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Abstract—With the increasing presence of deep learning mod-
els, many applications have had significant improvements; how-
ever, they face a new vulnerability known as adversarial examples.
Adversarial examples can mislead deep learning models to predict
the wrong classes without human actors noticing. Recently, many
works have tried to improve adversarial examples to make them
stronger and more effective. However, although some researchers
have invented mechanisms to defend deep learning models against
adversarial examples, those mechanisms may negatively affect
different measures of fairness, which are critical in practice. This
work mathematically defines four fairness scores to show that
training adversarially robust models can harm fairness scores.
Furthermore, we empirically show that adversarial training, one
of the most potent defensive mechanisms against adversarial
examples, can harm them.

Index Terms—adversarial example, fairness, adversarial train-
ing, deep learning

I. INTRODUCTION

In these years, many applications (e.g., autonomous cars
[10], language translation [8] and recommendation systems
[20]) have been improved due to the rise of deep learning.
Nevertheless, deep learning has a crucial weakness found in
[9], [21]. Such weakness is that an adversary adds a small
perturbation that is not perceptible by humans to a sample to
mislead a deep learning model to predict a wrong class. That
generated sample is called an adversarial example, and recently,
there have been several attempts [5], [6], [9], [14]–[18], [21] to
generate adversarial examples that are difficult to be noticed by
humans and effective. In the meantime, there have been some
defensive mechanisms [7], [9], [14], [19], [23], [24] discovered
to defend against those attacks, and a classifier that is strong
against adversarial examples is called an adversarially robust
classifier.

However, the works in [2], [22] showed that to make a
classifier adversarially robust, we need to sacrifice class-wise
accuracy fairness defined in Section III. Moreover, the work in
[3] also showed that a classifier trained by adversarial training
[14] achieved more leave-one-out unfairness than a typically
trained classifier. Hence, the main contribution throughout this
work is to demonstrate that adversarial training is linked to
problems with class-wise accuracy fairness and leave-one-out
fairness and evaluate whether some other definitions of fairness
are also harmed by adversarial training.

This paper is organized as follows; Section II explains some
frequently-used notations, briefly describes adversarial training,
and refers to some related work; Section III provides definitions
of fairness used in the experiments; Section IV describes how

we performed the experiments and shows and discusses the
experimental results; Section V concludes everything we have
done in this work and mentions works that we may involve in
the future.

II. BACKGROUND

A. Notation

A neural network or classifier is a function F (xxx) : Rd → Rm
where xxx is an input, d is a number of attributes of x and m is
a number of classes. We denote X as a set of input and Y as
a set of classes; thus, xxx ∈ X , and |Y| = m. Further, a set of
data in dataset D belonging to class y is denoted by Dy where
D = {(xxx, y)|xxx ∈ X , y ∈ Y}.

B. Adversarial training

This method was first proposed in [9] and shown that it
is a very effective defensive mechanism against adversarial
examples in [14]. This idea started by an attempt to solve this
problem, given classifier F and dataset D,

E(xxx,y)∼D
[
minFmaxLP (δδδ)≤εl(F,xxx+ δδδ, y)

]
where xxx is a clean input, y ∈ Y , l(F,xxx, y) is a loss function

with respect to F (xxx) and y, LP (δδδ) = P

√∑d−1
i=0 δ

P
i , δi is

element i of δδδ, d is the number of dimensions of xxx and ε
is a bound of added perturbation. Throughout this work, we
use L∞ for generating adversarial examples.

However, the inner maximization is nontrivial to solve;
therefore, the method in [14] generated adversarial examples
by using Projected gradient descent (PGD) with small bound ε
from a training dataset and retrained a trained learning model
with these adversarial examples.

C. Related works

In 2021, Benz et. al [2] showed that robustness could ruin
class-wise accuracy fairness by demonstrating their empirical
results. Also, Xu et al. [22] had pointed the same problem and
proposed a solution that used a fairness regularization technique
to find the tradeoff between robustness and class-wise accuracy
fairness.

