
Machine Learning for DDoS Attack
Classification Using Hive Plots

Pablo Rivas∗, Casimer DeCusatis, Matthew
Oakley, Alex Antaki, Nicholas Blaskey

Department of Computer Science
Marist College

Poughkeepsie, NY, USA
∗Pablo.Rivas@Marist.edu

Steven LaFalce†, Stephen Stone
IBM Systems

IBM Corporation
Poughkeepsie, NY, USA
†slafalce@us.ibm.com

Abstract—Cyberattacks have been on the increase as comput-
ing power and data storage have become more accessible. The
use of recent advances in machine learning across different fields
has increased the potential adoption of new algorithms in solving
important technological problems. In this paper we describe
a novel application of machine learning for the detection and
classification of distributed denial of service (DDoS) cybersecurity
attacks. Attack pattern training data is obtained from honeypots
which we created to impersonate various APIs on a cloud
computing network. Attack characteristics including source IP
address, country of origin, and time of attack are collected from
our honeypots and visualized using a three-axis hive plot. We then
implemented and trained a non-probabilistic binary linear attack
pattern classifier. A support vector machine and a convolutional
neural network were trained using a supervised learning model
with labeled data sets. Experimental results suggest that our
models can detect DDoS attacks with high accuracy rates.

Index Terms—support vector machines, convolutional neural
networks, cybersecurity, DDoS attacks, honeypots, hive plots

I. INTRODUCTION

Our society’s overwhelming reliance on an increasingly
networked, distributed, asynchronous cyberspace has exposed
many security vulnerabilities [1]–[3]. One of the most serious
and fastest growing problems is the use of massive botnets
for malware delivery and distributed denial of service (DDoS)
attacks. Within the past year, the average DDoS attack size has
increased over 540%, with the maximum attack size exceed-
ing a terabit/second [4]. This is large enough to destabilize
the electric power grid of California [5], or disable internet
access for the eastern U.S. seaboard [6]. Similar incidents are
expected to drive losses in excess of $2 Trillion by 2020 [7].
Thus, there is a significant need for faster, automated intrusion
detection, visualization, and response to botnet attacks. This
research problem may be addressed by using machine learning,
i.e. training cyberdefense systems to recognize botnet attacks
earlier by profiling network traffic behaviors. The potential of
machine learning is well established, with the U.S. government
issuing an executive order for leadership in artificial intelli-
gence and investing $2 Billion in this field [8] in addition to
investments at Google, Facebook, and Microsoft. However, the

use of machine learning for intrusion detection and prevention
of both external and insider threats lags behind other use cases
and has yet to realize its full potential.

To cite a few recent examples, in 2017, botnets disabled
major hospitals forcing ambulances to be re-routed and im-
pacting surgical equipment [9]. In late 2016, the Krebs security
blog was hit with a DDoS attack twice as large as the prior
world record [10], comprised of a massive IoT botnet. Forensic
analysis determined that this botnet has capabilities that have
never been seen before [10]. In late 2016, the Mirai botnet
launched another record setting 1.2 Tbit/second attack, im-
pacting millions of users on Twitter, Amazon, Spotify, Netflix,
Tumblr, and Reddit [11]. Such attacks are expected to get
worse, since the IoT is expected to surpass 20 billion devices
by 2020 [12] and it is currently possible for unskilled attackers
to rent botnets with about 500,000 connected devices [9]–[12].

In our research we recognize that the future of cybersecurity
is not about machine learning replacing humans, but rather
playing to the strengths of both [13]. While machine learning
is superior at classifying big data sets based on key features,
human security analysts continue to play a valuable role in
interpreting cyber-defense data. Visualization is the subject of
ongoing cybersecurity research, since it plays a critical role
in situational awareness and has the potential to extract more
actionable intelligence from large, complex data sets [14]. This
research builds on the results of an NSF Award SecureCloud
(#1541384) by continuing to pioneer the use of hive plots
in cybersecurity. Many of the hive plot properties that make
them useful in computational genomics [15] are also well
suited to cybersecurity analytics (for example, hive plots do
not introduce artifacts into the data sets).

