
Modeling SQL Statement Correctness with
Attention-Based Convolutional Neural Networks

Pablo Rivas ID , Senior, IEEE
School of Engineering and Computer Science

Department of Computer Science, Baylor University
Email: Pablo Rivas@Baylor.edu

Donald R. Schwartz ID

School of Computer Science and Mathematics
Department of Computing Technology, Marist College

Email: Donald.Schwartz@Marist.edu

Abstract—Automated grading of SQL statements is a topic of
interest for instructors and students alike. It can give teachers
additional time to be more effective in identifying issues quickly,
and it can give students a preview of the grade they may
receive. Existing attempts in the literature create models based
on a variety of methodologies that exploit the structure of SQL
statements and model answers; however, very few have leveraged
the recent advances in deep learning. This paper employs a con-
volutional self-attention mechanism to learn complex contextual
and grammatical dependencies directly from data of labeled
SQL statements. Our experiments suggest that the proposed
parameter-sharing strategy can adequately model the problem of
detecting the correctness of an SQL statement with a balanced
accuracy of up to 81.2% and an AUC of 0.87 in cross-validation.

Index Terms—attention, convolutional networks, sql, natural
language processing, machine learning, deep learning

I. INTRODUCTION

Grading SQL queries can be tedious, time-consuming, and
challenging. The tediousness and time required arise from
the sheer volume of work, especially if it involves larger
assignments from multiple sections of the same course. The
challenges come from the realization that there are often
multiple correct ways (and infinitely many incorrect ways) to
write each query and that incorrect queries should earn partial
credit, based on how closely the submitted query matches a
correct answer. The challenge increases as the complexity of
the assigned set of queries increases.

Automating the grading of these queries can save time and
effort, but many automated approaches lack the sophistication
needed to award credit accurately and consistently for each
query. Automated grading systems are generally based on
one of two approaches: dynamic analysis (which run queries
against fixed data sets and compares the results of a submitted
query with the results from the answer key) and static analysis
(which analyzes the submitted SQL statement and compares it
to the answer query) [1]. Some newer systems combine these
approaches into a hybrid approach.

We take a different approach. Namely, we employ machine
learning to model the SQL statement with supervised learning
using a parameter-sharing approach [2]. This learning mecha-
nism takes advantage of training the same model for different,
yet similar outcomes, adjusting its parameters in order to learn
the non-trivial relationships among SQL statements syntax

based on students answers to class exercises released in [3].
The model we propose uses a self-attention mechanism [4],
in combination with a convolutional neural network that will
analyze the spatially correlated elements of a SQL statement
and learn to pay attention to all the different aspects of the
syntax.

The proposed model is a prototype that is supervised
according to three different criteria: the correctness of the
statement, a grader’s remark or comment about the statement,
and an assigned grade. Therefore, a single model trained over
different alternating cycles for the different criteria shares
knowledge about SQL statements. These kinds of models have
reportedly performed well in natural language processing tasks
where the syntax and grammars are complex, most notably in
neural machine translation [5]. Thus, this type of model should
achieve performances beyond random chance in modeling the
problem of SQL statement modeling for automatic grading
tasks, as we show in this paper.

The rest of the paper is organized as follows. The associated
background material is reviewed in Section II. In section III, we
present our methodology, including a description of the dataset
we used, a layout of the neural architecture we developed,
and an overview and evaluation of the experiments we ran,
including the results. Conclusions are presented in Section IV.

II. BACKGROUND

In this section, we give a brief overview of related work in
the areas of automated SQL statement grading and attention-
based convolutional neural networks (CNNs).

A. Related work in automated SQL statement grading

Automated SQL query grading systems are generally based
on one of two approaches, dynamic analysis or static analysis.
The dynamic analysis approach runs queries against fixed data
sets and compares the results of the submitted query with the
results from the answer key queries [1]. Early examples of
this approach include SQLator [6], SQLify [7], and AsseSQL
[8]. More recently, Kleerekoper, et al. developed SQL Tester,
an online interactive tool that compares a submitted query’s
results to a correct result, but requires that the results must be
in the same order and pass a case-sensitive comparison [9].
Trongratsameethong and Vichianroj have introduced ASQLAG,
which is a system that can grade assignments submitted across

https://orcid.org/0000-0002-8690-0987
https://orcid.org/0000-0002-9802-6705


an array of DBMS platforms, including MySQL, MariaDB,
PostgreSQL and Microsoft SQL Server. Their system uses an
object-oriented design technique with an MVC (Model-view-
controller) framework [10]. This approach can be susceptible
to inaccuracies in grading, because incorrect queries might
still produce results identical to those of the answer-key query,
especially if the correct answer happens to be an empty table.
Another consideration concerns the prospect that if a submitted
answer includes an extra field, the resulting table might be
judged to be vastly different than the answer results.