According to the previous works, to the best of our
knowledge, there has been no work focusing on the tradeoff
between robustness and several definitions of fairness; hence,
our work is the first one.
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III. FAIRNESS DEFINITIONS

This section describes some definitions of fairness used
in our experiments for indicating the tradeoff between these
definitions of fairness and robustness achieved by adversarial
training. For simplicity to formally give definitions of fairness,
we provide definitions of unfairness that contrasts with fairness.
The first definition of unfairness that we would like to introduce
is class-wise accuracy unfairness formally defined in Definition
1. This unfairness indicates that a particular classifier is unfairly
accurate and was shown to be worse in a robust model than
in a standard model in [2], [22]. If this unfairness is very
high, classifier F is not class-wise accuracy fair at all. In the
contrary, if this unfairness is very low, this classifier is very
class-wise accuracy fair.

Definition 1 (Class-wise accuracy unfairness). Given classifier
F and dataset D, class-wise accuracy unfairness can be measure
as

CAU(F,D) = maxy,y′∈Y |Acc(F,Dy)− Acc(F,Dy′ )|
where Acc(F,D) ∈ [0, 1] denotes the accuracy score of F with
respect to dataset D.

Next, in addition to CAU, we desire to check if a robust
model would unfairly improve the robustness of data belonging
to some classes. Then, we give a formal definition of this kind
of unfairness in Definition 2. If this unfairness is very high,
classifier F is not class-wise robustly fair at all. On the other
hand, if this value is low, this classifier is class-wise robustly
fair.

Definition 2 (Class-wise robustness unfairness). Given classi-
fier F and dataset D, class-wise robustness unfairness can be
measure as

CRUε(F,D) = maxy,y′∈Y |LE(F,Dy)− LE(F,Dy′ )|
where LE(F,D) denotes the average least required ε, which
is a bound of added perturbation, to find adversarial examples
for dataset D to mislead classifier F . Also, we can measure it
in term of success rate of generating adversarial examples as

CRUs(F,D, ε) = maxy,y′∈Y |SR(F,Dy, ε)− SR(F,Dy′ , ε)|
where SR(F,D, ε) is a success rate of adversarial attack

with bound ε on classifier F with respect to dataset D.
Furthermore, Black and Fendrickson [3] proposed a new

definition of unfairness called leave-one-out unfairness formally
defined in Definition 3. The main idea of this unfairness is
that when removing one random sample from the training
dataset, after training a classifier, its output for an arbitrary
input should not be much different from the one trained with
the entire training dataset. In other words, if this unfairness
is high, some samples in the training dataset tremendously
influence the classifier.

Definition 3 (Leave-one-out unfairness). Given classifier F ,
dataset D and sample xxx, leave-one-out unfairness can be
measure as

LUF(F,D,xxx) = max(iii,·)∈DL,y∈Y |FD(xxx)y − FD(\iii)(xxx)y|

where DL is a leave-out set sampled from dataset D, FD(xxx) is
classifier F trained with dataset D, D(\iii) is dataset D excluding
sample iii and F (xxx)y is the confidence of input xxx to belong to
class y. Further, we can compute the expected value of LUF
over dataset D as

LUF(F,D) = E(xxx,·)∈D [LUF(F,D,xxx)] .

At last, we would like to describe equalized odd unfairness
introduced in [11] and formally defined in Definition 4. This
unfairness implies that an unprotected attribute has much
influence on the prediction of a classifier while it is irrelevant.
For example, for a job classifier, ethnicity should be irrelevant
to the output, and this attribute is called an unprotected attribute.
However, if the classifier considers ethnicity to predict a job,
it is unfair in this definition of unfairness.

Definition 4 (Equalized odd unfairness). Given classifier F
and dataset D, this unfairness can be measured as

EOU(F,D, a, y) = maxi,j∈Va |Exxx∈Da=i [F (xxx)y]

− Exxx∈Da=j [F (xxx)y]|

where a is an protected attribute, y ∈ Y , Va is a set of values
of attribute a, Da=i is dataset D in which values of attribute a
of all samples are i. In the other words, EOU is the maximum
of the differences between the expected values of confidence of
class y of classifier F with respect to dataset D with different
values of protected attribute a.

