
An Adversarial Neural Cryptography Approach
to Integrity Checking: Learning to Secure

Data Communications
Korn Sooksatra∗ and Pablo Rivas†, Senior, IEEE

School of Engineering and Computer Science
Department of Computer Science, Baylor University

∗Email: Korn Sooksatra1@Baylor.edu, †Email: Pablo Rivas@Baylor.edu

Abstract—Securing communications is an increasingly chal-
lenging problem. While communication channels can be secured
using strong ciphers, attackers who gain access to the channel
can still perform certain types of attacks. One way to mitigate
such attacks is to verify the integrity of exchanging messages
between two parties or more. While there are robust integrity
check mechanisms currently, these lack variety and very few are
based on machine learning. This paper presents a methodology
for performing an integrity check inspired by recent advances in
neural cryptography. We provide formal, mathematical functions
and an optimization problem for training an adversarial neural
cryptography architecture. The proposed neural architectures
can adequately solve the problem. In our experiments, a receiver
can verify if incoming messages are authentic or altered with an
accuracy greater than 99%. This work expands the repertoire of
integrity checking methodologies, provides a unique perspective
based on neural networks, and facilitates data security and
privacy.

Index Terms—integrity check, neural cryptography, adversar-
ial learning, cybersecurity, data privacy

I. INTRODUCTION

In recent years, cryptography has been used for several
applications, especially secure communications [1] which are
being used worldwide for the safety and privacy of their par-
ticipants (i.e., senders and receivers). Besides, some machine
learning applications on a cloud platform (i.e., collaborate ma-
chine learning [2]–[4]) have applied the study of cryptography
for participants’ privacy. For example, [5]–[8] utilized ho-
momorphic encryption [9] for performing operations between
encrypted data.

Furthermore, the study of machine learning is also capable
of being used in the field of cryptography as seen in [10]–[17].
On one hand, researchers improved encryption algorithms of
secure communications only when they found potential strong
attacks. On the other hand, machine learning models can
add evolutionary adversaries to their schemes to strengthen
themselves with the strong attacks’ existence. Specifically,
Generative Adversarial Networks (GANs) [18] has been uti-
lized for the training in those schemes as being discussed
in [19], [20] which considered the privacy of senders and
receivers in secure communications. Those schemes are called
adversarial neural cryptography.

This work was supported, in part, by Rivas.AI Lab.

In addition to the participants’ privacy in secure communi-
cations, the integrity of their messages should be considered so
that receivers can be sure that the incoming messages are not
altered and from legitimate senders. Although it is challenging
to perform the error correction for the altered messages [21],
[22], the integrity check is a promising solution. We want to
show that a machine learning model in the form of adversarial
neural cryptography can learn how to perform the integrity
check in the way of cryptography, although the cryptographic
algorithms have been practically used.

Inspired by [19], in this paper we present a methodology
based on adversarial neural cryptography for performing the
integrity check between participants in a secure commu-
nication channel. In this scenario, the receiver can check
incoming messages if they are altered with high accuracy. We
begin discussing an integrity check among participants under
an adversarial configuration; then, we pose an optimization
problem for training the model’s architecture. Our experiments
and evaluation show that the proposed methodology is able to
achieve our goal.

The paper is organized as follows: Section II explains the
knowledge and motivation of this work; Section III describes
the problem of integrity check and the model of the adversarial
neural cryptography scheme; Section IV formulates the prob-
lem into mathematical functions and an optimization problem;
Section V describes the architectures of all entities in the
scheme; Section VI shows the detail of training refinement
step; Section VII illustrates the evaluations during the training
refinement step and the results; Section VIII further discusses
the results and the remaining works after this, and everything
is concluded in Section IX.

II. BACKGROUND

This section describes the evolution of machine learning
used in cryptography. At first, a machine learning scheme
consists of a sender and a receiver so that the sender can learn
how to encrypt a plaintext and the receiver can learn how to
decrypt a ciphertext to communicate to each other, and this
kind of scheme is briefly explained in Section II-A. Then, to
strengthen the encryption scheme to be against a strong attack,
an adversary was added to the learning schemes. This kind of

approach is described in Section II-B and is utilized in our
approach.