The static analysis approach evaluates the structure of the
SQL queries without actually running the queries. An early
example of this approach is [11], which employed a matrix,
called a tableau, to represent various relational expressions,
and used the tableau to develop equivalence classes for the
expressions. Štajduhar, et al. developed an approach that uses
string similarity metrics to compare submitted queries to
answer-key queries [12]. Cosette, an automated SQL prover,
encodes SQL queries into logic formulas to determine whether
the queries are logically equivalent [13]. Improving on this
approach, Chu et al. [14] developed an unbounded semiring
(U-semiring) approach for further determining the equivalences
of SQL queries. This approach has the advantage of being able
to provide more-detailed feedback to the students, but can be a
much more complex approach, especially considering the fact
that there are often multiple correct ways to write the same
query. As such, the answer-key would need to include multiple
correct examples of the same query, so that the system may
compare the student’s query with each correct example, ideally
giving the student the highest generated score.

Newer systems often employ a hybrid approach, which
attempts to minimize the problems associated with each
approach and allows the system to more easily award partial
credit for incorrect submissions. Wang, et al. [1] describe a
system which uses the dynamic approach to determine whether
query submissions are correct, then uses a static approach on
the incorrect queries in order to award partial credit. Their static
approach grades the submitted query against multiple answer-
key queries, then awards the highest mark to the submitted
query. Chandra et al. present their XData system [15]–[17],
which dynamically evaluates queries by generating datasets
tailored to identify common query-development errors. It then
utilizes the static approach (which they call edit-based grading)
to evaluate the SQL query to determine the number of changes
that may be required to transform the submitted query into
one that is equivalent to a correct query.

Our system leverages the recent advances in deep learning
that enable a model to learn from data to detect whether an
SQL statement is correct, what short feedback it should receive,
and what grade a grader would give. This is achieved using
attention-based CNNs, which we introduce next.

B. Related work in attention-based CNNs

Attention mechanisms have demonstrably shown exceeding
superiority when used in combination with other models that
require information about contextual relationships [18]. For

example, Wu et al. [4], combined an attention mechanism
with a convolutional neural network (CNN). The authors took
advantage of the superior capabilities of a CNN to capture
spatial relationships and added additional context with an
attention mechanism to model magnetic resonance images.
The study shows that such a mechanism can improve the
reconstruction ability of traditional algorithms. Likewise, in
2020, Li et al. [19] used a similar approach but for denoising
purposes in computer tomography scans. The authors leveraged
the capabilities of self-attention and CNNs to learn inter- and
intra-slice scans.

These models not only find application areas in medical
imaging, but they have also impact in areas that involve
time-series data, for example in [20]. Fahim et al., in 2020,
looked at the problem of power transmission line faults and
how the problem could be modeled using self-attention CNN
models. The authors looked at data that was sequential in time
and were able to classify about a dozen different types of
outcomes. Another example of the diversity of applications
is the research by Zeng et al. in 2020 [21]. The researchers
used an attention model and a CNN to detect leaf disease in a
variety of conventional images of leafs. The authors reported
performance improvements over other standard classifiers.

What these models have in common is the properties of
input that they receive: the data is highly correlated and needs
contextual information. CNNs provide the solution to spatial
correlation analysis, regardless if the space is two or three
dimensional, e.g. an image, a time-based sequence, e.g. power
consumption or music, or even a language sentence, e.g. an
English sentence or an SQL statement. The self-attention
mechanism is what provides contextual information about the
data within the context of itself.