In this paper, we present a novel machine learning ap-
plication for detection and classification of DDoS attacks.
We have implemented, trained, and tested a non-probabilistic
binary linear attack pattern classifier. A support vector machine
(SVM) using scikit-learn and a convolutional neural network
(CNN) using TensorFlow were trained using supervised learn-
ing with a labeled dataset. Experimental results show that
this approach can identify DDoS attacks early and with high
accuracy. Section II explains the honeypots design while Sec-
tion III addresses the visualization paradigm of hive plots. The978-1-7281-3885-5/19/$31.00 ©2019 IEEE

Fig. 1. The LCARS system architecture for storing attack data. The HoneyNet attracts attacks and feeds the data to a database to log all activity for further
analysis. The architecture uses Python and Java-based languages as well as the open-source secure and robust database management system, PostgreSQL.

machine learning methodology and the dataset are explained
in Section IV. Section V shows and discusses the results of
our experiments, while Section VI draws our conclusions.

II. HONEYPOT DESIGN

The effectiveness of honeypots in cyber-defense is evi-
dent from significant recent interest, including The Honeypot
Project (a 501(c)3 nonprofit group) [16] and various projects in
the 2017-2018 Google Summer of Code [17]. Honeypots are a
form of cyber-deception that augments traditional perimeter-
based defenses by decoying attackers from production envi-
ronments. According to a survey of well-known honeypots
[18], as attackers fingerprint existing honeypots, there is a con-
tinuous need to develop new honeypots capable of deceiving
attackers long enough to collect reliable data. Honeypots offer
many benefits, including the ability to capture new or unknown
behavior such as zero-day attacks or insider threats and to
dramatically reduce false positives. This research builds on
our prior work, including honeypots for graph database G-Star
(supported under NSF CAREER Award IIS-1149372) [19].
With such funding, Marist College has been developing its
own set of honeypots to capture valuable attack data to study
and analyze to better predict and prevent future attacks [20].

Peitho, named after a Greek god, is a high interaction
honeypot designed to act and look like a REST API and
attract potential attackers. Peitho then feeds 15 points of
information to the LCARS system to provide easy access and
analysis of the data. Generally, Peitho attracts DOS attacks
and DDOS attacks. Fig. 1 depicts how the LCARS system
collects, process, stores, and allows for accessibility of attack
data.

III. ATTACK PATTERN VISUALIZATION WITH HIVE PLOTS

Attack pattern visualization plays a critical role in sit-
uational awareness and has the potential to extract more
actionable intelligence from complex data sets. Hive plots were
introduced in biological research [14], [15], [21], [22] as a
scalable, computationally straightforward approach to creating
informative, quantitative, and easily comparable graphs. Since
then, hive plots have found applications in bioinformatics,
such as rendering gene co-location networks for bacteria [21].

While they have been applied to a few other areas [22], hive
plots have not yet been applied to cybersecurity visualization,
including commercial applications such as IBM QRadar [23]
and Cisco Tetration [24].

We implemented cybersecurity hive plots during a prior
NSF Award #1541384 (SecureCloud), and used hive plots
as input to our machine learning algorithm. Many properties
which make them useful in computational genomics are well
suited to cybersecurity analytics. For example, longtail distri-
butions [25] characterize the statistics of both cybersecurity
attack classifiers and many types of cancer mutations [15].
Bioinformatics is concerned with how changes in genome
sequence organization and regulation give rise to phenotype
differences (i.e. whether a disease state like cancer results from
genome manipulation). Similarly, our cybersecurity machine
learning algorithms are concerned with questions such as
whether a sudden increase in network activity is the result of
a botnet DDoS attack or something more benign. In this way,
machine learning might help solve the currently intractable
problem of botnet attack detection by finding non-obvious data
patterns.