IV. EXPERIMENTS AND RESULTS

A. Setup

We experimented on fairness and robustness classifiers
with Python version 3 and Tensorflow module [1] on Google
Colab. We used two datasets on these experiments and also
implemented classifiers for them. Those datasets and classifiers
are described as follows:

1) CIFAR-10 dataset [13]. This dataset contains 32x32
color images belonging to 10 classes: airplane, automo-
bile, bird, cat, deer, dog, frog, horse, ship and truck. It has
balanced 50000 training samples and balanced 10000 test
samples. Then, we implemented a CIFAR-10 classifier
consisting of two convolutional layers followed by max
poolings and ReLU activation functions, two hidden
dense layers followed by ReLU activation functions and
one output layer followed by a softmax activation function
for computing confidences of all classes. We trained
this classifier with the training samples by using Adam
optimizer [12], 250 batch size and 20 epochs. As a
result, the classifier achieved 71.96% accuracy on the
test samples. Further, we created adversarial examples on
the test samples by using PGD [14] with ε = 0.01, and
the classifier achieved 4.24% accuracy. We call accuracy
resulting from clean dataset ”standard accuracy” and call
accuracy resulting from adversarial examples ”robust
accuracy”. After that, we merged the training samples
with the adversarial examples generated from the training
samples and trained another classifier with those merged



samples by using adversarial training [14] to obtain a
robust classifier. Consequently, the robust classifier can
achieve 72.43% standard accuracy and 83.12% robust
accuracy.

2) Adult dataset [4]. This dataset has been used to predict
whether the income of a person exceeds $50K per year
by considering 14 attributes. These attributes consist of 6
continuous attributes and 8 discrete attributes. Moreover,
the dataset has 30162 training samples and 15060 test
samples. Then, we implemented a classifier for this
dataset composed of four hidden dense layers followed
by tanh activation functions and an output layer followed
by a softmax activation function. Next, because the
number of class-1 samples (i.e., samples that have income
exceeding $50K per year) is much less than the number
of class-0 samples (i.e., samples that have income less
than $50K per year), we added the same class-1 samples
to the training dataset. Then, we trained the classifier with
this augmented training dataset using the same setting
as for the CIFAR-10 dataset, and it achieved 79.53%
standard accuracy on the test dataset. After that, we
generated adversarial examples from the test samples by
PGD [14] with ε = 10, and the classifier can achieve
14.3% robust accuracy on these adversarial examples.
Further, we created adversarial examples on the training
samples and merged them with the training samples.
Then, we trained another classifier with the merged
samples by using adversarial training [14], and this
robust classifier can achieve 79.37% standard accuracy
and 96.37% robust accuracy.

Our experiments were constructed according to the defini-
tions of unfairness explained in Section III. First, we start with
the experiment of class-wise accuracy unfairness on CIFAR-10
and Adult classifiers and move to the experiment of class-wise
robustness unfairness on CIFAR-10 and Adult classifiers. Then,
we use CIFAR-10 classifiers for the experiment of leave-one-out
unfairness and Adult classifiers for equalized odd unfairness.

B. Class-wise accuracy unfairness

We evaluated the standard CIFAR-10 classifier (i.e., a
classifier trained with clean CIFAR-10 samples) and the robust
one (i.e., a classifier trained by adversarial training) on the
CIFAR-10 test samples. The result of this evaluation is shown
in Fig. 1, and noticeably, the robust classifier had less accuracy
than the standard classifier for samples of hard classes (e.g.,
cat and dog). On the contrary, the robust classifier achieved
higher accuracy than the standard one for samples of easy
classes (e.g., airplane, horse and ship). This phenomenon
led the robust classifier to have a larger gap between the
maximum class-wise accuracy and the minimum class-wise
accuracy than the standard one; therefore, the robust classifier
achieved higher CAU than the standard classifier. Specifically,
the robust classifier had 0.344 CAU while the standard one
had 0.286 CAU. Thus, the robust CIFAR-10 classifier trained
by adversarial training was more class-wise accuracy unfair
than the standard CIFAR-10 classifier.
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Fig. 1: Accuracy score of standard and robust classifiers with
samples belonging to each class on the CIFAR-10 dataset.
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Fig. 2: Average required ε of standard and robust classifiers
with samples belonging to each class on CIFAR-10 dataset to
generate adversarial examples.

TABLE I: CRUs of the standard and robust CIFAR-10
classifiers with different values of ε.

