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Abstract
Unbiased representation learning is still an object
of study under specific applications and contexts.
Novel architectures are usually crafted to resolve
particular problems using mixtures of fundamen-
tal pieces. This paper presents different image
feature extraction mechanisms that work together
with residual connections to encode perceptual
image information in an autoencoder configura-
tion. We use image data that aims to support a
larger research agenda dealing with issues regard-
ing criminal activity in consumer-to-consumer
online platforms. Preliminary results suggest that
the proposed architecture can learn rich spaces
using ours and other image datasets resolving im-
portant challenges that are identified.

1. Introduction
Online consumer-to-consumer (C2C) transactions surged
throughout the COVID-19 pandemic as individuals looked
for opportunities to generate income by selling goods and
services or sought to save money by purchasing secondhand
items (Goddevrind et al., 2021). Unfortunately, some online
C2C marketplaces are vulnerable to criminal exploitation
in which stolen or trafficked goods and services are sold.
To sell stolen or trafficked goods and services in online
C2C marketplaces, criminals must victimize individuals by
stealing physical items or forcing victims to engage in ser-
vices on behalf of the trafficker. When consumers discover
they have purchased illicit goods or services in online C2C
marketplaces, consumers’ trust in these markets diminishes.
Stakeholders and law enforcement agencies are combating
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Figure 1. Proposed residual autoencoder that uses convolutional
LSTMs for perceptual information extraction and compression.

the explosive growth in illicit e-commerce by conducting
large-scale investigations (Ballhaus & Ramachandran, 2021;
CBS, 2020). Scientists are re-calibrating explanations of
criminal behavior and modifying crime prevention strate-
gies in the face of dynamic post-COVID crime opportunity
structures (Stickle & Felson, 2020).

Stakeholders and scholars are searching for commonalities
in text, and image-based expressions that may signal a poten-
tial victim of sex trafficking (Dubrawski et al., 2015; Ibanez
& Suthers, 2014) to develop efficient deep learning-based
models, such as the one we introduce in Figure 1, to aid
detection efforts for identifying online advertisements that
likely involve sex trafficking victims (Kejriwal et al., 2017;
Spotlight, 2021; Tong et al., 2017). Such efforts would
have an even greater impact on crime reduction if machine
learning algorithms could identify universal trafficking prop-
erties.

Currently, there are insufficient resources to monitor all on-
line platforms and advertisements for suspicious activity.
This leads our team to inquire how machine learning-based
NLP and computer vision can be used to find markers and
patterns of suspected online illicit activity and whether such
models generalize to different commodities and market-
places. While this is a large multidisciplinary project that
will span two years, this paper focuses on one of the ini-
tial machine learning challenges, i.e., the encoding of C2C
images that will enable independent image analysis and
multimodal architecture design that integrates text as part
of downstream trafficking detection tasks. Specifically, the
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challenges dealing with images from C2C marketplaces re-
lated to trafficking are many, including: i) that investigators
should minimize exposure to pornographic material; ii) the
amount of image data posted daily on these platforms is im-
possible to analyze manually by humans; iii) that although
the data is publicly available, it may contain biometric iden-
tifiers (e.g., face) and other personal identity markers readily
available in its native image format, but should not. There-
fore, our approach to these challenges is reflected in our
contributions, which are as follows:

1. we design and develop an autoencoder model that will
learn rich features that will produce a latent representa-
tion of an image;

2. our model uses modern machine learning techniques
to learn low-dimensional representations at scale with
few parameters in comparison to other similar models;

3. the proposed model hides personal identifiers from
plain sight while keeping necessary information for
downstream trafficking detection tasks.

While other important methodologies such as Vision Trans-
formers (Dosovitskiy et al., 2020), BYOL (Grill et al., 2020),
or CLIP (Radford et al., 2021) represent great advantages in
the field, they also bring some undesirable effects into our
research, which we discuss next in Section 2 along with a
brief background on autoencoders. Section 3 introduces the
proposed architecture; Section 4 discusses our results, and
we conclude in Section 5.

2. Background
In machine learning, researchers are particularly interested
in exploring different learning paradigms, including super-
vised and unsupervised, as well as other recent variants
that include self-supervised, contrastive learning, etc. For
our particular problem, some of these paradigms are not
immediately applicable; our problem statement is to find
an architecture and learning paradigm for image represen-
tations with a lightweight, scalable model that hides from
plain sight personal identifiers, yet it needs to embed suffi-
cient information about image perception for downstream
multimodal human trafficking tasks.