A. Machine Learning Cryptography

On these years, machine learning models have been applied
in the field of cryptography. The existing works [10]–[16]
utilized neural network models to create encryption schemes
for secure communications. They treated the parameters of
neural networks as keys for the schemes which are not very
secure since an adversary can create the substitute models that
can resemble the target models as described in [23]–[25].

Moreover, Shruti et.al [17] exploited a deep learning model
to create an encryption scheme including a key generation
system. The whole system consists of a genetic algorithm
[26] and a DNA computing [27]. They implemented the key
generation system with the genetic algorithm where its fitness
function can measure how random each population is. Then,
the selected key is used in the DNA computing to encrypt
a message and decrypt a ciphertext. Specifically, this DNA
computing consists of transcription and translation [27].

Although these approaches can provide the security for
messages in secure communications, they do not guarantee that
it can be against strong attackers because there is always weak-
nesses in every encryption scheme. Further, learning models
can find countermeasures against the strong attackers when
only they adjust themselves with the attackers in their schemes.
Therefore, some recent works have included attackers in their
scheme and these are explained in Section II-B.

B. Adversarial Neural Cryptography

This approach utilizes GANs [18] by adding an adversary
into the learning scheme. Abadi et.al. [19] designed this
approach by including Alice, Bob and Eve in their scheme.
this starts by Alice encrypting message P with key K to
ciphertext C. Then, Eve eavesdrops C, and Bob receives C
whereas only Alice and Bob have key K. At last, Eve and
Bob decrypt ciphertext C and respectively obtain PEve and
PBob. Obviously, Eve is the adversary of this scheme. The
ultimate goal is that Alice and Bob can fully communicate to
each other while Eve cannot read the plain message P . The
scheme can be demonstrated in 1.

The loss functions for Alice, Bob and Eve were carefully
designed for the refinement step to make Bob able to decrypt
ciphertext C and Eve unable to do it. As a result, Bob
can almost fully recover plaintext P with the accuracy of
greater than 95%. Furthermore, Eve cannot correctly decrypt
ciphertext C with the accuracy of almost 50% which is not
different to the random guess. Later, Coutinho et.al [20]
empirically showed that the encryption between Alice and
Bob in the scheme can be improved when Eve is stronger by
providing more information to it. Specifically, they enhanced
Eve by considering it as a chosen-plaintext adversary.

The aforementioned existing works of this kind of approach
(i.e. adversarial neural cryptography) only focus on confiden-
tiality which is one of security principles [28]. There is also
another important principle that is not considered and on which

Eve

Alice Bob

Fig. 1: Learning scheme for encryption with adversarial neural
cryptography.

EveAlice Bob

Fig. 2: Man-in-the-middle attack scheme.

cryptography can be applied. That is integrity. Therefore, our
work focuses on how to design a scheme to let machine
learning models learn how to perform the integrity check by
using adversarial neural cryptography approach to be prepared
for a strong adversary. To the best of our knowledge, this is
the first work that utilizes adversarial neural cryptography for
providing integrity of messages in secure communications.

III. PROBLEM AND SYSTEM MODEL

The scheme of this work is similar to the one described in
Section II-B which consists of Alice as the sender, Bob as
the receiver and Eve as the adversary. Alice desires to send a
message (P) to Bob; however, Eve is in the middle between
them and performs man-in-the-middle attack. Specifically, Eve
receivers P from Alice, is capable of alter some parts of P
and relays this altered message P

′
to Bob. Therefore, Bob

receives P
′

and does not know that this message has been
altered.

To prevent the communication from this kind of attack, Al-
ice then adds the signature S computed from the combination
of P and the key K so that Bob can find if the received
message has been altered by considering P , S and K. This
solution has been done in many existing works in term of
cryptography (e.g. CRC [29], HMAC [30] and digital signature
technique [31]). Thus, the scheme can be illustrated by Fig.
2 where ·||· is the concatenation operator and B(x) is the
alteration-check function outputting 0 if x is a message from
Alice and not altered and 1 otherwise.

