
Enhancing Adversarial Examples on Deep Q
Networks with Previous Information

Korn Sooksatra∗ and Pablo Rivas†, Senior, IEEE
School of Engineering and Computer Science

Department of Computer Science, Baylor University
∗Email: Korn Sooksatra1@Baylor.edu, †Email: Pablo Rivas@Baylor.edu

Abstract—Reinforcement learning has been widely used in
many applications (e.g., self-driving cars, games, and robots).
However, it is not very efficient when there are many actions and
states. Thus, many researchers have applied Deep learning to it
and call it Deep reinforcement learning (DRL) to address such a
drawback. Unfortunately, recently, some researchers discovered
a weakness of Deep learning in the test time and called it an
adversarial attack. Since DRL is also Deep learning, it has
the same weakness. Hence, DRL is vulnerable to adversarial
attacks. Moreover, some existing works have created adversarial
attacks for DRL. Generally, they first decide whether to create
an adversarial example for the current state and then determine
how much perturbation to add to the current state. This limits
the adversary from the information in the previous steps when
determining the perturbation. Also, some of the attacks fixed the
adversarial action to the worst action, and then, the behavior
of the target agent did not look natural. Therefore, we propose
combining those two problems into one problem to allow the
adversary to receive the information from the previous steps and
let the adversary pick an adversarial action that is worth adding
the perturbation by formulating and optimizing the problem. At
last, we construct the experiment on Atari games to investigate
the behavior of the agent attacked by our approach and compare
our approach to the state-of-the-art attacks in terms of the
amount of added perturbation and reward. As a result, our
approach can make an agent play the games as if there was
no adversarial attack and outperform the previous works.

Index Terms—adversarial example, deep reinforcement learn-
ing, deep learning

I. INTRODUCTION

Reinforcement learning (RL) has recently been combined
with Deep Learning (DL) to improve its performance, and it
is called Deep Reinforcement Learning (DRL). Further, DRL
[15], [16] has been utilized by many applications (e.g., medical
uses [19], autonomous vehicles [4], playing games [16], [20],
and robotics [13]). However, the drawback of DRL is that it is
vulnerable to adversarial attacks [8], [22] because it is based
on DL. Existing work [2], [10], [12], [14], [21] shows and
guarantees that there exist adversarial attacks in DRL. [10],
[12], [14], [21] have discovered white-box attacks for DRL,
and [2] has created a black-box attack for DRL. Further, in the
white-box setting, [12], [14], [21] selected only some states to
attack to avoid the detection.

Nonetheless, our proposed method focuses on a different
solution. We assume that only selecting some states to attack
can slightly help to avoid the adversarial-attack detection
because the detector usually checks every state if it is an

adversarial example. Further, the existing work has formulated
two separated problems: finding which states to add perturba-
tion and adding the perturbation to result in the worst action.
However, we aim to combine those two problems and build a
superior adversarial attack that constructs natural examples.
Altering the original action to the worst action makes the
target agent look unnatural. In addition, doing so can allow
the adversary to observe the perturbation used in the previous
states and use it as additional information to determine the
amount of the added perturbation in the current state so that
it can better optimize the total amount of the perturbation. It
is worth noting that we utilize the optimization problem in
Carlini and Wagner attack (CWA) [7] for our problem.

In our experiment, we use Deep Q-Network (DQN) [16]
as our target. Further, the application that we will attack is
Atari games (i.e., Breakout and Spaceinvader) because it is
simple and generally used for comparison of the efficiency of
several adversarial attacks. In the other words, we will train
DQN to play games in Atari, use some state-of-the-art attacks
and our attack to reduce the rewards of those models in the
test time and make a comparison among them. Our major
contributions can be summarized as follows: (i) We combine
two problems which the previous works formulated into one
problem and implement a method to solve this one problem
based on CWA [7]. That is, we aim to reduce the perturbation
for each state so that it is difficult for a detector to detect the
attack. Further, the other aim is to avoid an observer to notice
the abnormality of the agent’s behavior by letting the adversary
choose the action that is worth adding the perturbation. (ii)
We construct the experiments for comparing our approach to
the previous works in terms of the average perturbation, the
maximum perturbation, the ratio of the perturbed states and
the unperturbed states, the obtained reward and the behaviors
of the agents.