Hive plots define a linear layout for nodes, grouping them by
type and arranging them along radial axes based on emergent
properties of the data. Edges are drawn as curved links (Bezier
curves) showing the rational relationship between nodes. In
contrast to other types of graphs such as “hairball” force
layouts [14], as shown in Fig. 2 (a) do not assign intrinsically
meaningful positions to nodes, a hive plot explicitly encodes
information in the node position. As shown by Fig. 2 (b), hive
plots better reveal underlying structure and communicate in-
terdependencies and aggregate relationships. A hive plot does
not obscure the relationship between raw data and the graph,
making it well suited to graphic attack pattern recognition.
Since hive plots are based on emergent network properties, we
can more readily identify and compare attack patterns, analyze
the homogeneity and diversity of features in various attacks,
and extrapolate time evolution to predict developing attacks.
Hive plots excel at managing visual complexity arising from
large numbers of edges, and exposing trends and outliers in
the data set.

(a) (b)

Fig. 2. Left: Example of conventional “hairball” force graph of cyberattack
data. Right: Example of the same data visualized as a three-axis hive plot
mapping. Note that these graphs are shown for topological comparison only.

IV. MACHINE LEARNING APPROACH

A. Hive Plots Dataset

The hive plot dataset was originally constructed through
simulating attacks on the honeypot Peitho. We made a series
of HTTP requests to the honeypot Peitho in a given time
period. Randomness was introduced in the following two
places to better model real world attacks. First, randomness
was used in selecting how many proxies would be involved in
simulating the attacks. And second, randomness was also used
in choosing how many request would be made from each proxy
to the honeypot. Then, after the attack was done simulating,
a request would be made to the LCARS API to get the attack
data from the database and this would be displayed using a
hive plot. A similar method but with different tuned parameters
was used to generate the normal traffic section of the dataset.

The attacks were simulated using Python. This allows us
to automatically simulate an attack and record the honeypot-
like responses and also to directly simulate the responses at
random for a faster simulation.

The hive plots we used in this research have three axes.
The first axis (left) describes the time elapsed since the start
of the attack, closeness from the center indicates closeness to
the beginning of time snapshot in which the data has been
collected. The second axis (right) is the source IP address.
The third axis (top) is the country corresponding to source
IP address. The lines have a 50% transparency so that many
overlapping lines are displayed with a stronger and solid black
color. Fig. 3 (a) shows an example of normal traffic, while
Fig. 3 (b) depicts a DDoS attack.

One interesting aspect to the data we thought to explore
was to see the time progression of the simulated attacks. To
simulate this we made the hive plots save at regular time
intervals in order to test how well the classifiers could do
at measuring real world attacks. This question of how fast
and how well our classifiers can determine the probability of
an attack going on is very useful. It could potentially allow
stopping of cybersecurity attacks both before a human could
possibly recognize them and before they cause any harm.

This sequential dataset is shown in Fig. 4. The sequence
in the dataset is divided into eight different time steps, tn,
for n = 0, 1, . . . , 7. The sequences intentionally start with
blank plots at t0, to be used as a control group to establish if

(a) (b)

Fig. 3. Left: Hive plot that exhibits a pattern of normal traffic. Notice that
there are several source countries (top axis) that show incoming traffic to
mostly different IPs (right axis) during mostly different time periods (left
axis). Right: Hive plot that shows a DDoS attack pattern. The top axis shows
traffic coming from many different countries using a few source IPs (right
axis) over distributed periods of times (left axis). However, notice that the
darker color elucidates the amount of traffic generated.

the machine learning algorithms are biased toward a specific
type of class. Ideally, the models should have accuracy of
50% (random chance) at t0 if they are not biased. In Fig. 4,
the top row exemplifies a DDoS attack while the bottom row
corresponds to normal traffic. All samples were acquired using
the same procedure as explained in Section IV.A.