The mechanism of this scheme works as follows:

Eve

Alice Bob

Fig. 3: Training model for integrity check.

1) Alice takes P and K as its input and computes signature
S.

2) Alice concatenates P and S and tries to send P ||S to
Bob; nonetheless, Eve is in the middle between them.

3) Eve receives P ||S and relays (P ||S)
′

to Bob.
4) Bob receives (P ||S)

′
and computes B((P ||S)

′
) where

B : R|P |+|S| → R. If P ||S = (P ||S)
′
, B((P ||S)

′
) = 0

and B((P ||S)
′
) = 1 otherwise.

In this work, Alice, Bob and Eve are neural networks, and
the goal is to let Alice and Bob learn how to create the
signature and identify whether the received message has been
altered respectively. Further, to make Alice and Bob strong,
they have to be against a strong adversary. Hence, Eve also
needs to learn how to alter P ||S so that Bob cannot identify
that P ||S 6= (P ||S)

′
.

The training model is shown in Fig. 3 where x is selected
from either P ||S or (P ||S)

′
. The algorithm for training Alice,

Bob and Eve and their architectures are mainly adopted and
modified from generative adversarial networks (GANS) [18]
and the adversarial neural cryptography in [19]. These all will
be explained in the subsequent sections.

IV. PROBLEM FORMULATION

Alice’s and Bob’s goal is to maximize the alteration proba-
bility (B(·)) when (P ||S)

′
is different to P ||S and minimize

it when (P ||S)
′

is not different to P ||S. Note that A(·), where
A : {0, 1}|P |+|K| → {0, 1}|P |×R|S|, is the signature function
of Alice and E(·), where E : R|P |+|S| → R|P |+|S|, is the
alteration function of Eve. Therefore, Alice’s and Bob’s loss
function can be formulated as

LAB(x) = log(1 +B(A(x))) + log(2−B(E(A(x)))), (1)

where x is a plaintext. The first part of (1) is to make B(·)
close to 0 when the input is directly from Alice, and the other
part is to make B(·) close to 1 when the input is from Eve.
Additionally, 1+B(A(x)) and 2−B(E(A(x))) are to ascertain
the valid value since log(0) = −∞. Further, the expected
value of (1) over the training dataset D is formulated as

LAB,D = Ex∈D(LAB(x)), (2)

where each data x in D is a message in form of P which is
Alice’s input.

On the other hand, Eve’s goal is to alter P ||S to (P ||S)
′

as much as possible; at the same time, it needs to make Bob
not able to realize that it alters P ||S. Hence, its loss function
can be formulated as

LE(x) = log(1 +B(A(x)))− c · d(A(x), E(A(x))), (3)

where x is a plaintext, d(X,Y) = Σ
|P |
i=1|Xi − Yi|, Xi is the

value of X at index i and c is its hyperparameter. The first
part of (3) is to fool Bob that P ||S = (P ||S)

′
and the last part

is to alter P ||S as much as possible. Note that if c is large,
Eve will focus on increasing d(P ||S, (P ||S)

′
), and thereby

Eve may not be successful fooling Bob.
Additionally, the expected value of (3) over training dataset

D can be formulated as

LE,D = Ex∈D(LE(x)). (4)

Further, it is worth noting that every value in S and (P ||S)
′

is in the range [−1, 1].

V. NEURAL NETWORK ARCHITECTURE

Since we want Alice to create S with respect to P and
K, we apply the architecture from [19]; however, we use
only a part of it because creating S does not need the whole
network. Specifically, Alice’s architecture starts with the input
layer which is P ||K, and then the next layer is a fully-
connected(FC) layer to mix them together. After that, the
subsequent layers are two 1-dimension convolutional layers
to spatially transform them to the signature, and the last layer
is a FC layer to make sure that the size of the output is |S|.
All the layers are followed by tanh activation functions.

