibler divergence function can be defined
as follows [23]:
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where the average output of the m-th neuron, ᾱm, at the l-th
layer is given by

ᾱm =
1
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where ψ(·) is the neuron’s activation function, and b
(l)
m is

the bias term for the m-th neuron at the l-th layer. In this
research we specifically use logistic (sigmoid) activation
functions, ψ(z) = 1/(1− e−z), for any given value of z.



Fig. 1: The American Sign Language (ASL) displaying 26 signs corresponding to the English alphabet (A to Z) and 9 signs
for numbers (1 to 9).

Fig. 2: Examples of ASL hand gestures corresponding to the
number one and number two with variations in the horizontal
axis and its inclination with respect to a depth-sensor camera.

By observing the mathematical form of (1), it is feasible
to apply an accelerated form of guided learning known as
scaled conjugate gradient (SCG) descent [24]. SCG has
proven to be a reliable and efficient form of minimizing
loss functions such as the one for the sparse autoencoder,
overcoming the shortcomings of a traditional conjugate
gradient and a back-propagation with gradient descents [21].

3.3 Deep Learning Architecture
Two stacked autoencoders are combined with a feedfor-

ward neural network in a five-layer architecture, as shown
in Figure 3. The first two layers are a set of unsupervised
autoencoders that minimize the loss function in (1). The first
layer, i.e., an encoding layer, receives as input N images of
256 × 256 as row vectors, each denoted as xn ∈ R65536,
where n ∈ {1, 2, . . . , N}. The training phase encodes the
attributes using 100 neural units to produce x̂n ∈ R100, and
decodes back to the feature space using, intuitively, 65536
neural units; all neural units use logistic activation functions.

Similarly, the third and fourth layers are an encoder and
decoder, respectively. The encoder in the third layer receives
as input an encoded version of the input coming from the
first layer, denoted as x̂n, and encodes using 50 neural units
producing a modified version of the feature vector denoted
as x̃i ∈ R50. The decoder in the fourth layer decodes using
100 neural units.

In the last layer of the model we use a network of 31
neural units with softmax activation functions. Each neuron
is stimulated x̃n and is trained to predict the probability
of the n-th sample belonging to a specific class C ∈
{1, 2, . . . , 31}. The output of this layer for the n-th sample
is the estimated probability of that sample belonging to all

classes, formally denoted as d̂n ∈ R31. The layer is trained
to minimize the cross entropy function [25] given by:

E =
1

N

N∑
n=1

∑
c∈C

d̂cn ln dcn + (1− d̂cn) ln(1− dcn) (4)

where dn ∈ R31 is the true probability of the n-th sample
belonging to a specific class.

Once the process of training the autoencoders and the
softmax layer, the network undergoes a last refined training
phase. In this last process, only the first, third, and fifth layers
are fully connected and trained simulating a feed-forward
neural network, as shown in Figure 3. The initial weights
are those obtained during the encoding-decoding learning
phase and fine tuned using SCG descent to minimize the
cross entropy in (4).

4. Experiments
4.1 Setup

The experimental setup was as follows. The dataset was
divided in 50%, 25%, and 25% for training, testing, and
validation respectively. Two autoencoders were trained using
SCG to minimize the cross entropy previously defined. The
first autoencoder has 100 neurons and the second one has 50.
The second autoencoder is trained with the reduced features
from the first autoencoders. A softmax neural network is
then trained to minimize the mean squared error with SCG.

The process is done once per each subject to match the
experiments done by Kang et. al. in [4]. The data was not
processed in any other manner before being presented to the
neural architecture for training nor testing. Thus, the inputs
are row-vector versions of 8-bit depth images as shown in
Figure 2.

4.2 Results and Discussion
Performance results on the validation sets are shown

in Table 1. The table indicates that the average accuracy
was of 98.9% which is similar to the results reported in
[4] of 99.9%. Although the difference is 1%, it is not
statistically significant. Furthermore, the deep architecture
proposed in this paper is more efficient than the CNN



Fig. 3: (Left) Deep architecture during training. The training begins with the first two layers, encoder - decoder, and once
the training is complete feature are encoded and propagated to the third layer in order to further encode - decode high-level
features. Finally, the last neural layer retrieves the encoded features from the third layer and learns the target class. The
training is performed using SCG descent [21]. (Right) The working architecture when testing the system. The input is any
test image which is passed through the first sparse encoder in the stack, reducing the dimensionality of the problem to 100.
In the second sparse encoder the feature space is further reduced to 50. The output are probabilistic outputs corresponding
to each of the 31 classes.

Table 1: Performance of the deep architecture over the
validation sets.