To the best of our knowledge no other approaches have used
self-attention mechanisms and CNNs to model SQL statement
grading. Although [22] and [23] have used these kinds of
models in relation to SQL, the authors have significantly
different data, aims, and goals. These distinctions become
clear in the next section.

III. METHODOLOGY

In this section, we present our methodology, including a
description of the dataset we used, a layout of the neural
architecture we developed, and an overview and evaluation of
the experiments we ran, including the results.

A. Dataset

The dataset used in our research consists of SQL statements
collected for the purpose of grading automatization [3]. The
data is available online: https://zenodo.org/record/3889635#
.YWZU5dnMJfV. The dataset creators released a database
schema that describes the database used in exercises or
assignments for students; it also contains a number of tables
containing anonymized student submissions, feedback, grades,
pass/fail flags and other information. What we have gathered as
useful information from this dataset is exemplified in Table I.

https://zenodo.org/record/3889635#.YWZU5dnMJfV
https://zenodo.org/record/3889635#.YWZU5dnMJfV


TABLE I
SAMPLE DATA EXTRACTED FROM DATASET

Submitted Answer Correct? Remark Grade
SELECT production year FROM... 1 Correct 100
SELECT count(*) FROM writer... 0 Partially 20
...

...
...

...
Total count: 675 Avg: 0.58 Total: 4 Avg: 79

Table I offers summaries at the bottom indicating the follow-
ing: a) that we have 675 distinct samples of student submissions;
b) that in average 58% of the submissions are graded as correct,
which indicates a class imbalance; c) that there are four dif-
ferent remarks, namely Correct, Partially Correct,
Non-Interpretable, and Cheating; d) that the average
grade of the assignments is 79.

This dataset will be used to train a machine learning model
on SQL statements that can be relatively small or large. A
representative sample of the length is the following SQL
statement:

SELECT count(*)
FROM person p
WHERE NOT EXISTS(SELECT *

FROM director d
WHERE p.id=d.id);

From this kind of statement, the next step is to do standard
word tokenization [24], leading to a vocabulary of 292 items.
The longest SQL statement identified had a maximum of 172
tokens; consequently all tokenized SQL statements were pre-
zero-padded. The final dataset size is therefore 675× 172.

Using the tokenized and padded dataset, a single model
will be trained iteratively, switching goals every time and
sharing parameters. The three different goals are i) to predict
correctness, ii) to predict a remark, and iii) to predict the grade.
The details of the neural model are discussed next.

B. Neural architecture

The neural architecture has several different moving parts
that are displayed in Fig. 1 and briefly discussed next.

1) Embedding: The embedding layer is a trainable set of
neurons whose sole purpose is to take a token in the context
of the entire sequence [25], [26]. In this case the sequence is
in W172, and returns a vector of size 64 that represents each
token in the sequence. This layer has 64 neural units and its
output is in R172×64.

2) Self-Attention CNN: The self-attention CNN is composed
of three major parts. First, we have two convolutional encoding
layers that model a query Q and value V . This Q,V shall
not be interpreted in the context an SQL statement, instead
these two elements have a different meaning in the machine
learning context of attention mechanisms [18]. Ordinarily, Q
and V would have different sources for traditional attention
mechanisms; however, for self-attention, the input to both Q,V
is the same embedding.

Second, the self-attention layer is a Luong-style layer [27].
This kind of attention uses the notion of dot product similarity

Fig. 1. Proposed neural architecture for SQL Statement grading based on
self-attention, CNNs, and parameter sharing.

as a way to discern context. That is, embeddings of Q,V that
are related will have larger dot products.

Third, there is a pooling strategy that implements a global
average [28]. This pooling strategy effectively reduces the
dimensionality of the problem down to two vectors in R100.
These are then concatenated into a single vector in R200 that
can be interpreted as a vectorial representation of the SQL
statement (input) that highlights the contextual relationships
and meaning of the input.

Since the self-attention component is trainable, it will learn
to optimize the learned embeddings for the purposes of the
model. This is guided by the subsequent layers.