B. SVM as a Binary Classifier

The initial version of our SVM training algorithm is
a non-probabilistic binary linear classifier based on the
sklearn.svm model [26], intended to perform early iden-
tification of DDoS attacks with a confidence score.

Formally, if we define a hive plot image as a square matrix
of size m ×m = d; then it is possible to flatten such image
as a d-dimensional vector x ∈ Rd. For an SVM, we define a
positive constant C > 0 describing the trade off between the
training error and define a penalizing term on the parameters
of an SVM as ||w||22 promoting sparser solutions on w. If
we further let variable ξi be a non-negative slack variable to
account for possible unfeasible solutions, then we can define
an SVM as a predictor over input data, x, with the objective

min
w,b,ξ

1

2
||w||22 + C

N∑
i=1

ξi

s.t. yi(wTxi + b) ≥ 1− ξi

with ξ ≥ 0, for all i = 1, 2, . . . , N , and where D =
{xi, yi}Ni=1 defines our data set with N images of hive plots
having y as the target class. Specifically in our case, the target
class is binary: y ∈ {−1,+1}. The positive class is a DDoS
attack, and the negative class is normal traffic. With this we
trained an SVM to model our classification problem using the
large hive plot training data sets for various attack patterns.

C. Convolutional Neural Network

Another approach we explored is a convolutional neural
network (CNN). A CNN was originally conceived to solve
image-based classification problems and has recently gained

t0 t1 t2 t3 t4 t5 t6 t7

Fig. 4. Time sequence of traffic patterns as they develop in eight different time steps, tn, for n = 0, 1, . . . , 7. Top row: DDoS attack. Bottom row: normal
traffic. Note that both sets start with a blank plot at t0, which is used as a control group to determine if the models are biased toward a specific class.

Fig. 5. Proposed convolutional neural network architecture. The model reduces dimensionality quickly to ensure fast response times upon deployment.

a lot of attention due to the potential applications to other
problems in machine learning [27], even achieving better
performance than a human being in image classification tasks
[28].

In general, a CNN determines filters (or matrices) that will
be convolved with an input image. There are usually many
filters to be determined using a gradient descent technique.
The result of the convolution is usually followed by a pooling
operation aimed to reduce the dimensionality of the results
by making a summary of each by taking the maximum, for
example, of a region in the results. This is followed, usually,
by an activation function such as a rectified linear unit (ReLU)
[29]. This process is repeated for different numbers of filters
at different scales to build a network.

Our proposed network is shown in Fig. 5. The CNN begins
with 16 convolutional filters of size 9× 9 and stride of 9× 9.
This is followed by max pooling of size 3 × 3 and ReLUs.
The next convolutional layer has 16 filters of size 3 × 3 and
stride 3×3 followed by max pooling of size 2×2 followed by
ReLUs. This is then connected to a three-layered dense neural
network with 512, 128, and 2 neural units in each layer.

The last layer with two neurons is designed to observe the
neuron with the maximum activation out of the two and assign
the correct classification to the neuron with the largest stim-
ulus. The activation function in the last layer is, therefore, a
sigmoid. The other two layers have ReLU activations followed

by a 20% dropout rate on each. A dropout strategy is well-
known to prevent overfitting in neural networks [30].

The difference between the input to the CNN and the SVM
is that in the SVM the image is flattened to a d-dimensional
vector, while in the CNN, the input is left as an m×m image,
thus, the input vector is a grayscale matrix x ∈ Rm×m.

V. EXPERIMENTAL RESULTS

We conducted two experiments. The first deals with testing
the accuracy of both machine learning methods in distinguish-
ing from DDoS attacks and normal traffic. The second one
aims to determine at which time step can the models begin
distinguishing between from both classes.