Bob’s architecture is similar to Alice’s except that after
the two convolutional layers, there are two more FC layers
followed by ReLU activation functions and one more layer
followed by a sigmoid activation function. These additional
FC layers are for the classification task which is to detect the
alteration of the incoming message.

Lastly, Eve’s architecture is also similar to Alice’s except
that Eve has two extra FC layers after the convolutional layers
because it lacks of K as its input. The architecture of all
entities are shown in Table I where the values in Dense
columns are the numbers of neurons in the particular layers,
and the values in 1D-Conv are the numbers of filters, the sizes
of the particular filters and the strides respectively.

VI. TRAINING REFINEMENT

From the above formulations, we can train Alice, Bob and
Eve as follows. We design to run the training in η epochs. In
each epoch:

1) Set Eve to be untrainable since Alice and Bob is trained
first, and they need to use Eve during their training part.

2) Train Alice and Bob one time with dataset D.
3) Set Alice and Bob to be untrainable because training Eve

needs to use Alice and Bob, and set Eve trainable.

TABLE I: The architecture of our proposed adversarial neural cryptography.

Entity ↓, Layer → Dense Dense 1D-Conv 1D-Conv 1D-Conv Dense Dense Dense
Alice |P |+ |K| - 2,4,1 4,2,2 - - - |S|
Bob |P |+ |K| - 2,4,1 4,2,2 4,1,1 |P |+ |K| (|P |+ |K|)/2 1
Eve |P |+ |K| |P |+ |K| 2,4,1 4,2,2 - - |P |+ |K| |P |+ |K|

4) Train Eve twice since Eve has to be strong so that Alice
and Bob can be trained again a strong adversary.

Note that a gradient-based method (e.g. SGD [32], Adam [33]
and RMSprop [34]) is applied to each training. This procedure
can be described in Algorithm 1.

VII. EXPERIMENTS AND RESULTS

The following paragraphs describe the experimental setup
and the results of our experiments.

A. Setup

The integrity check of adversarial neural cryptography is
implemented and simulated by Python 3 and Tensorflow 2.
The plaintext’s and key’s sizes are 16. The number of training
data is 2|P |, and the batch size is 512. Further, all the training
data is randomly generated, and the optimizer for training the
models is Adam [33] with the learning rate of 0.001. The
experiments and evaluations include:
• The explanation of Alice’s, Bob’s and Eve’s behaviors

during the training.
• The effect of hyperparameter c and |S| on the conver-

gence time during the training.
• The statistical score of the results on different hyperpa-

rameters.

B. Alice’s, Bob’s and Eve’s behaviors

With c = 0.01, |S| = 5 and |P | = |K| = 16, Eve can fool
Bob from iteration 0 to 400 as seen in Fig. 4. Fig. 4a shows
the loss values of Alice, Bob and Eve during the training and
illustrates that Eve’s loss is very low before iteration 400 Bob’s
loss is significantly high. However, Eve’s loss goes higher and
higher after iteration 400; in contrast, Bob’s becomes much
lower, and their losses are converge around iteration 600. At
last, Eve cannot fool Bob after iteration 600 as demonstrated
in Fig. 4b which shows Bob’s output when the input is from
Alice and Eve.

Additionally, Fig. 4c shows the distance between Alice’s
and Eve’s outputs (i.e. P ||S and (P ||S)

′
respectively) during

the training. It can be noticed that Eve is very strong because
the distance is very low around iteration 200. Nevertheless,
Eve decides to increase the distance at iteration 400 since it
realizes that it cannot reduce its loss anymore if it reduces
the distance because Bob is becoming stronger and stronger.
Finally, the distance is very high and converge at iteration 600.

C. The effect of c and |S| on the convergence time

As being discussed, c is the regularizer to balance between
fooling Bob and how messy the message is in (3). Hence, when
setting c to 0, Eve does not change the message received from
Alice and simply relay the same message to Bob. In contrast,

(a) Loss of Bob and Alice and Eve.