3) Dropout: A dropout layer reduces the chances of overfit-
ting a model by randomly disconnecting a proportion of the
connecting weights between layers [29]. In our case we used
a 25% dropout rate that would randomly disconnect from the
following dense layer one quarter of the incoming connections
from the self-attention mechanism. This should reduce reliance
on very specific elements of the embedding and would promote



Fig. 2. Depiction of data displayed using the visualization bottleneck layer
during training. Good learning leads to clearly defined clusters, or data that
can be separable by nonlinear mapping functions. The different colors indicate
different assigned remarks.

a holistic learning from the attention embeddings.
4) Batch normalization: Similar to dropout, batch normal-

ization is an aid to the learning problem that brings numerical
stability. It calculates optimal means and variances, µ, σ, for
data batches that will help reduce most kinds of numerical
instabilities that could lead to larger problems such as vanishing
or exploding gradients [30].

5) Bottleneck: Given that this paper is exploratory research
into understanding the capabilities of the proposed model, we
are very interested in understanding how the model evolves as it
is trained. This bottleneck dense layer with hyperbolic tangent
activations enables us to visualize at any given point during the
training where is the data in the learned representation space.
The fact that there are only two neurons allows us to display
the learned representations in two dimensions, R2, as depicted
in Fig. 2.

6) Outputs C, R, and G: The bottom of Fig. 1 displays three
different groups of outputs, each of which are different models
that share the same parameters of the prior layers, up to the
bottleneck. These models each have a batch normalization layer
and dense neural units. Model C is for predicting correctness.
It has one neural unit with a sigmoid activation and will learn
to produce a close-to-zero value for an incorrect SQL statement
and a close-to-one value otherwise. Model R is for predicting
the grader’s remark. It has four neural units with sigmoid
activations; each neural unit corresponds to one of the four
possible grader’s remarks. The neuron that produced the largest
output is considered the output. Similarly, model G is for
predicting the grade. It has one neural unit with a sigmoid
activation and will learn to produce a real value between 0
and 1.

Each of these models is trained iteratively as we discuss in
the next section.

Fig. 3. Parameter sharing between models. The majority of the parameters is
shared and only a few parameters need to be estimated separately.

C. Experiments, Evaluation, and Results

The model in Fig. 1 was implemented in Python using the
Tensorflow platform with Keras libraries. The training discussed
below was performed on an NVIDIA P100 GPU system with
25 GB of RAM and 166 GB of storage.

We performed three major experiments: 1) one that visualizes
the data during the learning process on separate training inter-
vals with the purpose of validating the learned representations;
2) a jointly trained model with the purpose of validating
correctness on k-fold cross-validation; and 3) a jointly trained
model that validates all models using leave-one-out cross-
validation.

1) Visualizing learning process across iterations: In this
process, the three models, C, R, G, which share most of
the parameters, are trained one at a time with different loss
functions. Fig. 3 illustrates the proportion of shared parameters
against the parameters that are unique for each model. The
relatively large difference promotes a generalized learning
strategy that can be optimized using gradient descent (RMSprop
optimizer [31], with learning rate of 0.001) over the loss
functions defined next.

Model C, for correctness, uses a mean squared error (MSE)
loss:

L(y, ŷ) =
1

N

N∑
i=0

(y − ŷi)2 (1)

where N is the number of samples, y ∈ {0, 1} is the desired
correctness flag, and ŷ ∈ [0 . . . 1] ⊆ R is the predicted
correctness. The neuron in this output layer uses a sigmoid
activation.

Model R, for remarks, uses a binary cross entropy loss on
the four neurons in the output. The loss for the i-th sample is
denoted as follows:

L(yi, ŷi) = −
4∑

k=1

yi,k log2 (ŷi,k) (2)

where the vector of targets y ∈ {0, 1} ⊆ W4 denotes the
one-hot encoded version of the four possible remarks, while
ŷ ∈ [0 . . . 1] ⊆ R4 are the predicted outcomes. This model
uses softmax activations.

Model G, for grades, is similar to model C. It uses the same
loss function in (1) and the same activation function; however,
the desired target is in an interval instead of a set of two values,
namely y ∈ [0 . . . 1] to account for the grade range.



Fig. 4. Data visualization using the bottleneck layer trained with the three
models C, R, G. Note that partially correct solutions tend to separate from
correct solutions. Top and bottom are taken at different runs.