Dosovitskiy et al. (2020) recently introduced the Vision
Transformer (ViT), which is an attention-based encoder
mechanism that shows superior performance in downstream
classification tasks. ViT demonstrated state-of-the-art per-
formance in traditional image datasets for classification.
Although the ViT is scalable and generalizes well, its ma-
jor disadvantages are that it can be costly to train, it is
data-hungry, and the baseline ViT, as is typical of most
transformer architectures, has a large number of parameters;
it can have between 86M and 632M of parameters.

Grill et al. (2020) introduced the Bootstrap Your Own
Latent (BYOL) approach that uses a self-supervised
approach to learn image representations based on sampling
the distribution of the input image x on two networks, one
that yields predictions and one that yields projections. The
model then is optimized to minimize the loss:

L( θ, ξ ; zθ, z
′
ξ ) = 2− 2 ·

〈
qθ (zθ) , z

′
ξ

〉
∥qθ (zθ)∥2 ·

∥∥∥z′ξ∥∥∥
2

model model hyperparameters

projections of latent representations
where qθ(·) is a linear predictor. This optimization ensures
that the learned representations on the target network are
not trivially predicted and promotes robustness in learning
the distribution of the input at the level of the representation
space. However, for our context, there are also disadvan-
tages, i.e., the methodology relies on data for classification
tasks or other label-based data, e.g., ImageNet, to guarantee
sufficient data for bootstrapping and distribution approxima-
tion. Further, the baseline model, i.e., based on ResNets, is
significantly large, from 250M to 375M of parameters.

More recently, Radford et al. (2021) made significant
progress in contrastive learning by introducing a Contrastive
Language–Image Pre-training (CLIP) methodology. CLIP
is a multimodal approach that considers language and image
information to align the representation space of text and im-
ages that belong together, allowing for the navigation of the
latent space either with text or images with the right prompts.
Due to the nature of the language portion of CLIP, it can
also be extremely costly to fully train CLIP on C2C text and
image data. Therefore, in our context CLIP is more suitable
for transfer learning from a pre-trained model on data sim-
ilar to C2C marketplaces, e.g., social media. However, at
this stage of our project, we are investigating only image
representations that will obfuscate personally identifiable
information, and minimize the investigator’s exposure to
explicit trafficking content, all the while using a lightweight
model that still produces good latent representations. With
this in mind, we propose to use an autoencoder architecture
that learns convolutional filters, similar to ViT’s patches, and
that uses a similarity-based loss and two slightly different
parallel networks as in BYOL.

A convolutional autoencoder (CAE) is a type of architec-
ture that falls within the CNN family, and it is traditionally
trained using an unsupervised learning approach (Kumar,
2020). The most common use for CAEs is to learn low-
dimensional image representations by minimizing an image
reconstruction error criteria through learning optimal con-
volutional filters at different layers (Fukushima & Miyake,
1982). CNNs offer additional intriguing characteristics and
architectures that have resulted in new applications and vari-
ants (Aloysius & Geetha, 2017; Sultana et al., 2020; Zhang
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et al., 2019). Although many AEs, such as the variational
autoencoder (VAE) and the denoising AE, have been suc-
cessfully implemented (Castellini et al., 2017; Jhamb et al.,
2018; Li & She, 2017; Wetzel, 2017; Yan et al., 2020), there
is still research being done in alternative ways to make them
more efficient during learning, or making them optimize
and generalize better.

The proposed architecture can be similar to the work by
Zhou et al. (2020) which uses residual connections in an
image autoencoder; and the work of Zhao et al. (2021) that
takes advantage of temporal data. However, our work is
unique in using several elements together to produce rich
representations that solve the problem defined earlier.

3. Experimental Architecture
As established earlier, our BEAR autoencoder is composed
of different light-weight feature extraction mechanisms that
take advantage of spatial relationships and residual informa-
tion across layers. A square input image x ∈ Rn×n×d with
n rows, n columns, and an arbitrary depth d, in our context
is a classic three-channel color image. The input image is
also downsampled by a factor of 4 in all dimensions except
depth, x̃ ∈ Rn/4×n/4×d. While x feeds the main feature
extraction pipeline, x̃ feeds the residual connections.