Model ε = 0.01 ε = 0.012 ε = 0.014

Standard 13.43 8.45 4.71
Robust 25.85 16.27 10.56

Furthermore, we have performed the same experiment on
the Adult classifiers, and since there are only two classes in the
Adult dataset, it is easy to compute CAU for the classifiers. As a
result, the robust Adult classifier achieved 0.0205 CAU, higher
than 0.0195 CAU of the standard Adult classifier. Therefore,
the robust classifier is more class-wise accuracy unfair than the
standard classifier. We can summarize all these experiments
that applying adversarial training to create a robust classifier
can ruin class-wise accuracy fairness.
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Fig. 3: Success rate of generating adversarial examples with
different ε of standard and robust classifiers with samples
belonging to each class on CIFAR-10 dataset where NR is the
standard classifier and R is the robust classifier.

TABLE II: CRUs of the standard and robust Adult classifiers
with different values of ε.

Model ε = 10 ε = 15 ε = 20

Standard 6.11 10.81 10.7
Robust 18.66 23.38 22.72

C. Class-wise robustness unfairness

Note that the adversarial attack used in this experiment was
PGD [14]. For each sample of the CIFAR-10 test dataset,
we increased ε until we found an adversarial example of
that sample, and we computed the average required ε over
samples of each class as seen in Fig. 2. Intuitively, samples in
classes that require higher ε to generate adversarial examples
are more robust than those in classes requiring less ε. Thus,
the robustness of samples in hard classes (e.g., cat and dog)
was slightly or not improved at all by adversarial training. In
contrast, the samples in easy classes (e.g., horse and ship)
were significantly improved by adversarial training. Implicitly,
the robust CIFAR-10 classifier trained by adversarial training
achieved higher CRUε, which was 0.005, than the one achieved
by the standard CIFAR-10 classifier, which was 0.0014. In
addition, we also experimented on a success rate of generating
adversarial examples on samples in each class with different ε
as seen in Fig. 3. The implication was the same as what we
explained for Fig. 2, and CRUs for each setting is shown in
Table I. Moreover, Fig. 3 and Table I implied that the difference
between CRUs obtained from the robust classifier and the one
obtained from the standard classifier was lower when ε was
higher. This implication was because the adversarial attack was
more effective when ε was higher. Then, samples in easy classes
were much more vulnerable while samples in hard classes were
slightly more vulnerable. Therefore, the gap between CRUs of
the classifiers was smaller.

In addition to CIFAR-10 classifiers, we experimented on a
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Fig. 4: Success rate of generating adversarial examples with
different ε of standard and robust classifiers with samples
belonging to each class on Adult dataset where NR is the
standard classifier and R is the robust classifier.

TABLE III: LUF, LUFt and LUFl of the standard and robust
CIFAR-10 classifiers.

Model LUF LUFt LUFl

Standard 0.7694 29.26 2926.1
Robust 0.7945 29.35 2934.89

success rate of generating adversarial examples on samples in
each class of Adult test samples by using the Adult classifiers
as shown in Fig. 4. We found that the robust classifier achieved
more CRUs than the one achieved by the standard classifier
as shown in Fig. 4 and Table II. Nonetheless, we did not
see any pattern of CRUs in different settings of ε as we
found for CIFAR-10 classifiers. The reason could be that the
training and test samples were unbalanced; hence, when we
applied adversarial training on the dataset, a class with much
more samples could be much more robust than a class with
much fewer samples. In the end, we summarized that a robust
classifier trained by adversarial training could be more class-
wise robustly unfair than a standard classifier.

D. Leave-one-out unfairness

In this experiment, we used CIFAR-10 dataset and the
particular classifiers and picked 100 samples from the training
samples as leave-out samples. Hence, |DL| = 100, and for a
classifier, we had additional 100 leave-out classifiers each of
which was trained with the training samples excluding one
different leave-out sample. From the 100 leave-out classifiers,
we could compute LUF of the original classifier. Further, for
test samples, we also computed the average number of leave-
out classifiers that resulted in different classes to the original
one and could formally define it as

LUFt(F,D) = E(xxx,·)∈D
∑

(iii,·)∈DL

1{CD(xxx) 6= CD(\iii)(xxx)}

where 1{T} is 1 if T is true and 0 otherwise, and

CD(xxx) = argmaxy∈YFD(xxx)y.