S1 S2 S3 S4 S5 Avg.

ACC 0.9748 0.9923 0.9935 0.9929 0.9910 0.9889
SPC 0.9991 0.9997 0.9998 0.9998 0.9997 0.9996
MAE 0.1483 0.0640 0.0373 0.0347 0.0494 0.0667

proposed by the authors. The accuracy (ACC) is calculated
as TP+TN

TP+FP+TN+FN where TP is the count of true positives,
TN is the count of true negatives, FP is the count of false
positives, and FN is the count of false negatives. When it
comes to specificity (SPC), defined as TN

FP+TN , the proposed
model gives a measure of 0.99, indicating that the model is
very good at predicting true negatives. This quality is desired
in this type of problems to make sure the model is sure
what a sign is not. This property could be attributed to the
minimization of the Kullback-Leibler divergence function
defined in (2) that causes the average outputs of the neural
units to be low. Similarly, a low mean absolute error (MAE),

defined as 1
N

∑N
i=1 |di − d̂i|, is an indicator of low average

error and low uncertainty in the output of the nerual units.
The average MAE was of 0.06 and it was as slow as 0.03
for some subjects.

Figure 4 shows all the errors made after training over the
validation set. The figure indicates that the most common
error is with the sign for the letter ‘E’ which is confused with
the letters ‘S’, ‘M’, and ‘T’. A close inspection of Figure 1
reveals that these signs are very similar and these errors are
not surprising. Similarly, the sign ‘M’ was misclassified as
‘A’ and ‘S’. Most misclassifications in Figure 4 are related
to signs done when the hand is making a fist form and the
differences in depth are low.

To illustrate this further, Figure 5 shows a variety of mis-
classification errors. From the figure it can be seen that hand
gestures with a closed fist can be confused with other similar
gestures. However, a close inspection of other gestures
suggests that errors are also caused by poor segmentation of
the hand area. For example, consider the signs corresponding
to numbers ‘4’ and ‘6’, and also letters ‘E’, ‘A’, and ‘M’,
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Fig. 4: Stacked bar chart of classification errors. Every
stacked bar indicates the predicted class and the size indi-
cates frequency amount. Common errors are with hand signs
that involve a closed hand gesture.
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Fig. 5: Examples of classification errors. ∗The image shown
as predicted is the nearest neighbor found in the predicted
class with respect to the input.

Fig. 6: Weights associated with 100 trained neurons in the
first layer for the fifth subject.

the lower portion of the image has a section that was not
segmented out of the image and it has been introduced as
part of the input. It is possible that the network encoded this
as a distinctive feature of the images leading to classification
errors. Figure 6 visualizes the weights associated to each
neural unit in the first encoding layer for the fifth subject.
The weights are capturing higher-level features and at the
same time some seem to discard information around the
limits of the images, but some seem to rely on regions of the
image that are consistent with regions where images exhibit
poor segmentation. Further studies are required to confirm
this, however.

As shown in Table 1, the overall accuracy is 98.9%, and
furthermore, Figure 7 shows the average accuracy for each
individual sign. From the figure it can be seen that signs that
involve hand gestures are likely to have lower accuracy. The
figure also shows that about half of the signs achieve perfect
classification over samples that were unseen by the network
architecture. This indicates superior generalization abilities
of the proposed deep architecture.

Table 2 shows the state of the art on methodologies that
take on the general task of classifying hand gestures using
different approaches. The reported work is organized by date
of publication. The methodologies include work that uses
neural networks, i.e., [15], [13], [14], and [4], as well as
work that report using other image processing algorithms and
non-neural classifiers, i.e., [16], [18], and [19]. Among these
important work, some exclusively classify hand gestures,
i.e., [13] and [14], others identify only alphabets, i.e., [15],
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Table 2: In some of the reported experiments, one subject
was left out of the training set and was used for testing
purposes, we refer here to that as leave-one-out (indicated
with ∗).

Ref. Approach Year Cls Typ |C| Inpt Typ ACC

[15] FFNN 2004 Alp. 24 Clr Img 0.999
[13] CNN 2011 Gstrs 6 Clr Img 0.968
[14] ANMM 2011 Gstrs 6 D. Img 0.991
[16] Gabor+RF 2011 Alp. 24 D. Img 0.69
[16] Gabor+RF 2011 Alp. 24 Clr+D. 0.75
[16] Gabor+RF 2011 Alp. 24 Clr+D. 0.49∗
[18] 3D+MLRF 2013 Alp. 24 D. Img 0.87
[18] 3D+MLRF 2013 Alp. 24 D. Img 0.57∗
[19] Jnt Inf+RF 2015 Alp. 24 D. Img 0.90
[19] Jnt Inf+RF 2015 Alp. 24 D. Img 0.70∗
[4] Deep CNN 2015 Alp.+Dg. 31 D. Img 0.999
[4] Deep CNN 2015 Alp.+Dg. 31 D. Img 0.855∗

ours Deep AE 2017 Alp.+Dg. 31 D. Img 0.989
ours Deep AE 2018 Alp.+Dg. 31 D. Img 0.855∗