The training in this experiment occurs as follows. Gradient
descent is executed for a full cycle with C. The full cycle is
comprised of 1000 epochs using 90% of the data for training
and 10% for validation. The training cycle implements a
stopping criteria that monitors the validation set and stops
the learning cycle if the validation loss has not decreased for
15 consecutive epochs. The training cycle also implements an
automatically decreasing learning rate strategy that monitors
the validation loss and if it has not improved in five epochs it
decreases the learning rate by 50%. A full training cycle with
these strategies is usually terminated in about 20 epochs.

After a full cycle is completed for C, another cycle trains R
under the same conditions, departing from the trained model C.
Once a full cycle is completed for R, another cycle completes
for G. In total there are 90 cycles, that is 30 cycles per model,
alternating models every time.

After all the training cycles are completed, we use the bottle-
neck layer to project the entire dataset into two dimensions; the

result is in Fig. 4. The figure shows that the model can learn to
separate the majority of SQL statements that are correct from
those who are partially correct. Note also that non-interpretable
SQL statements are located in a far extreme near the partially
correct ones. This might suggest that some partially correct
statements can become worse to the far right extreme of the
learned space. While the location of these can change arbitrarily,
such relationships are consistent. For comparison, see Fig.
5 and note how as the training cycles increase the relative
position of the SQL statements is distributed according to their
corresponding remark.

These visualizations in Fig. 4 and 5 suggest that the
models are effectively sharing parameters and improving the
learned representations across cycles. Next, we will evaluate
performance on a model that is trained all at once instead of
separately for each model.

2) Jointly trained model cross-validated performance: The
difference between training a model separately in different
cycles, for each C, R, G, is the way gradient descent
is calculated. In the separate cycles, gradient descent only
considers one model at a time and propagates updates based
on the errors of the current model. On the other hand when
all models are trained at once, the gradient is calculated using
a single loss. For this reason the changes required are the
following.

The loss function adopted globally is the binary cross entropy
in (2); however, the length of y increased to account for the
overall size of the output, which is a vector of six elements:
one item for the correctness, four items for the remarks, and
one item for the grade. Thus, y ∈ R6 in (2) in this experiment.

We will want to measure the performance using the area
under the receiving operating characteristic (ROC) curve (AUC)
using 10-fold cross validation. The motivation for measuring
this at this point is to make an early assessment before
launching a full-scale performance evaluation.

The results of using cross validation are displayed in Fig. 6.
From the figure we can assert that the model, in average across
folds, performs better than random chance in all cases. The
maximum AUC reported was 0.83 and the lowest was 0.58,
with an average of 0.75 and relatively low variance, σ = 0.09.

Notice, however, that performing k-fold cross validation on
a small number of folds can be costly in reducing the number
of available data for training. This can lead to a less reliable
estimate of the generalization error. Therefore, a full cross-
validation analysis using a leave-one-out (LOO) strategy is
justified and also required across all models, C, R, G, which
we discuss next.

3) LOO cross-validation on all models, C, R, G: LOO cross-
validation is well-known as the most robust generalization error
estimator [32], particularly when it comes to small datasets
such as the one we use [3].

For the correctness model, C, after training it as in Section
III-C2 but with LOO, we obtain the results shown in Fig. 7 and
8. The confusion matrix shown in Fig. 7 indicates the slightly
higher false positive (FP) count on the correctness predictions;
however, recall from Table I that this is an imbalanced dataset



t1 t7 t13 t18 t25

Fig. 5. Data visualization across different training cycles, t. The bottleneck layer is used to project the data into two dimensions and show the discriminant
distribution of the SQL statements.

Fig. 6. ROC curves and corresponding AUC across the 10 different folds.
The average AUC is 0.75. In all folds, the model performs better than random
chance.

Fig. 7. Confusion matrix for the model that predicts correctness.

that favors the correct class. This imbalance can account for
the FP counts in comparison the false negative (FN) counts.
This imbalance obligates us to consider the balanced accuracy
instead of the traditional accuracy score. In this case the
balanced accuracy is 81.2%. We also calculate the LOO cross-
validated ROC and AUC, shown in Fig. 8. From the figure we
observe that the model performs far beyond random chance
and reaches an AUC of 0.87.