(b) Bob’s output with Alice’s and Eve’s outputs as input.

(c) The distance between Alice’s and Eve’s output.

Fig. 4: The evaluation values over training iterations with c =
0.01, |S| = 5 and |P | = 16.

when setting c to a large real number, Eve changes the received
message a lot; however, it does not care if Bob will realize that
the message is altered. Consequently, c should not be set too
low or too high. Further, c impacts on the convergence time
as demonstrated in Fig. 5 which shows Bob’s output during

Algorithm 1: Gradient-based optimization algorithm for integrity check.
Input: Alice, Bob, Eve, η
for i = 1 : η do

Set Alice and Bob into a trainable state;
Set Eve to be untrainable, allowing Alice and Bob to learn to communicate;
Randomly generate a set of plaintext P and unique key K as D;
Train Alice and Bob by using ∇LAB,D;
Set Alice and Bob untrainable, allowing Eve to learn to break the learned encryption protocol;
Set Eve trainable and let the model train for the next two iterations;
for j = 1 : 2 do

Randomly generate a set of P and K as D;
Train Eve by using ∇LE,D;

end
end
Result: Parameters of Alice, Bob and Eve

the training with different c. Fig. 5a shows that Bob’s output
can be convergence at iteration 50 which is much earlier than
Bob’s outputs in Fig. 5b and 5c because it has the least c.
Hence, Eve does not focus much on fooling Bob, and thereby
Bob can easily beat Eve very early. Similarly, Bob’s output in
Fig. 5b is convergence earlier than the one in Fig. 5c with the
same reason. Nonetheless, Bobs with c = 0.01 and c = 0.005
are comparatively struggled fighting with Eve as seen in Fig.
5b and 5c. Thus, Bobs in those settings can be stronger than
the one with c = 0.1.

Further, Fig. 6 illustrates that Bob’s output is always 0 no
matter its input is from Alice or Eve. Hence, this can be
claimed that with comparatively small |S|, Bob cannot find
the difference Alice’s output and Eve’s output.

D. Statistical scores of the results

The test data is generated to evaluate Alice and Bob in
several settings and has three part: 10000 Alice’s outputs, 5000
Eve’s outputs and 5000 randomized values. We assume that it
is very difficult to randomize a value to mimic Alice’s output.
Therefore, randomized values are not legitimate for Bob. In
the other words, there are 10000 legitimate data and 10000
altered data; hence, this test data is balanced. In addition,
Eve generating those test data was trained with c = 0.005.
Moreover, in each setting, the optimal threshold is obtained
from the threshold that achieves the maximum difference
between true positive rate (TPR) and false positive rate (FPR).

Table II shows the confusion matrix of the result in the
setting of c = 0.005 and |S| = 6 and demonstrates that there
is only 12 messages from Alice that are misclassified as from
others (false positives). Also, only 19 messages from others are
misclassified as from Alice, and most of them are randomly
generated test data which can be outliers. The rest of this
section shows the empirical score indicating the performance
of our approach.

According to Table III, Bob’s accuracy scores are greater
than 0.99 in most of the settings. In the other words, it can
accurately detect that its input is from Alice, Eve or other

TABLE II: Confusion matrix in the setting of c = 0.005 and
|S| = 6.

Predicted
Alice Others Total

True Alice 9988 12 10000
Others 19 9981 10000
Total 10007 9993 N

TABLE III: Accuracy score for Bob under several training
settings.

|S| ↓, c→ 0.1 0.01 0.005
4 0.723 0.998 0.996
5 0.989 0.998 0.997
6 0.996 0.994 0.998

TABLE IV: F1 score for Bob in several training settings.

|S| ↓, c→ 0.1 0.01 0.005
4 0.625 0.998 0.996
5 0.990 0.998 0.997
6 0.996 0.994 0.998

TABLE V: AUC score for Bob in several training settings.

|S| ↓, c→ 0.1 0.01 0.005
4 0.717 1.000 1.000
5 0.999 1.000 1.000
6 1.000 0.999 1.000

sources. Further, this metric is good for the test data because
the test data is balanced.