This paper is organized as follows. Section II describes the
adversarial attack on DRL while our approach is detailed in
Section III. Experiments and demonstrations are in Section
IV, while results and future work are discussed in Section V.
Finally, Section VI offers our conclusions.

II. BACKGROUND

A. Carlini and Wagner attack

This type of attack was named after the authors of [7],
and they showed that it is a significantly strong attack for

Agent

Environment

Action

RewardTrain

Adversary

StateAdversarial State

Fig. 1: Adversarial situation of DRL.

generating stealthy adversarial examples. Specifically, this
attack was modified from the attack in [22] by omitting all
the constraints by converting x∗ to a function based on the
hyperbolic tangent function of variable w so that the adversary
could directly apply a dynamic gradient-based technique on w
without clipping any value. That is, the optimization problem
of this attack is

min

∥∥∥∥12(tanh(w) + 1)− x
∥∥∥∥
2

+ α · L(1
2
(tanh(w) + 1)), (1)

where w ∈ Rn, α balances the distance between the
minimization of the perturbation and the one of function
L(x∗) and L(x∗) is a loss function; thus, we use L(x∗) =
max(maxj 6=t Z(x

∗)j − Z(x∗)t,−κ), recommended by [7],
where t is the targeted class and κ measures how much
confidence the adversary desires.

B. Adversarial attack on DRL

In the general scenario illustrated in Figure 1, DRL consists
of an agent and the environment. When the agent performs an
action in a given state, the environment sends back the next
state and a reward. Then, the agent determines the next action
for the next state, and this keeps happening until the end of the
episode. On the other hand, in an adversarial scenario, DRL
also includes an adversary that lies between the agent and the
environment. It receives the next state from the environment,
alters it to an adversarial state and then relays to the agent.

C. Related works

In 2017, Huang et.al [10] first showed that in Atari games,
by applying Fast Gradient Sign Method (FGSM) [8] on
DRL’s input observation (i.e., images of the games) to craft
adversarial examples, a DRL model can be misled and results
in much lower reward than it is supposed to obtain with the
normal observation. Further, Kos and Song [12] performed
FGSM to a state only when its value function is above a
specified threshold and achieved the equal result as the one
with [10]. That is, an adversary only needs to craft adversarial
examples on critical states to mislead his/her targeted DRL
and prevent detection by the agent. In addition, similar to DL,
black-box attacks have been shown in [2], [10] by using an
adversarial attack’s transferability property [17], [18]. Then,
in 2019, Lin et.al [14] crafted adversarial examples by using
Carlini and Wagner attack (CWA) [7] on the states where
the difference between the attack resulting highest value of

the targeted agent’s policy and the attack resulting the lowest
value of the policy was above the specified threshold. Also,
the authors proposed another attack that lured the agent to the
designated state by using a generative model to predict the
future states and determining the sequence of future actions.
Moreover, Sun et.al [21] proposed an antagonist attack which
trained an antagonist policy resulting in a score measuring
how much this state impacted the targeted agent’s reward and
designated action to minimize the agent’s reward.