3.1. Encoder

From Figure 1 we can observe that the first piece of the
BEAR model goes through a Perceptual Feature Encoder,
zPFE = PFE(x; θ), which is composed of two blocks of
regularized convolutional long-short term memory mod-
els (LSTMs), first introduced by Shi et al. (2015), which
yield features zPFE, see Figure 2. Then the data goes
through a Residual Feature Entanglement piece, zRFE =
RFE(zPFE, x̃; θ), which uses perceptual features and the
residual from the original downsampled image; this process
is done twice back to back, see Figure 3. Note that the
RFE segment ought to be removed if anyone fine-tunes the
model for downstream object recognition tasks, as feature
entanglement is know to have detrimental effects in fitting
labels (Zheng et al., 2021); however, feature entanglement is
naturally beneficial for unsupervised image representation
learning such as in our context; both of these go into the
encoder, as we discuss next.

Next the model goes into a Bottleneck Feature Encoder,
zBFE = BFE(zRFE, x̃; θ), which is comprised of a con-
volutional LSTM and a dense layer, see Figure 4. Both
PFE and BFE reduce dimensions as part of the process,
and BFE is the last piece of the encoding process. Thus,
zBFE ∈ Rm is the learned representation of the input in a
lower m−dimensional space, i.e., R256.

3.2. Decoder

The decoder in the architecture is relatively different in
the sense that it has no residual connections and starts
with a Dense Decoder, zDD = DD(zBFE; θ), which be-
gins with a dense layer that produces features to facili-
tate reconstruction, see Figure 5. Next, we reconstruct
increasing dimensions through back-to-back Perceptual De-
coders, zPD = PD(zDD; θ), and zPD = PD(zPD; θ), both
of which are based on parallel convolutional networks, see
Figure 6. Finally, we have trainable Perceptual Features,
zPF = PF(zPD; θ), consisting on parallel convolutional net-
works for larger feature re-composition, see Figure 7. The
reconstructed image is obtained by averaging the channels
of the PF, x̂ = Avg(zPF).

3.3. Training

The BEAR model is trained using a classic binary cross
entropy loss given by:

L( θ ; x ) = −1

d

d∑
i=1

xi · log x̂i + (1− xi) · log (1− x̂i)

(1)

autoencoder model hyperparameters

input image in Rn×n×d

where x ∈ Rn×n×d is the input, x̂ is the reconstruction, and
θ are the model parameters. This loss can also be replaced
with an MSE loss achieving similar results. Minimizing
the loss in (1) repeatedly, using random starts, yields con-
sistent results across the board using the Adam optimizer
with an initial learning rate of 0.0001 and an automatic de-
cay after a five epoch plateau. The learning stops after no
improvements in the validation loss after 10 epochs.

The dataset consists of images of C2C sites publicly avail-
able. However, due to privacy concerns, our data is not
publicly available to protect the potentially identifiable pri-
vate information of humans. The total number of images
is 1,998,680; they all vary in size originally but are resized
to 128× 128× 3 during training. The results obtained are
discussed next.

4. Results
We trained the proposed architecture, as discussed in the
previous section, using different three data sets as indicated
in Table 1. The first dataset is C2C image data publicly
available on the web; however, we do not possess the rights
to distribute. This dataset contains images of people, ob-
jects, text, numbers, social media accounts, etc. These may
contain images of trafficking victims although the images
are not labeled, since this is a future task for a different stage
of our project. Our intention on using the C2C data at this
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Figure 2. The Perceptual Feature Encoder architecture that reduces dimensions while extracting perceptual information.

Figure 3. The Residual Feature Entanglement that uses as input both the previous layer information and the residual, preserving dimensions.

Figure 4. The BFE uses a convolutional LSTM and a dense layer.

Figure 5. The DE reconstructs feature maps using a dense layer.

early stage of our entire research project is to test the ability
of our model to achieve fast converge and fast throughput,
while producing image representations that obfuscate per-
sonal identifiers and information that is readily available
visually.

The experiment in Table 1 is to illustrate the convergence
time required to fully train the BEAR architecture on C2C
data and two other popular datasets. The table gives an idea
of the training time on a single GPU NVIDIA 1080 card
with 8GB. This suggests that the model behaves consistently
with respect to the size of the dataset.