A. Fixed Snapshot Classification

To report performance we performed cross validation [31]
on six folds to record accurate generalization capabilities.
The performance of both SVM and CNN is shown in Fig. 6
and Fig. 7, respectively. We measured performance using
the metric known as the area under the receiving operating
characteristic (ROC) curve (AUC). The ROC measures the true
positive rate (TPR) and the false positive rate (FPR), which
measure the models ability to discriminate among binary
classes and exhibit any biases if they are present. Therefore,
the AUC is traditionally a better metric when accuracies are

Fig. 6. Using six-fold cross validation, an SVM produced AUCs of around
0.94 in the average case.

Fig. 7. Using six-fold cross validation, an CNN produced AUCs of around
0.99 in the average case.

very high. The cross-validated accuracy rate on the test set
using an SVM was 0.95±0.01, while the AUC was 0.94±0.01.

In comparison, the CNN achieves an accuracy rate of 1.0±
0.0 and an AUC of 0.99 ± 0.0, as shown in Fig. 7. Since
the performance of the CNN was superior to the SVM, the
following remarks are in order. The SVM is known to have
O(d2) complexity and super-linear behavior at best on N ,
raising efforts on making the training of SVMs faster [32]. The
fastest solution to our problem, given its dimensions (256 ×
256) and number of samples (2000) is to use a linear SVM
[33]. This limits the SVM by not taking advantage of the
kernel-trick [34], which gives a clear advantage to SVMs to
perform better in a kernel-induced high-dimensional hyper-
space. This limitation may influence the lower performance
of an SVM under the CNN.

As a summary of performance, we present the cross-
validated metrics shown in Table I. In terms of accuracy
and recall, i.e., the rate of correct classification on relevant

TABLE I
CROSS-VALIDATED PERFORMANCE METRICS

ML Model Accuracy Precision Recall
SVM 0.947± 0.015 1.0± 0.0 0.896± 0.030
CNN 1.0± 0.0 1.0± 0.0 1.0± 0.0

TABLE II
CROSS-VALIDATED PERFORMANCE METRICS FOR A CONVOLUTIONAL

NEURAL NETWORK TRAINED OVER A SEQUENTIAL DATASET

t Accuracy Precision Recall AUC
t0 0.506± 0.01 0.086± 0.19 0.167± 0.37 0.500± 0.00
t1 0.952± 0.02 0.999± 0.00 0.905± 0.04 0.952± 0.02
t2 0.990± 0.01 0.997± 0.00 0.982± 0.02 0.990± 0.01
t3 0.993± 0.00 0.998± 0.00 0.987± 0.01 0.993± 0.00
t4 0.995± 0.00 0.997± 0.00 0.992± 0.01 0.995± 0.00
t5 0.996± 0.00 0.999± 0.00 0.994± 0.01 0.996± 0.00
t6 0.998± 0.00 0.999± 0.00 0.998± 0.00 0.998± 0.00
t7 0.998± 0.00 0.995± 0.01 1.000± 0.00 0.997± 0.00

samples, the SVM under-performs the CNN.

B. Classification of Sequential Data

The next experiment was to study the classification ability
on a larger dataset containing eight times more images than
in the previous experiment, for a total of 16, 000 images. We
can think of the dataset in the previous experiment as only
evaluating the time snapshot consisting of the final image at
time t7, and this new dataset consists of the time snapshots
leading to it, that is, t0, t1, . . . , t7. These sequences (samples
shown in Fig. 4) are meant to show the capability of early
detection of attacks.

Beginning with the CNN, we found that the CNN is able
to recognize a DDoS attack as early as t1. Table II shows a
summary of the cross validated performance metrics.

The model is able to recognize attacks as early as t1 with
an accuracy beyond random chance. And at t2 and beyond,
the model achieves accuracies of 99% with low variance. If
we recall that t0 is a blank plot (Fig. 4) meant to be used as
a control group, it has to be true that the accuracy at t0 has
to be random chance, i.e., 50% accuracy.