Although, in a white-box setting, the works in [12], [14],
[21] can be very effective because they only pick states in
some time steps that is critical to add the perturbation to
mislead the agent. Therefore, this can avoid the detection
of adversarial examples when the agent is not aware of the
threats in the environment at every time step; nonetheless, if
the agent is aware of the threat for the environment at every
time step, these works are not different to the work in [10]
(which perturbs every state) in term of avoiding the detection.
In addition, for an observer, it is easy for those attacks to be
noticed since they suddenly alter the actions in totally different
behaviors. For an example of an autonomous car, in a straight
way, if the car suddenly turns left and hits a wall, this is very
obvious that this car may be adversarially attacked. On the
other hand, if the car gradually steps out from its own lane and
hits the wall, the agent and the observers may not notice the
attack. Noticeably, even though they use different strategies,
the car has the same consequence which is hitting the wall.
However, the latter can be less noticeable by an observer
and also requires less perturbation for each state. Moreover,
when those works add the perturbation, they directly apply
the adversarial attack created for classification models (e.g.,
FGSM [8] and CWA [7]). Hence, this can limit the attack to
consider only what happens in the current state and ignore the
global view. Furthermore, some of the state-of-the-art attacks
[21] relied on an additional learning model (e.g., a prediction
model). However, we do not desire our attack to depend on
any learning model because it is uncertain. Therefore, we will
not compare our attack to the one in [21].

To the best of our knowledge, our approach is the first one
to combine two separated problems into one problem to let
the attack consider the global view. Further, our approach is
not strict to alter the original action to the worst one when
adding the perturbation. Instead, it can choose another action
if the perturbation is too much for the worst action. This can
make the behavior of the target smooth and similar to the one
without adversarial examples.

III. OUR APPROACH

In this section, formalize the problem of the adversary in
Section III-A and explain the method to minimize the added
perturbation and the number of perturbed states by utilizing
the information from the previous time steps in Section III-B.

A. Problem formulation

First, we have the target Deep Reinforcement Learning
model or agent defined by (S,A,P, r, γ), where S is the state

space, A is the action space, P is the transition probability of
the state given a current state, a performed action and a next
state, r is the reward function given a state and an action and
γ is the discount factor. At each time step t, the agent is given
an observation or state st ∈ S and choose the optimal action
at according to st and its policy π(st) which is the distribution
over at in the case of stochastic and is the best action in the
case of deterministic. To achieve the goal of the task, the agent
would like to maximize R =

∑T−1
t=0 Eat∼π(st)γtr(st, at)

which is the total reward over T time steps. Note that γ is
for reducing the significant of the future rewards.

In contrast, the adversary would like to reduce R
by adding some perturbation to each st as Ra =∑T−1
t=0 Eat∼π(st+δt)γtr(st, at) where δt is the perturbation

added to st. However, at time step t, the adversary does not
have information about the future. Thus, it needs to decide at
the time step if it will add the perturbation and how much
perturbation it would like to add. Based on CWA [7], these
problems for each time step t can be formulated as

min ||δt(wt)||2 + λt ·
∑

a∈A,a 6=atrue

[D(F, a, st, δt(wt))] (2)

where

D(F, a, s, δ) = max
a′∈A

[F (a
′
, s+ δ)]− F (a, s+ δ),

and δt(wt) = 1
2 (tanh(wt)+1)−st, atrue is the action without

the perturbation, λt is the regularizer parameter at time step t
and F (a, s) is the output of a DRL model given action a and
state s. In the case of DQN, F (a, s) = Q(a, s) that is a Q
value given action a and state s. Noticeably, this formulation
is a modified version of the one of CWA [7] for attacking
a DRL model. The first part of (2) (i.e., ||δt(wt)||2) is to
minimize the perturbation for this time step, and the other
part is to decide which action is worth perturbing the state st.
That is, the chosen action (i.e., a) makes its subtraction (i.e.,
maxa′∈A[F (a

′
, st+δt(wt))]−F (a, st+δt(wt))) become zero.

Additionally, the value of λt will be determined and discussed
in Section III-B, and this involves the information from the
previous time steps.

