
Proceedings of Machine Learning Research AAAI 2021 Workshop on Diversity in Artificial Intelligence

Working Set Selection to Accelerate SVR Training

Pablo Rivas pablo rivas@baylor.edu

Department of Computer Science

Baylor University

Waco, TX 76798-97141, USA

Short Paper∗

Abstract

With the increasing demand for robust and resilient machine learning models, support
vector machines (SVMs) are regaining attention. One of the significant problems in SVMs
is finding the support vectors as soon as possible during the optimization process. This
paper describes a methodology to accelerate the training by making certain assumptions
on the data and find the support vectors near the convex hull of every class group. Results
suggest that the methodology can provide an advantage over traditional training for larger
datasets with specific statistical properties. We focus on the particular case of support
vector machines for regression.
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1. Background

Support vector machines for regression (SVRs) have wide range of applications (Zhong et al.,
2019; Santamaŕıa-Bonfil et al., 2016; Trzciński and Rokita, 2017). It is well known that
traditional SVR formulations do not make assumptions about the probability distribution
of the data (Vapnik et al., 1997; Joachims, 1998; Cherkassky and Ma, 2004). Nonetheless,
each class ωj , should have a conditional class distribution p(x|ωj), where x ∈ X ⊆ RM
is defined as an M -dimensional random variable which could be be estimated if enough
data points were available (Bennett and Bredensteiner, 2000; Joachims, 1998). Estimating
a multidimensional probability density function (PDF) is difficult but we could make some
basic assumptions. First, we could assume that the data has a uni-modal distribution,
which implies that data-samples would cluster around the class mean, and that the further
away a point is from its mean, the lower its probability is and, thus, it is expected to
be localized near the convex hull of the data sample we are analyzing (Gu et al., 2018;
Wang et al., 2013; Liu et al., 2009). A more strict assumption would be to consider that
the p(x|ωj) are multivariate Gaussian distributed. Under this assumption each p(x|ωj)
could be modeled using only the sample mean µx|ωj

and a covariance matrix Σx|ωj
, that is

p(x|ωj) ∼ N (µx|ωj
,Σx|ωj

). It is also well known that we can use the squared Mahalanobis

distance (MD), D(xi) = (xi −µx|ωj
)TΣ−1

x|ωj
(xi −µx|ωj

), as a distance measure from a data

point to its mean.
Based on these strict assumptions we propose a method for finding the SV candidates

by computing the distances D(xi) for all i = {1, 2, . . . , N}. Once all training vectors are
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Algorithm 1 Mahalanobis-Based Working-Set Selection for LP-SVR Training Speed-Up

Require: Training set Tφ = {xi, di}Ni=1.
Require: Desired num. samples per class v.
1: for j = 1 to |D| do
2: Estimate parameters (µx|ωj

,Σx|ωj
)

3: for i = 1 to N do
4: Get Mahalanobis distance D(xi)j
5: end for

6: Get Zj corresponding to sorted Dj

7: for i = 1 to v do
8: Zj,i = Z(i)j . Bini = k ≡ v × |D|
9: end for

10: end for
Ensure: Init. working set indices B ← Zj,i
Ensure: Fixed set M← {1, . . . , N} /∈ Zj,i

sorted by their MD to their respective mean and saved into the sets Zj for the j-th class,
then we can form an initial working set B of size Bini using the procedure described in
Algorithm 1. We traverse elements of Zj,i and add them into to B until Bini elements have
been inserted. In this manner, the SVR could be trained faster if the first working-set B
contains those k samples, thereby, speeding up the training process. A similar approach to
ours is given by Zhou, et al. (Zhou et al., 2010) in 2010; however, the authors’ approach is
based on class and subclass convex hulls, which makes it computationally expensive.

2. Within-Class Mahalanobis distance and Class-Convex Hull

To explain the ideas behind the procedure shown in Algorithm 1, consider the following
definitions: Let D = {ω1, ω2, . . . , ωj} be the set of classes where j is the total number of
classes. Let C = {C1, C2, . . . , Cj} denote a set of indices, where Cj contains the indices of all
those samples associated with the j-th class, Ci∩Cj = ∅ for all i 6= j, and C ≡ {1, 2, . . . , N}.
We will be considering the case of all the samples xi belonging to the j-th class, that is, all
i ∈ Cj . The same principles will apply to all classes.

One of the first steps is to estimate the parameters (µx|ωj
,Σx|ωj

), i.e., from observed
events. Then the within-class MD from the i-th feature vector xi to the center of the j-th
class µx|ωj

is defined as D(xi). Next, we define Zj as the set of indices corresponding to the
ordered Mahalanobis distance samples of the j−th class. The indices in Zj correspond to
ordered values in descending form, as shown in Figure 1. In our research, we argument that
the MD D(xi) is related to the SVs and the class convex hull (CCH), which is defined as

follows: Θ(ωj) =
{∑

i∈Cj βixi : i ∈ Cj , βi ∈ R, βi ≥ 0,
∑

i∈Cj βi = 1
}

, where a number of

|Cj | points in the form of
∑

i∈Cj βixi are the boundaries of the j-th class sample cloud. Then

we can define the sets of indices corresponding to the convex hull of the j-th as S = Θ(ωj).

The algorithm that obtains the convex hull has complexity of O(N
M
2 ), where M is the

dimensionality of the feature vector. The complexity of the method proposed here has a

complexity of O(L), where L = max
[
N logN,

(
M
2

)]
. This demonstrates that our model has

lower complexity than those based on convex hulls. Now, we define a relationship between
Z, S, and SV in Proposition 1.

Proposition 1 (SVs and Within-Class Distances) Assume classes in D are linearly
separable. Let Zv = {Z(1),Z(2), . . . ,Z(v)} denote the v maximum Mahalanobis distance
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indices. Let Zj,i = {Z1,v,Z2,v, . . . ,Zj,v} be the set of v maximum Mahalanobis distance
indices of all classes. Then

1. the maximum Mahalanobis distance samples indices contain the convex hull: Zv ∈ S,

2. the maximum Mahalanobis distance samples indices contain the SVs: Zj,i ∈ SV ,

where v is an integer stating how many samples per class should be considered.

Proposition 1 states that the first v ranked MD indices Zv contain the class convex
hull indices S and, thus, contain the support vector indices. The integer v is bounded,
|D| ≤ v ≤ |S|. Therefore, if the initial working-set is fixed to the indices in Zj,i, the
training process will converge faster. This is mainly because if the support vectors are
found at the very first iterations, the problem will be solved faster. Since Zj,i is more likely
to contain support vector indices, one can conclude that the training will be faster. We
have found that a good value for v is the quotient between the initial working set size Bini

and the total number of classes: v =
⌈
Bini
|D|

⌉
. This choice of v was found empirically using

benchmark datasets. This value v is used as input in Algorithm 1. Using such benchmark
datasets, the speed-up in terms of training time is an average of 30.6% (±7.7).
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Figure 1: Left: Mahalanobis distance-ranking of class indices using feature vectors in either
the input space or the kernel-induced feature space. Right: Relationship between
convex hull and maximum Mahalanobis distance for a two class problem. Here it
is shown a separable two class problem, class convex hull, support vectors, and k
maximum Mahalanobis distance samples. Note that both SVs and Convex Hull
match the k maximum Mahalanobis distance samples.
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