The SVM on the other hand produced the results shown
in Table III. The SVM begins reducing variance after t2 and
is very stable at recognizing attacks at a 96% accuracy rate
and greater at t5. The performance drop can be due to the
increase in the number of samples that can be learned and can
be ambiguous, e.g., t0 and t1 can be easily causing bias toward
specific classes. This can be evident by the recall score, which
is relatively lower than desirable.

C. What are the ML models learning?

Clearly, using a linear SVM has the disadvantage of not us-
ing kernel-induced high-dimensional spaces for classification;
however, on the other hand, the solution that it learns from the
data is completely transparent and has a direct meaning that
is not possible to obtain if we do not use a linear SVM. This
means that a linear SVM can be used to determine feature

TABLE III
CROSS-VALIDATED PERFORMANCE METRICS FOR A LINEAR SUPPORT

VECTOR MACHINE TRAINED OVER A SEQUENTIAL DATASET

t Accuracy Precision Recall AUC
t0 0.500± 0.03 0.000± 0.00 0.000± 0.00 0.500± 0.00
t1 0.683± 0.02 1.000± 0.00 0.366± 0.04 0.683± 0.02
t2 0.860± 0.02 1.000± 0.00 0.720± 0.04 0.860± 0.02
t3 0.916± 0.01 1.000± 0.00 0.832± 0.02 0.916± 0.01
t4 0.943± 0.01 1.000± 0.00 0.887± 0.02 0.943± 0.01
t5 0.958± 0.01 1.000± 0.00 0.917± 0.01 0.958± 0.01
t6 0.971± 0.01 1.000± 0.00 0.941± 0.01 0.971± 0.01
t7 0.976± 0.01 1.000± 0.00 0.953± 0.02 0.977± 0.01

Fig. 8. Learned weights of the Linear SVM represented in two dimensions.

importance. And in our case, we can use the learned solution
to display what the SVM believes are the relevant regions of
the input images. Fig. 8 shows these learned weights.

Something that is intuitive is that the axis (the actual lines)
of the hive plots are irrelevant to determining if there is an
attack. This is confirmed by observing that the learned weights
in the SVM are completely ignoring the axis and observing at
particular curves in the input images.

The CNN on the other hand learns two-dimensional filters
in the early layers of the network that are difficult to interpret.
These learned filters are shown in Fig. 9.

The filters that a CNN learns through stochastic gradient
descent are filters that usually exploit characteristic shapes
present or absent in the training images. For example, filters 1,
4, 6, 8, 12, and 13 seem to be learning diagonal patterns and
curves so that the network pays attention to these patterns.
The other filters are rather abstract and might not have a
clear interpretation. Further research will explore the attention
mechanism that the CNN model learns.

VI. CONCLUSIONS

This paper presents a novel application of machine learning
for the detection of DDoS cybersecurity attacks. Attack pattern

training data is obtained from honeypots using characteristics
including source IP address, country of origin, time of attack.
Such data was visualized using a three-axis hive plot. Then
we implemented and trained an SVM classifier using scikit-
learn and a CNN using Tensorflow. Experimental results show
that both an SVM and a CNN can accurately predict attacks
with 95% and 100% accuracy, respectively. Furthermore, the
models can detect DDoS attacks as early as in t1 with accuracy
of 95% with a CNN and in t5 with an SVM.

In 2017, Marist began to host the IBM Z Community Cloud1

for enterprise development [35], which continues to grow
its user base. As part of this service, Marist has access to
the IBM Open Data Analytics for z/OS (IzODA) platform2,
which we want to use to create a classifier for cybersecurity
attack patterns. An advantage of this platform is that it has
been natively developed for high capacity enterprise servers,
capable of easily handling the increased volumes of data we
expect to collect.

In future research, we will also explore implementing an
SVM classifier based on open-source libraries available in the
IzODA environment installed on an IBM Enterprise Server
running z/OS at Marist [36]. Since the mainframe has high
data storage and processing capacity [37] its possible to
quickly explore different attack parameter sets and compare
the results. When our solutions transition into a production
environment, there will be additional benefits of this platform,
including pervasive encryption which protects all the machine
learning data and results [37]. We will also investigate the
relationship between image resolution of the attack graphs and
the accuracy of the ML models.