Table IV shows that Bob’s f1 scores are also very high in
most of the settings. This can be indicated that there are very
low false negatives and false positives.

Additionally, Table V indicates that Bob can achieve high
values (i.e. almost 1 or 1) of area under the ROC curve (AUC)
score which shows how good the models are in all possible
thresholds.

In conclusion, as demonstrated in Table III, IV and V,
Bob’s performance tends to be better as |S| increases. The
reason is that Alice can keep more information when |S| is
larger; hence, it is hard for Eve to find a way to alter the

(a) c = 0.1

(b) c = 0.01

(c) c = 0.005

Fig. 5: Bob’s output over training iterations with |S| = 4 and
|P | = 16.

information in the message without Bob’s perceive. Further,
the only setting that makes Bob result the significantly low
performance is |S| = 4 and c = 0.1. The reason is that it
never adjusted itself with strong Eve as shown in Fig. 7 in
which most of the time, the distance between Alice’s and Eve’s
outputs are clearly high compared to the distance in Fig. 4c.

VIII. DISCUSSION AND FUTURE WORKS

As can be seen in Section VII, our approach in the form
of adversarial neural cryptography can check the integrity of
messages by the high score of accuracy. F1 and AUC indicate a

Fig. 6: Bob’s output over training iterations with c = 0.01,
|S| = 1 and |P | = 16.

Fig. 7: Distance between Alice’s and Eve’s outputs during the
training with c = 0.1, |S| = 4 and |P | = 16.

good performance of our approach as well. However, some of
our results are not satisfying because Eve is weak during their
training, as demonstrated in the setting of c = 0.1 and |S| =
4. Furthermore, the combination of encryption and integrity
check is considered capable of being used in the real world
by two schemes: integration and mixture.

First, in the integration scheme, we can integrate our
approach to the one in [19] which is discussed in Section
II-B. Specifically, plaintext P is extended with signature S by
Alice in our scheme, and then P ||S is encrypted by Alice in
[19] to obtain ciphertext C. Then, C is sent to Bob. Hence,
although Eve can eavesdrop C, it cannot obtain plaintext P .
Even in the worst case where Eve can perform a man-in-the-
middle attack, alter some information in C and relay it to Bob,
Bob can check its integrity by the procedure explained later.
After Bob receives C, he can decrypt it by Bob in [19] to
obtain P ||S and then check if P ||S was altered by Bob in our
approach. At last, if P ||S is clean, Bob can obtain P . Fig. 8
shows the mechanism of this scheme.

Second, in the mixture scheme, Alice’s and Bob’s archi-
tectures are massive since Alice has to encrypt plaintext P
and add signature S; at the same time, and Bob needs to
simultaneously decrypt ciphertext C and check its integrity.

We leave the study and comparison of those two schemes

Eve

Alice Bob

Fig. 8: This is the integration scheme where the model in [19] is integrated with our approach. That is, Alice in our model
receives P and passes P ||S to Alice in [19] to produce C. Further, Bob in [19] receives C

′
and passes (P ||S)Bob to Bob in

our model to check if it is legitimate. Eventually, after training, this scheme can provide the confidentiality and integration
principles for the participants.

and the architecture and training refinement of the mixture
scheme for future works.

In addition, to make the approach feasible to be practically
used, it has to be robust to adversarial examples as described in
[35]–[38] because if this approach is vulnerable to adversarial
examples, an adversary can change the semantics of the
plaintext to what he/she wants where the sender and the
receiver do not notice about it. Such study is still an open
problem and is left for future work on adversarial neural
cryptography.

IX. CONCLUSION

This paper presents a methodology for performing an in-
tegrity check inspired by neural cryptography [19]. In partic-
ular, we use adversarial neural cryptography for performing
an integrity check between participants in a secure communi-
cation channel. As a result, the receiver can test if incoming
messages to see if they are altered; these tests are successful
with an accuracy of greater than 99%.