B. Method

Based on CWA [7], we use a gradient-based algorithm (e.g.,
SGD [5], Adam [11] and RMSprop [9]) to solve problem (2).
Specifically, in each time step t, we set λt according to the
ratio of the number of previous perturbed states (denoted by
rt) and the number of previous states and the average of ||δτ ||2
where 0 ≤ τ ≤ t − 1 (denoted by avgt). The former can be
calculated as

rt =
p

t
(3)

where p is the number of previous perturbed states. The latter
can be calculated as

avgt =

∑t−1
τ=0 ||δτ ||2

p
. (4)

Algorithm 1: Method of the adversary at time step t.
Input: st, avgt, rt, η
Compute λt = 1−rt

avgt
;

Determine δt by optimizing problem (2) using a
gradient descent method;

Pass st to the target model and obtain an action a;
Pass st + δt to the target model and obtain an

adversarial action adv;
if a 6= adv then

st = st + δt;
end
else

δt = 0;
end
Result: st, δt

Therefore, at time step t, to minimize the perturbation over
the whole episode, λt should be proportional to 1 − rt and
inversely proportional to at. This can be calculated as

λt =
1− rt
avgt

. (5)

To summarize the method of the adversary to optimize (2),
at time step t, the adversary obtains state st. Then, it uses (5)
for computing λt and can optimize problem (2) for η iterations.
After that, it obtains perturbation δt and then uses it to check
if this δt can alter the action. If not, just result the clean state
st and zero perturbation. On the other hand, if δt can alter the
action, result an adversarial example st + δt and δt. This can
be summarized in Algorithm 1.

IV. EXPERIMENT

In this section, we explain how we construct the experiments
for the comparison between our approach and other attacks.
We use Python3, Tensorflow [1] and OpenAI Gym [6] for im-
plementing the experiment and run it on Google Colaboratory
Pro [3]. First, we specify what the target model is in Section
IV-A and then discuss the attacks used in the experiment
in Section IV-C. At last, the criteria for the comparison are
demonstrated in Section IV-B, and the result will be shown
and discussed in Section IV-D.

A. Target model

We use the Deep Q Network (DQN) model specified in
[16] and train it with two Atari games (i.e., Breakout and
Spaceinvader). The training setting of DQN for Breakout is
described as follows. The learning rate and discount factor are
respectively 0.00001 and 0.99 because these two values results
in the best DQN in our experiment. Further, we convert the
resolution of each frame of Breakout to the grayscale with
the size of 84 by 84 to reduce the training time and improve
its performance. To create a state in each time step, it uses
four frames consisting of the current frame and the previous
three frames, After training, we evaluate this model for five
episodes, and the model can obtain an average reward of 278.4
which is considered as a strong player.

Furthermore, the training setting of DQN for Spaceinvader
is as follows. The learning rate and discount factor are respec-
tively 0.00001 and 0.99. We convert the color of each frame
of Spaceinvader to grayscale with a size of 84 by 84. Also,
similar to the setting in Breakout, we use four frames to create
a state. As a result, we achieve the average reward of 414.44.

B. Criteria

In our experiment, there are four criteria used to make a
comparison among the three attacks: the average perturbation
(avg), the ratio of the number of previous perturbed states and
the number of states (r), the maximum perturbation (max) and
the reward. These first three criteria can be computed as:

avg =

∑T
τ=0 ||δτ ||2

p
,

r =
p

T
,

max = max
τ=0,1,..,T

||δτ ||2,

where T is the last time step, and p is the number of perturbed
states.

C. Attacks

The attacks that we use in this experiment are our approach,
simple attack [10] and strategically-timed attack [14]. Simple
attack is naive because it creates an adversarial example for
every state. In [10], the authors used FGSM [8] for the attack
in each state. However, we strengthen this attack by using
CWA [7] instead since it is the most powerful attack for
classification models. Further, we use this attack to target the
least-value action.

Strategically-timed attack is similar to Simple attack;
nonetheless, it chooses the state where the difference of the
highest-value action’s value and the least-value action’s value
exceeds the specified threshold. In our experiment, we use
three thresholds: 0.1, 0.15 and 0.2.

At last, in our approach, there is only one hyperparameter
which is η. Thus, for Breakout, we have further experimented
on it, and Figure 2a and 2b respectively show that when
the average perturbation is inversely proportional to the ratio
of the number of perturbed states and the number of clean
states. Since we focus on reducing the average perturbation,
we use η = 50 for the experiment. Further, we did not find
significance of max perturbation and obtained reward over η
as seen in Figure 2c and 2d.