Next, we are interested in analyzing the learned space and
the representations, particularly in the context of C2C data.
Figure 8 depicts the UMAP 2D representation of the learned
representations using k−means to identify potential clusters
(Becht et al., 2019). Using the elbow method, we identi-

Figure 6. The PD uses parallel convolutions before up-sampling.

Table 1. Data set comparison with respect to convergence time.

DATA SET N SIZE LABELED TIME (H)

C2C 1.9M VARIES × 132
CIFAR-10 60K 32× 32

√
20

IMAGENET 1.2M VARIES
√

99

fied k between 10 and 20 to be a good number of clusters.
The figure identifies 20 clusters with different colors and
displays the centroids. The figure suggests that the latent
space is formed of several distinct groups that are distributed
across the space and clustered according to their perceptual
information. Further examination in C2C data can demon-
strate that cluster prototypes are distinct among each other,
with respect to their visual characteristics beyond the trivial
color information.

To show further that the latent space distributes data display-
ing different information, we can simply look at the norm
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Figure 7. The PF reconstructs perceptual features with parallel
convolutions.

of the representation vector ||zBFE||2, as shown in Figure
9. From the figure, we can appreciate that the data points
are often associated and grouped along with other vectors
with similar perceptual information; however, the space is
not limited or distributed solely by norm similarity. The
feature space has perceptual image entanglement, which is
a desired property prior to our future work, which includes
re-training the model on labeled C2C data for detecting
criminal activity in a multimodal setting using constrastive
learning.

Finally, we conducted another experiment consisting of
running k−means not in a reduced 2D space but in a
slightly higher-dimensional space, i.e., 20 dimensions,
in comparison to the 10-dimensional space of Figure 8,
where we would obtain a result with slightly fuzzier clus-
ter limits. These effects are usually expected due to the
curse of dimensionality that affects k−means. The ex-
periments were conducted in C2C, CIFAR-10, and Im-
ageNet data. From these experiments, we can consis-
tently observe that the data is distributed by perceptual
information and not just by color codes; further, k-means
converges consistently to satisfy the cluster quality objec-
tive: argmin

S

∑k
i=1

∑
zBFE∈Si

∥zBFE − µi∥
2, for partition

sets S = {S1, S2, . . . , Sk}. This empirically shows that the
model will be consistent across different image datasets.

In summary, the proposed model demonstrates the follow-
ing. First, BEAR is able to converge to a local minima that
satisfies a reconstruction loss, suggesting that the perceptual
features extracted using light-weight network segments com-

Figure 8. Learned representations on C2C data visualized using a
2D UMAP and k−means with k = 20.

Figure 9. Learned representations on C2C data visualized using
||zBFE||2 as color reference.

presses sufficient information for other downstream tasks.
Second, the model consistently performs in a stable man-
ner during unsupervised learning for other popular image
datasets. Third, BEAR can consistently satisfy a k-means
cluster quality objective, suggesting that the latent space
can induce regular groups naturally. Fourth, the model can
hide from plain sight private personal information due to
the natural abilities of autoencoders to compress data using
unique transformations, as opposed to fixed compression
methodologies based, for example, in basis functions from
the discrete cosine transform (DCT), that can be used to
recover DCT compressed data.
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5. Conclusions
This paper presents BEAR, an autoencoder-based archi-
tecture that treats the channel information in images as
sequential data in convolutional LSTMs and using resid-
ual connections to preserve features across different encod-
ing pathways. The encoding-decoding architecture called
BEAR was trained on C2C data aiming to model content
that is typical of these platforms with the ultimate goal of
learning robust image representations with a light-weight
model.

While other state-of-the-art image feature extraction meth-
ods such as VGG and Inception-based are powerful, they are
usually biased toward specific classes through label-based
supervised learning or semi-supervised for transfer learn-
ing; the inductive bias of these architectures favors a limited
number of classification tasks. The proposed BEAR method-
ology is not particularly biased toward specific labels, but
remains optimal in preserving perceptual features.

In the future, we aim to use this architecture in connection
with textual information and build a larger multimodal data
pipeline that will aid in detecting online crime on C2C
platforms using contrastive learning.
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