TABLE IV: Average confidences of the Adult classifiers to
predict that incomes exceed $50K per year where gender
attribute is protected.

Model D0 D1

Male Female Male Female
Standard 0.272 0.198 0.717 0.626
Robust 0.248 0.168 0.762 0.668
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Fig. 5: EOU achieved by the standard and robust Adult
classifiers on D0 and D1 where gender attribute is protected.

Additionally, for the leave-out classifiers, we computed the
average number of the test samples on which the leave-out
classifiers resulted in different classes to the original classifier,
and this could be formally defined as

LUFl(F,D) = E(iii,·)∈DL

∑
(xxx,·)∈D

1{CD(xxx) 6= CD(\iii)(xxx)}.

We showed those values above of our standard and robust
CIFAR-10 classifiers in Table III. Explicitly, the robust classifier
achieved higher values of LUF, LUFt and LUFl than the stan-
dard classifier. Thus, a robust classifier trained by adversarial
training is more leave-one-out unfair than the standard one.

E. Equalized odd unfairness

We only used the Adult dataset and its classifiers in this
experiment since the CIFAR-10 dataset did not have any
protected attribute. First, we considered gender attribute as a
protected attribute because people’s genders were not supposed
to be considered when predicting whether those people had
incomes exceeding $50K per year. This attribute had only two
values: male and female. We divided the test samples into two
sets: a set of samples with incomes less than $50K per year
(D0) and a set of samples with incomes exceeding $50K per
year (D1). The average confidences of the Adult classifiers to
predict that incomes exceeded $50K per year in D0 and D1 are
shown in Table IV, and the confidences resulted from female
samples were less than the ones resulted from male samples.
Implicitly, the classifiers were biased. Plus, we computed EOU
from the information in Table IV and summarized the results
in Fig. 5. Noticeably, EOU in D1 was higher than EOU in
D0 since samples in D1 were more biased than samples in
D0. Furthermore, EOU achieved by the robust classifier was
slightly higher than EOU achieved by the standard classifier
in both D0 and D1.

In addition, we experimented on the Adult dataset when
race attribute was protected, and the average confidences of
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Fig. 6: EOU achieved by the standard and robust Adult
classifiers on D0 and D1 where race attribute is protected.

the classifiers to predict that incomes exceeded $50K per
year are shown in Table V. Explicitly, the classifiers were
biased, especially on D1 as seen in Fig. 6. The implication
was the same as we obtained when gender attribute was
protected; however, we found another exciting implication
which was that the robust classifier achieved much higher
EOU than the standard classifier. Therefore, this inferred that
when the number of protected attribute values was higher, the
difference between EOUs of the standard and robust classifier
also increased. Finally, we summarize that a robust classifier
trained by adversarial training is more equalized odd unfair
than a standard classifier.

V. CONCLUSION AND FUTURE WORK

We have briefly explained definitions of class-wise accuracy,
class-wise robustness, leave-one-out, and equalized odd un-
fairness and formally defined them in mathematical formulas.
Further, in our experiments on the CIFAR-10 and Adult dataset,
we have shown that training a classifier by adversarial training
could expose more unfairness than regular training. Thus, with
these findings, people may not try to create an adversarially
robust classifier since it can ruin some definitions of fairness.
Then, solutions addressing this problem are needed, as in the
work of [22] which tried to address the issue between robustness
and class-wise accuracy fairness. Furthermore, we still do not
have mathematical proof of these findings and need to evaluate
further whether other methods [7], [19], [24] that focus on
robustness also harm these kinds of fairness.

Future work will focus on a) developing mathematical,
theoretical proofs of our current empirical findings; b) checking
if there exists any robustness method in particular that harms
fairness; and c) addressing these problems using a regularization
technique within an optimization problem or solving the
optimization problem with fairness-constraints.
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TABLE V: Average confidences of the Adult classifiers to predict that incomes exceed $50K per year where race attribute is
protected.

Model D0 D1

White Asian Indian american Black Other White Asian Indian american Black Other
Standard 0.255 0.24 0.21 0.203 0.215 0.706 0.688 0.65 0.639 0.657
Robust 0.233 0.242 0.148 0.159 0.149 0.754 0.763 0.64 0.658 0.642
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