Furthermore, I need to determine η used in DQN for
Spaceinvader. According to Figure 3a, 3c and 3d, the best
η is 140 because the agent achieved the lowest average
perturbation, maximum perturbation and reward. Although the
ratio is high, it is not constant over η. Therefore, we decided
to use η = 140 for DQN for Spaceinvader.

D. Result

We let each attack play five episodes of Breakout and
determine the averages of the criteria resulted from the five
episodes. The results can be demonstrated in Table I where

SimA is Simple attack, and n-StratA is Strategically-timed
attack with the threshold of n.

Noticeably, although SimA can result in the reward of 0,
SimA performs the worst among the attacks since max and
r are the highest among the attacks. Next, 0.1-StratA has
similar results as SimA; however, r is much lower than the
one of SimA because it does not add perturbation to every
state. Further, 0.15-StratA and 0.2-StratA have a higher reward
than one of 0.1-StratA because they have significantly less
perturbed states as shown in r. However, avg of those three
attacks are still at the same level; hence, they are not very
different against an adversarial-example detector.

In addition, our approach has a similar result as the ones of
0.15-StratA and 0.2-StratA in a term of max. Nevertheless,
it has more perturbed states than the ones of 0.15-StratA and
0.2-StratA because our approach does not focus on reducing
the number of perturbed states. Explicitly, our approach has
the best result in a term of avg since the adversary has the
information from the previous time steps and aims to minimize
the overall perturbation. Also, our approach can achieve a
significantly low reward compared to the rewards achieved by
0.15-StratA and 0.2-StratA and essentially outperforms SimA
and 0.1-StratA.

We also experiment on Spaceinvader by letting each attack
play three episodes and obtain the average value of each
criterion. The result of this experiment is shown in Table II.
As expected, the results obtained by SimA and 0.1-StratA are
similar; however, their ratios are significantly different. The
rewards obtained by 0.15-StratA and 0.2-StratA are worse than
(higher than) the ones in SimA and 0.1-StratA. At last, our
approach can achieve the best results among all the attacks in
terms of the average perturbation, the maximum perturbation
and the reward.

V. DISCUSSION AND FUTURE WORKS

From the experiment of Breakout, the agents in SimA, 0.1-
StratA, 0.15-StratA and 0.2-StratA try to avoid catching the
balls on purpose. On the other hand, the agent in our approach
misses catching the ball as if it was a mistake from the
training step. The reason is that our approach does not restrict
the adversary to choose only the worst action; however, it
can choose any action that is worth adding the perturbation.
Therefore, our approach has higher chances to fool an observer
from noticing the strange behavior of the agent caused by
adversarial examples. For example, when we run the learning
model attacked by our approach, we randomly pick a state at
time step t shown in Figure 4 with rt = 0.47 and avgt = 0.12.
Noticeably, the ball is going down to the left, and we use the
normal DRL model without any attack. It results in moving
left as the action for this state. Certainly, when we alter this
state with CWA which simple attack and strategically-timed
attack use, the model results in moving right which is the worst
action. However, when we use our approach to alter the state,
the target model results in staying still as the action. As can
be noticed, either moving right or staying still results in the
same thing which is that the ball will be dropped. Further,

25 50 75 100 125 150 175 200
The number of iterations

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28
Av

er
ag

e
pe

rtu
rb

at
io

n

(a) Average perturbation over the numbers of iterations (η) for
Breakout.

25 50 75 100 125 150 175 200
The number of iterations

0.40

0.45

0.50

0.55

0.60

0.65

Ra
tio

(b) Ratio (r) over the numbers of iterations (η) for Breakout.

25 50 75 100 125 150 175 200
The number of iterations

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

M
ax

im
um

 p
er

tu
rb

at
io

n

(c) Maximum perturbation over the numbers of iterations (η) for
Breakout.

25 50 75 100 125 150 175 200
The number of iterations

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Re
wa

rd

(d) Obtained reward over the numbers of iterations (η) for Breakout.