The code to reproduce our experiments can be freely
accessed under an MIT license on this Google Colaboratory:

http://marist.ai/hive-plots-code

ACKNOWLEDGMENT

We acknowledge the support of Marist College’s School of
Computer Science & Mathematics, the New York State Cloud
Computing & Analytics Center, and IBM Poughkeepsie, NY.

REFERENCES

[1] J. Meier, A. Mackman, M. Dunner, S. Vasireddy, R. Escamilla, and
A. Murukan, Improving web application security: threats and counter-
measures. Microsoft Corporation Washington, DC, 2003.

[2] A. Shostack, Threat modeling: Designing for security. John Wiley &
Sons, 2014.

[3] W. House, “Trustworthy cyberspace: Strategic plan for the federal cyber
security research and development program,” Report of the National
Science and Technology Council, Executive Office of the President, 2011.

[4] M. Kumar, “1.7 tbps ddos attack–memcached udp reflections
set new record,” accessed on 2018-04-02. [Online]. Available:
https://thehackernews.com/2018/03/ddos-attack-memcached.html

[5] S. Soltan, P. Mittal, and H. V. Poor, “Blackiot: Iot botnet of high
wattage devices can disrupt the power grid,” in 27th {USENIX} Security
Symposium ({USENIX} Security 18), 2018, pp. 15–32.

[6] J. Margolis, T. T. Oh, S. Jadhav, Y. H. Kim, and J. N. Kim, “An in-
depth analysis of the mirai botnet,” in 2017 International Conference
on Software Security and Assurance (ICSSA). IEEE, 2017, pp. 6–12.

1Register for free at: https://zcloud.marist.edu/#/register
2https://izoda.github.io/

Fig. 9. Learned filters of the CNN.

[7] J. Moar, “The future of cybercrime & security: Financial and corporate
threats & mitigation,” Juniper, Dec, 2015.

[8] D. M. Kocak, “State of technology report: Maritime technology in 2018,”
Marine Technology Society Journal, vol. 52, no. 5, pp. 6–16, 2018.

[9] R. Arndt, “A year after wannacry, health care organizations
face mounting cyberthreats,” accessed on 2018-12-18. [Online].
Available: https://www.modernhealthcare.com/article/20180622/
TRANSFORMATION02/180629972/a-year-after-wannacry-healthcare-
organizations-face-mounting-cyberthreats/

[10] P. Krebs, “Krebsonsecurity hit with record ddos
attack,” accessed on 2017-09-20. [Online]. Avail-
able: https://www.krebsonsecurity.com/2016/09/krebsonsecurity-hit-
with-record-ddos

[11] B. Krebs, “Ddos attack on bank hid $900,000 cyberheist,” Krebs on
Security, 2013.

[12] R. H. Weber and E. Studer, “Cybersecurity in the internet of things:
Legal aspects,” Computer Law & Security Review, vol. 32, no. 5, pp.
715–728, 2016.

[13] S. Bergsten and P. Rivas, “Societal benefits and risks of artificial
intelligence: A succinct survey,” in 21st International Conference on
Artificial Intelligence (ICAI 2019), 2019.

[14] M. Krzywinski, K. Kasaian, O. Morozova, I. Birol, S. Jones, and
M. Marra, “Linear layout for visualization of networks,” in Genome
Inform, 2010.

[15] M. Krzywinski, I. Birol, S. J. Jones, and M. A. Marra, “Hive plotsra-
tional approach to visualizing networks,” Briefings in bioinformatics,
vol. 13, no. 5, pp. 627–644, 2011.

[16] L. Spitzner, “The honeynet project: Trapping the hackers,” IEEE Security
& Privacy, vol. 99, no. 2, pp. 15–23, 2003.