Now we briefly look at mistakes, specifically beginning with

Fig. 8. ROC and AUC for the model that predicts correctness.

an example of the best mistakes, i.e., mistakes that were so
close to the actual prediction but did not make the classification
threshold by two or three decimal points, or in other words,
mistakes with high uncertainty. The best mistake was:

select count(distinct id)
from writer
where id in (select id

from person p
where year_born=’1935’);

The sample above is labeled as correct=0, also remark=
partially correct, and with grade=70. However, our
model predicted it incorrectly as a correct=1 SQL statement
with the highest uncertainty, which can be explained by the
high grade and partial credit given. Now lets inspect the worst
mistake, i.e., a mistake that was made with highest confidence.
Such a sample is:

SELECT a.id, a.award_name,
a.year_of_award, a.category ,a.result
FROM (SELECT * FROM director NATURAL
JOIN director_award) AS a
WHERE a.id IN
(SELECT p.id
FROM person p
WHERE p.id NOT IN
(SELECT id FROM (director NATURAL
JOIN (SELECT * FROM director_award d
WHERE lower(d.result)="won")))
AND p.id IN
(SELECT id FROM (director NATURAL
JOIN (SELECT * FROM director_award d
WHERE lower(d.result)="nominated"))));

The sample above is labeled as correct=0, also remark=
partially correct, and with grade=98. Once again



TABLE II
CLASSIFICATION AND REGRESSION PERFORMANCE ANALYSIS

Class Evaluation Metrics
Evaluated Precision Recall F1-score Support
Incorrect 0.76 0.80 0.78 282
Correct 0.85 0.82 0.84 393

Accuracy 0.81 675
Balanced Accuracy 0.81 675

Cheating 0.0 0.0 0.0 6
Correct 0.78 0.80 0.79 393
Non Interpretable 0.26 0.09 0.13 57
Partially Correct 0.51 0.58 0.54 219

Accuracy 0.66 675
Balanced Accuracy 0.37 675

Regression R2 EV MAE MSE
ŷ = Grade 0.148 0.421 0.233 0.071

Fig. 9. Precision-Recall curves and average precision scores per remark.

this was predicted incorrectly as a correct=1 but this time
with the highest degree of certainty. Again, notice the higher
grade that it receives and that it is partially correct, regardless
of the lack of aesthetics in the SQL statement.

For the remarks model, R, after performing LOO, we obtain
the results shown in Fig. 9. The figure shows that the model
associated with the remarks about correctness, i.e., Correct
and Partially Correct, exhibit better performance in
comparison to the remarks associated with negative feedback.
These results are consistent with our previous finding that
correctness can be better predicted than non-correctness. In
Fig. 9, for reference, the average precision (AP) score is listed,
which is a weighted mean of precisions; it also shows the F1

curves for reference. In Fig. 9 and the confusion matrix in Fig.
10 we can also observe that the lowest-performing class was
Cheating; this can be in part due to the limited number of
samples available.

Finally, for the grades model, G, the LOO cross-validated
performance analysis can be summarized in Fig. 11 and Fig. 12.
A regression comparison between the predicted grade and the
actual grate suggests that our model disfavors grades that are

Fig. 10. Confusion matrix for the model that predicts remarks.

Fig. 11. True vs predicted regression plot for the model that predicts grades.

exactly 100% and favors a more conservative prediction in a
wider range. This can be seen in the histogram of the residuals,
y − ŷ, in Fig. 12, which shows a slight positive skew, while
the ideal residuals should be centered around zero. However,
the regression performance metrics still capture the predictive
ability of the model, which is beyond simply predicting the
expected value of the independent variable Grade. Table II
provides a summary of all our performance metrics for all
models, including regression at the bottom of the table. The
summary includes the coefficient of determination, R2, the
explained variance, EV , the mean absolute error, MAE, and
the MSE given in (1). Both error metrics are low, and the
variance analysis supports the claim that the model can predict
beyond random guesses or guessing the expected value.

Other classification metrics shown in Table II include
standard classification metrics such as Precision, Recall, F1-
score, and standard and balanced accuracy.