Fig. 2: Results of DQN on Breakout over the numbers of iterations (η).

TABLE I: Criterion’s values for comparing the attacks in Breakout
`````````Criterion

Attack SimA 0.1-StratA 0.15-StratA 0.2-StratA Our approach

avg 0.205 0.208 0.238 0.278 0.138
r 1 0.602 0.238 0.143 0.575

max 0.696 0.686 0.41 0.42 0.476
Reward 0 0 3.2 3 1

TABLE II: Criterion’s values for comparing the attacks in Spaceinvader.
`````````Criterion

Attack SimA 0.1-StratA 0.15-StratA 0.2-StratA Our approach

avg 0.425 0.416 0.635 0.663 0.180
r 1 0.414 0.431 0.305 0.574

max 1.146 0.817 1.579 1.339 0.488
Reward 153 140 375 288 43

the added perturbation caused by CWA and our approach
is 0.39 and 0.37 respectively. Clearly, our approach requires
less perturbation, results in the same thing as CWA does and
also looks less adversarial than CWA. Furthermore, in the
experiment of Spaceinvader, the agent in our approach tried to
dodge some lasers shot from the enemies and died by accident.

On the other hand, the agents in other attacks went to hit
lasers shot by the enemies on purpose. Yet, they sometimes
went to the area where there is no enemy in vertical and
waited until the enemies successfully came to the bottom as
shown in Figure 5. Explicitly, the agents in the other attacks
unnaturally lost (as if the DQN was misled by something), and

20 40 60 80 100 120 140
The number of iterations

0.18

0.20

0.22

0.24

0.26

0.28

0.30

Av
er

ag
e

pe
rtu

rb
at

io
n

(a) Average perturbation over the numbers of iterations (η) for
Spaceinvader.

20 40 60 80 100 120 140
The number of iterations

0.45

0.50

0.55

0.60

0.65

Ra
tio

(b) Ratio (r) over the numbers of iterations (η) for Spaceinvader.

20 40 60 80 100 120 140
The number of iterations

0.5

0.6

0.7

0.8

0.9

M
ax

im
um

 p
er

tu
rb

at
io

n

(c) Maximum perturbation over the numbers of iterations (η) for
Spaceinvader.

20 40 60 80 100 120 140
The number of iterations

50

100

150

200

250

300

350

Re
wa

rd

(d) Obtained reward over the numbers of iterations (η) for Spacein-
vader.

Fig. 3: Results of DQN on Spaceinvader over the numbers of iterations (η).

(a) Frame t− 3 (b) Frame t− 2 (c) Frame t− 1 (d) Frame t

Fig. 4: A state at time step t in Breakout with our approach.

the agent in our approach lost as if there was no adversarial
attack existing. However, the limitation of our approach is
that it results in higher max than some state-of-the-art attacks
in games that are easy to fail (e.g., Breakout). Thus, further
research is needed to reduce this value improve our approach’s

strength and immunity to any adversarial-example detector.

VI. CONCLUSION

We investigated the previous state-of-the-art adversarial
attacks in both DL and DRL. Then, we used and modified

Fig. 5: The agent (in the yellow rectangle) in 0.15-StratA waits
in the area where there is no enemy vertically until it loses in
Spaceinvader where the enemies are in the red rectangle.

them to improve the efficiency of the attacks in DRL (e.g.,
reducing the average perturbation in each state). Finally, we
have discovered a new technique to create natural adversarial
examples to attack DRL in the test time.

Specifically, we combined two separated problems in the
previous works into one problem and formulated it as one
optimization problem. Then, we proposed a greedy method
to solve the problem by applying a gradient-based algorithm.
The result from the experiment showed that our approach
could outperform the previous works in a term of the average
perturbation. Further, the agent in our approach could naturally
play Breakout and Spaceinvader as if there were no adversarial
examples existing in its states. In contrast, the agents in other
attacks explicitly showed their strange behaviors implying that
there was something wrong with their states, and an observer
would eventually realize that the model was under adversarial
attacks.