We can summarize our contributions as follows:
• We provide a thorough, rigorous discussion of an integrity

check mechanism between participants in a secure com-
munication channel.

• We provide formal, mathematical functions and an op-
timization problem for training an adversarial neural
cryptography architecture.

• The architectures of the sender, receiver, and adversary
are designed by utilizing state-of-the-art models [19], and
trained with the refinement strategies discussed in the
literature [18].

• We provide detailed, reproducible instructions on the
evaluation process, the training refinement, and the ex-
periments that led to the results achieved.

While there is more work to do in some areas mentioned
before, we believe these types of schemes can transform the

way we will use neural networks in the security and privacy
of data communications.

ACKNOWLEDGEMENTS

The authors thank the Department of Computer Science for
their support under the Excellence Fund. This research was
also funded, in part, by Rivas.AI Lab.

REFERENCES

[1] R. E. Blahut, Cryptography and secure communication. Cambridge
University Press, 2014.

[2] H. Wang, N. Wang, and D.-Y. Yeung, “Collaborative deep learning
for recommender systems,” in Proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery and data mining, 2015,
pp. 1235–1244.

[3] Z. Jiang, A. Balu, C. Hegde, and S. Sarkar, “Collaborative deep
learning in fixed topology networks,” in Advances in Neural Information
Processing Systems, 2017, pp. 5904–5914.

[4] H. Yin, W. Wang, H. Wang, L. Chen, and X. Zhou, “Spatial-aware
hierarchical collaborative deep learning for poi recommendation,” IEEE
Transactions on Knowledge and Data Engineering, vol. 29, no. 11, pp.
2537–2551, 2017.

[5] P. Li, J. Li, Z. Huang, T. Li, C.-Z. Gao, S.-M. Yiu, and K. Chen, “Multi-
key privacy-preserving deep learning in cloud computing,” Future Gen-
eration Computer Systems, vol. 74, pp. 76–85, 2017.

[6] O.-A. Kwabena, Z. Qin, T. Zhuang, and Z. Qin, “Mscryptonet: Multi-
scheme privacy-preserving deep learning in cloud computing,” IEEE
Access, vol. 7, pp. 29 344–29 354, 2019.

[7] L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai, “Privacy-
preserving deep learning via additively homomorphic encryption,” IEEE
Transactions on Information Forensics and Security, vol. 13, no. 5, pp.
1333–1345, 2018.

[8] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in
Proceedings of the 22nd ACM SIGSAC conference on computer and
communications security, 2015, pp. 1310–1321.

[9] C. Gentry and D. Boneh, A fully homomorphic encryption scheme.
Stanford university Stanford, 2009, vol. 20, no. 9.

[10] E. Volna, M. Kotyrba, V. Kocian, and M. Janosek, “Cryptography based
on neural network.” in ECMS, 2012, pp. 386–391.

[11] H. Noura, A. E. Samhat, Y. Harkouss, and T. A. Yahiya, “Design
and realization of a new neural block cipher,” in 2015 International
Conference on Applied Research in Computer Science and Engineering
(ICAR). IEEE, 2015, pp. 1–6.

[12] W. Kinzel and I. Kanter, “Neural cryptography,” in Proceedings of the
9th International Conference on Neural Information Processing, 2002.
ICONIP’02., vol. 3. IEEE, 2002, pp. 1351–1354.

[13] T. Godhavari, N. Alamelu, and R. Soundararajan, “Cryptography using
neural network,” in 2005 Annual IEEE India Conference-Indicon. IEEE,
2005, pp. 258–261.

[14] A. Ruttor, W. Kinzel, L. Shacham, and I. Kanter, “Neural cryptography
with feedback,” Physical Review E, vol. 69, no. 4, p. 046110, 2004.

[15] T. Dong and T. Huang, “Neural cryptography based on complex-valued
neural network,” IEEE Transactions on Neural Networks and Learning
Systems, 2019.