[16], [18], and [19], while [4] and our work focuses on
the classification of both alphabets and digits. The work is
reported using the standard accuracy measured over cross-
validated datasets using all subjects. However, in other cases
such as [16], [18], [19], [4], and our work is reported using
the leave-one-out (loo) technique on the number of subjects.
This indicates that out of all the number of subjects, one
was left out for testing while the rest were used for training,
and the average accuracy is reported.

Our research indicates that, as shown in Table 2, deep
autoencoders have the capability of matching the perfor-
mance of a convolutional approach. Our main point is that a
convolutional approach, while is adequate and performs well,
is an expensive measure to a problem that may have a simpler

deep learning solution, such as an autoencoder. Here when
we say expensive, we refer to the amount of computations
required to produce a solution using a convolutional neural
network. It is known that CNN-based architectures suffer
from having a massive amount of parameters to calculate
during training [26] and, upon deployment, one needs to
sacrifice accuracy for efficiency. Therefore, one of the major
points of improvement is to make the number of computa-
tions as low as possible while providing good accuracy [25].

The most popular approaches, such as GoogLeNet or
ResNet, rely on novel advances to make good convolutional
approaches more affordable by dropping neural connections,
reducing filter sizes, or experimenting with different archi-
tectures [27]. However, some very good implementations of
CNNs can cost 358 millions of operations [28] and even
854 millions of operations if implemented naively. Thus,
we make the case that, although CNNs are superior to
other approaches, one must try other simpler approaches
such as deep autoencoders that offer a simple approach to
the computational complexity of the deployed models. Our
simple approach to the problem only involves 260 million
of computations.

Autoencoders not only offer a computationally simpler
approach, but also when they are stacked in layers, they are
known to learn complex manifold structures and non-trivial
patterns existing in the data. Furthermore, they are not biased
toward learning to classify a specific group of targets from
the data, and thus they belong to a group of neural networks
known as deep belief networks [29]. Once the autoencoder is
trained without bias, then it is fine-tuned to classify correctly
into specific groups, this fine-tuning process was explained
in Section 3.3.

For further reference, we performed an experimental
search for the best number of layers and the neurons in the
autoencoding layers. The search was performed using an
exponentially increasing number of neurons. We determined
that four layers (two pairs of encoding-decoding layers)
was sufficient to perform well in this dataset. Once it was
determined that four layers was sufficient, we performed
another search more closely looking for best number of
neurons in every layer. The best number of neurons was
determined to be of 4096 (or 212) in the first encoding layer,
and 2048 (or 211) in the second, since the error was 0.0027.

Using the number of layers and neurons discussed above,
in Table 2 we reported our total accuracy rate to be 0.9889
using all images from all subjects and separating them in
50%, 25%, and 25% for training, validation, and testing,
respectively, choosing the samples at random every time, re-
peating the experiment every time and reporting the average
accuracy with a standard deviation of 0.0110. Furthermore,
if we repeat the same experiment reported in [4] that consist
of training the model with all the images of four subjects
and leaving the fifth subject for testing, we report an average
accuracy rate of 0.855. This accuracy is averaged across five



runs varying the subject left out every time, leading to a
standard deviation of 0.009.

5. Conclusions
We have presented a deep learning architecture based on

sparse autoencoders for the problem of sign recognition.
The model recognizes 31 different signs in the American
Sign Language with an average accuracy of 98.9%. We
proposed an architecture with 100 and 50 neural units trained
in unsupervised encoding-decoding steps, and a softmax
network with 31 units in the output layer corresponding
to each class. The input consists of depth-sensor images
from five different subjects whose hand sign was segmented
to preserve only the regions corresponding to the hand.
Further inspection of classification errors indicates that errors
are most common among signs that are similar and are
among the type that has a closed hand sign; other causes
or misclassification come from poor segmentation in the
original dataset.

The proposed five layer architecture captures well, in three
levels of abstraction, the intricacies of hand gestures. How-
ever, the problem of finding a minimal number of neurons
without loss of generalization in each layer requires further
research. The next steps, however, are to explore subject vs
subject experiments, such as training with a varying number
of subjects and testing with new unseen subjects whose hand
size, shape, and musculoskeletal systems are completely
unknown.
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