At last, this work shows a more stealthy attack than the
state-of-the-art ones, and we are aware that this work can
allow an adversary to create natural adversarial examples for
DRL models. Nevertheless, DRL model developers can also
acknowledge this attack and make their models more robust to
this adversarial attack. Furthermore, by doing so, DRL models
can be stronger and especially gain more trust from people
who would like to use the DRL models in several critical
applications.

ACKNOWELEDGEMENTS

The authors would like to thank the anonymous reviewers
for their feedback. The authors also thank the Department
of Computer Science and the Baylor AI group at Baylor
University for partially supporting this research.

REFERENCES

[1] Martı́n Abadi. Tensorflow: learning functions at scale. In Proceedings
of the 21st ACM SIGPLAN International Conference on Functional
Programming, pages 1–1, 2016.

[2] Vahid Behzadan and Arslan Munir. Vulnerability of deep reinforcement
learning to policy induction attacks. In International Conference on
Machine Learning and Data Mining in Pattern Recognition, pages 262–
275. Springer, 2017.

[3] Ekaba Bisong. Google Colaboratory, pages 59–64. Apress, Berkeley,
CA, 2019.

[4] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard
Firner, Beat Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Mon-
fort, Urs Muller, Jiakai Zhang, et al. End to end learning for self-driving
cars. arXiv preprint arXiv:1604.07316, 2016.

[5] Léon Bottou. Large-scale machine learning with stochastic gradient
descent. In Proceedings of COMPSTAT’2010, pages 177–186. Springer,
2010.

[6] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,
John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv
preprint arXiv:1606.01540, 2016.

[7] Nicholas Carlini and David Wagner. Towards evaluating the robustness
of neural networks. In 2017 ieee symposium on security and privacy
(sp), pages 39–57. IEEE, 2017.

[8] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and harnessing adversarial examples. arXiv preprint arXiv:1412.6572,
2014.

[9] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks
for machine learning lecture 6a overview of mini-batch gradient descent.
Cited on, 14(8), 2012.

[10] Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter
Abbeel. Adversarial attacks on neural network policies. arXiv preprint
arXiv:1702.02284, 2017.

[11] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[12] Jernej Kos and Dawn Song. Delving into adversarial attacks on deep
policies. arXiv preprint arXiv:1705.06452, 2017.

[13] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-
to-end training of deep visuomotor policies. The Journal of Machine
Learning Research, 17(1):1334–1373, 2016.

[14] Yen-Chen Lin, Zhang-Wei Hong, Yuan-Hong Liao, Meng-Li Shih,
Ming-Yu Liu, and Min Sun. Tactics of adversarial attack on deep
reinforcement learning agents. arXiv preprint arXiv:1703.06748, 2017.

[15] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex
Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray
Kavukcuoglu. Asynchronous methods for deep reinforcement learning.
In International conference on machine learning, pages 1928–1937.
PMLR, 2016.

[16] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing
atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

[17] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferabil-
ity in machine learning: from phenomena to black-box attacks using
adversarial samples. arXiv preprint arXiv:1605.07277, 2016.

[18] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha,
Z Berkay Celik, and Ananthram Swami. Practical black-box attacks
against machine learning. In Proceedings of the 2017 ACM on Asia
conference on computer and communications security, pages 506–519,
2017.

[19] Pablo Rivas-Perea, Erich Baker, Greg Hamerly, and Bryan F Shaw.
Detection of leukocoria using a soft fusion of expert classifiers under
non-clinical settings. BMC ophthalmology, 14(1):1–15, 2014.

[20] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou,
Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. nature, 529(7587):484–489,
2016.

[21] Jianwen Sun, Tianwei Zhang, Xiaofei Xie, Lei Ma, Yan Zheng, Kangjie
Chen, and Yang Liu. Stealthy and efficient adversarial attacks against
deep reinforcement learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 5883–5891, 2020.

[22] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna,
Dumitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties
of neural networks. arXiv preprint arXiv:1312.6199, 2013.