[16] A. Ruttor, W. Kinzel, and I. Kanter, “Neural cryptography with queries,”
Journal of Statistical Mechanics: Theory and Experiment, vol. 2005,
no. 01, p. P01009, 2005.

[17] S. Kalsi, H. Kaur, and V. Chang, “Dna cryptography and deep learning
using genetic algorithm with nw algorithm for key generation,” Journal
of medical systems, vol. 42, no. 1, p. 17, 2018.

[18] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672–
2680.

[19] M. Abadi and D. G. Andersen, “Learning to protect communications
with adversarial neural cryptography,” arXiv preprint arXiv:1610.06918,
2016.

[20] M. Coutinho, R. de Oliveira Albuquerque, F. Borges, L. J. Garcia Vil-
lalba, and T.-H. Kim, “Learning perfectly secure cryptography to protect
communications with adversarial neural cryptography,” Sensors, vol. 18,
no. 5, p. 1306, 2018.

[21] S. W. McLaughlin, D. Klinc, B.-J. Kwak, and D. S. Kwon, “Secure
communication using error correction codes,” Jul. 9 2013, uS Patent
8,484,545.

[22] G. Kaddoum and F. Gagnon, “Error correction codes for secure chaos-
based communication system,” in 2010 25th Biennial Symposium on
Communications. IEEE, 2010, pp. 193–196.

[23] N. Papernot, P. McDaniel, and I. Goodfellow, “Transferability in ma-
chine learning: from phenomena to black-box attacks using adversarial
samples,” arXiv preprint arXiv:1605.07277, 2016.

[24] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,” in
Proceedings of the 2017 ACM on Asia conference on computer and
communications security, 2017, pp. 506–519.

[25] A. Ilyas, L. Engstrom, A. Athalye, and J. Lin, “Black-box adver-
sarial attacks with limited queries and information,” arXiv preprint
arXiv:1804.08598, 2018.

[26] D. Whitley, “A genetic algorithm tutorial,” Statistics and computing,
vol. 4, no. 2, pp. 65–85, 1994.

[27] Q. Limin, “The study of dna-based encryption method [d],” Zheng Zhou:
Zheng Zhou University of Light Industry, 2008.

[28] W. Stallings, L. Brown, M. D. Bauer, and A. K. Bhattacharjee, Computer
security: principles and practice. Pearson Education Upper Saddle
River, NJ, USA, 2012.

[29] T. V. Ramabadran and S. S. Gaitonde, “A tutorial on crc computations,”
IEEE Micro, vol. 8, no. 4, pp. 62–75, 1988.

[30] H. Krawczyk, M. Bellare, and R. Canetti, “Hmac: Keyed-hashing for
message authentication,” 1997.

[31] X. Serret-Avila and G. Boccon-Gibod, “Methods and systems for
encoding and protecting data using digital signature and watermarking
techniques,” Aug. 31 2004, uS Patent 6,785,815.

[32] L. Bottou, “Large-scale machine learning with stochastic gradient de-
scent,” in Proceedings of COMPSTAT’2010. Springer, 2010, pp. 177–
186.

[33] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[34] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop, coursera: Neural
networks for machine learning,” University of Toronto, Technical Report,
2012.

[35] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

[36] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[37] J. Kos, I. Fischer, and D. Song, “Adversarial examples for generative
models,” in 2018 ieee security and privacy workshops (spw). IEEE,
2018, pp. 36–42.

[38] P. Tabacof, J. Tavares, and E. Valle, “Adversarial images for variational
autoencoders,” arXiv preprint arXiv:1612.00155, 2016.

	Introduction
	Background
	Machine Learning Cryptography
	Adversarial Neural Cryptography

	Problem and System Model
	Problem Formulation
	Neural Network Architecture
	Training Refinement
	Experiments and Results
	Setup
	Alice's, Bob's and Eve's behaviors
	The effect of c and |S| on the convergence time
	Statistical scores of the results

	Discussion and Future Works
	Conclusion
	References