[17] H. Vakaria, “Google summer of code,” accessed on 2018-12-18.
[Online]. Available: https://blog.nebulis.io/

[18] E. van Ommeren, M. Borrett, and M. Kuivenhoven, Staying ahead in
the cybersecurity game: what matters now. Sogeti & IBM, 2014.

[19] V. Joseph, P. Liengtiraphan, G. Leaden, and C. DeCusatis, “A software-
defined network honeypot with geolocation and analytic data collection,”
in Proc. 12th Annual IEEE/ACM Information Technology Professional
Conference, Trenton, NJ, 2017.

[20] D. N. Gisolfi, M. Gutierrez, T. V. Rimaldi, C. DeCusatis, and A. G.
Labouseur, “A honeynet environment for analyzing malicious actors.”

[21] M. J. Pocock et al., “The visualisation of ecological networks, and their
use as a tool for engagement, advocacy and management,” in Advances
in Ecological Research. Elsevier, 2016, vol. 54, pp. 41–85.

[22] S. Engle and S. Whalen, “Visualizing distributed memory computations
with hive plots,” in Proceedings of the Ninth International Symposium
on Visualization for Cyber Security. ACM, 2012, pp. 56–63.

[23] D. Miller et al., Security information and event management (SIEM)
implementation. McGraw-Hill,, 2011.

[24] V. Jeyakumar, O. Madani, A. ParandehGheibi, and N. Yadav, “Data
driven data center network security,” in Proceedings of the 2016 ACM
on International Workshop on Security And Privacy Analytics. ACM,
2016, pp. 48–48.

[25] R. Kalyanam and B. Yang, “Try-cybsi: An extensible cybersecurity
learning and demonstration platform,” in Proceedings of the 18th Annual

Conference on Information Technology Education. ACM, 2017, pp.
41–46.

[26] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” Journal of machine learning
research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[27] K. Mulligan and P. Rivas, “Dog breed identification with a neural net-
work over learned representations from the xception cnn architecture,”
in 21st International Conference on Artificial Intelligence (ICAI 2019),
2019.

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[29] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltz-
mann machines,” in Proceedings of the 27th international conference on
machine learning (ICML-10), 2010, pp. 807–814.

[30] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from over-
fitting,” The Journal of Machine Learning Research, vol. 15, no. 1, pp.
1929–1958, 2014.

[31] R. Kohavi et al., “A study of cross-validation and bootstrap for accuracy
estimation and model selection,” in Ijcai, vol. 14, no. 2. Montreal,
Canada, 1995, pp. 1137–1145.

[32] P. Rivas-Perea and J. Cota-Ruiz, “An algorithm for training a large scale
support vector machine for regression based on linear programming and
decomposition methods,” Pattern Recognition Letters, vol. 34, no. 4, pp.
439–451, 2013.

[33] T. Joachims, “Training linear svms in linear time,” in Proceedings of the
12th ACM SIGKDD international conference on Knowledge discovery
and data mining. ACM, 2006, pp. 217–226.

[34] B. Schölkopf, “The kernel trick for distances,” in Advances in neural
information processing systems, 2001, pp. 301–307.

[35] Q. Wu, Z. Gao, E. Wang, H. Min, and Z. Wei, “Research on highly
consumable platform for business analytics,” in 2016 International
Conference on Progress in Informatics and Computing (PIC). IEEE,
2016, pp. 649–653.

[36] K. Wei and G. Cai, “Bring intelligence to where critical transactions
run–an update from machine learning for z/os.”

[37] D. Wolpert, E. Behnen, L. Sigal, Y. Chan, G. E. Téllez, D. Bradley,
R. Serton, R. Veerabhadraiah, W. Ansley, A. Bianchi et al., “Ibm z14:
Enabling physical design in 14-nm technology for high-performance,
high-reliability microprocessors,” IBM Journal of Research and Devel-
opment, vol. 62, no. 2/3, pp. 10–1, 2018.