IV. CONCLUSIONS

This paper describes a methodology capable of receiving an
SQL statement and determining its correctness. It uses a novel
approach in language modeling tasks known as a convolutional
self-attention mechanism combined with traditional text em-
bedding strategies and bottleneck features. To the best of our
knowledge, this type of model has not been applied to the



Fig. 12. Histogram of the residuals y − ŷ for the model that predicts grades.

problem of modeling SQL statements for automatic grading
purposes.

In our experiments, the model performs with a cross-
validated balanced accuracy of 81.2% and an AUC of 0.87. This
suggests that the model can achieve good generalization outside
the dataset used. Further analysis of the learning cycles also
shows discernible separation of data samples using a bottleneck
layer as a means to visualize the data in two dimensions.

We believe this type of system can effectively model the
problem of automatic grading of SQL statements provided
sufficient examples for many different assignments. Future
work includes the collection of more labeled data with a wider
variety of submissions and assignments.

ACKNOWLEDGMENT

The ML model is based upon work supported in part by the
National Science Foundation under Grant CHE-1905043.

REFERENCES

[1] J. Wang, Y. Zhao, Z. Tang, and Z. Xing, “Combining dynamic and static
analysis for automated grading sql statements,” J Netw Intell, vol. 5,
no. 4, pp. 179–190, 2020.

[2] S. Ravanbakhsh, J. Schneider, and B. Poczos, “Equivariance through
parameter-sharing,” in International Conference on Machine Learning.
PMLR, 2017, pp. 2892–2901.

[3] forpeerview, “Automated grading of sql statements,” Jun. 2020. [Online].
Available: https://doi.org/10.5281/zenodo.3889635

[4] Y. Wu, Y. Ma, J. Liu, J. Du, and L. Xing, “Self-attention convolutional
neural network for improved mr image reconstruction,” Information
sciences, vol. 490, pp. 317–328, 2019.

[5] D. S. Sachan and G. Neubig, “Parameter sharing methods for multilingual
self-attentional translation models,” arXiv preprint arXiv:1809.00252,
2018.

[6] S. Sadiq, M. Orlowska, W. Sadiq, and J. Lin, “Sqlator: an online
sql learning workbench,” in Proceedings of the 9th annual SIGCSE
conference on Innovation and technology in computer science education,
2004, pp. 223–227.

[7] S. Dekeyser, M. de Raadt, and T. Y. Lee, “Computer assisted assessment
of sql query skills,” in Proceedings of the 18th Australasian Database
Conference (ADC 2007), vol. 63. Australian Computer Society Inc.,
2007, pp. 53–62.

[8] J. C. Prior and R. Lister, “The backwash effect on sql skills grading,”
ACM SIGCSE Bulletin, vol. 36, no. 3, pp. 32–36, 2004.

[9] A. Kleerekoper and A. Schofield, “Sql tester: an online sql assessment
tool and its impact,” in Proceedings of the 23rd annual ACM conference
on innovation and technology in computer science education, 2018, pp.
87–92.

[10] P. Singporn, P. Vichianroj, and A. Trongratsameethong, “Asqlag-
automated sql assignment grading system for multiple dbmss,” Journal
of Technology and Innovation in Tertiary Education, vol. 1, no. 1, pp.
41–59, 2018.

[11] A. V. Aho, Y. Sagiv, and J. D. Ullman, “Equivalences among relational
expressions,” SIAM Journal on Computing, vol. 8, no. 2, pp. 218–246,
1979.

[12] I. Štajduhar and G. Mauša, “Using string similarity metrics for automated
grading of sql statements,” in 2015 38th International Convention on
Information and Communication Technology, Electronics and Microelec-
tronics (MIPRO). IEEE, 2015, pp. 1250–1255.

[13] S. Chu, D. Li, C. Wang, A. Cheung, and D. Suciu, “Demonstration
of the cosette automated sql prover,” in Proceedings of the 2017 ACM
International Conference on Management of Data, 2017, pp. 1591–1594.

[14] S. Chu, B. Murphy, J. Roesch, A. Cheung, and D. Suciu, “Axiomatic
foundations and algorithms for deciding semantic equivalences of sql
queries,” arXiv preprint arXiv:1802.02229, 2018.

[15] B. Chandra, M. Joseph, B. Radhakrishnan, S. Acharya, and S. Sudarshan,
“Partial marking for automated grading of sql queries,” Proceedings of
the VLDB Endowment, vol. 9, no. 13, pp. 1541–1544, 2016.

[16] B. Chandra, A. Banerjee, U. Hazra, M. Joseph, and S. Sudarshan,
“Automated grading of sql queries,” in 2019 IEEE 35th International
Conference on Data Engineering (ICDE). IEEE, 2019, pp. 1630–1633.

[17] ——, “Edit based grading of sql queries,” in 8th ACM IKDD CODS and
26th COMAD, 2021, pp. 56–64.

[18] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in
neural information processing systems, 2017, pp. 5998–6008.

[19] M. Li, W. Hsu, X. Xie, J. Cong, and W. Gao, “Sacnn: Self-attention
convolutional neural network for low-dose ct denoising with self-
supervised perceptual loss network,” IEEE transactions on medical
imaging, vol. 39, no. 7, pp. 2289–2301, 2020.

[20] S. R. Fahim, Y. Sarker, S. K. Sarker, M. R. I. Sheikh, and S. K. Das, “Self
attention convolutional neural network with time series imaging based
feature extraction for transmission line fault detection and classification,”
Electric Power Systems Research, vol. 187, p. 106437, 2020.

[21] W. Zeng and M. Li, “Crop leaf disease recognition based on self-attention
convolutional neural network,” Computers and Electronics in Agriculture,
vol. 172, p. 105341, 2020.

[22] Z. Chen, L. Chen, Y. Zhao, R. Cao, Z. Xu, S. Zhu, and K. Yu,
“Shadowgnn: Graph projection neural network for text-to-sql parser,”
arXiv preprint arXiv:2104.04689, 2021.

[23] B. Bogin, M. Gardner, and J. Berant, “Representing schema structure
with graph neural networks for text-to-sql parsing,” arXiv preprint
arXiv:1905.06241, 2019.

[24] S. Vijayarani, R. Janani et al., “Text mining: open source tokenization
tools-an analysis,” Advanced Computational Intelligence: An Interna-
tional Journal (ACII), vol. 3, no. 1, pp. 37–47, 2016.

[25] B. Ghazanfari and F. Afghah, “Multi-level feature learning on embedding
layer of convolutional autoencoders and deep inverse feature learning
for image clustering,” arXiv preprint arXiv:2010.02343, 2020.

[26] P. Rivas, Deep Learning for Beginners. Packt Publishing Ltd, 2020.
[27] M.-T. Luong, H. Pham, and C. D. Manning, “Effective ap-

proaches to attention-based neural machine translation,” arXiv preprint
arXiv:1508.04025, 2015.

[28] Z. Li, S.-H. Wang, R.-R. Fan, G. Cao, Y.-D. Zhang, and T. Guo, “Teeth
category classification via seven-layer deep convolutional neural network
with max pooling and global average pooling,” International Journal of
Imaging Systems and Technology, vol. 29, no. 4, pp. 577–583, 2019.

[29] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, “Dropout: a simple way to prevent neural networks from overfitting,”
The journal of machine learning research, vol. 15, no. 1, pp. 1929–1958,
2014.

[30] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, “How does batch
normalization help optimization?” in Proceedings of the 32nd interna-
tional conference on neural information processing systems, 2018, pp.
2488–2498.

[31] M. C. Mukkamala and M. Hein, “Variants of rmsprop and adagrad with
logarithmic regret bounds,” in International Conference on Machine
Learning. PMLR, 2017, pp. 2545–2553.

[32] M. Kearns and D. Ron, “Algorithmic stability and sanity-check bounds
for leave-one-out cross-validation,” Neural computation, vol. 11, no. 6,
pp. 1427–1453, 1999.

https://doi.org/10.5281/zenodo.3889635

	Introduction
	Background
	Related work in automated SQL statement grading
	Related work in attention-based CNNs

	Methodology
	Dataset
	Neural architecture
	Embedding
	Self-Attention CNN
	Dropout
	Batch normalization
	Bottleneck
	Outputs C, R, and G

	Experiments, Evaluation, and Results
	Visualizing learning process across iterations
	Jointly trained model cross-validated performance
	LOO cross-validation on all models, C, R, G


	Conclusions
	References

