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Abstract—With the rise of generative adversarial networks
(GANs), many areas have seen remarkable improvements, e.g.,
computer vision, natural language processing, and the medical
field. Notably, cryptography has been fueled by GANs producing
adversarial neural cryptography (ANC). However, in these five
years, ANC has little documented experimentation and appli-
cations that can be used in the real world. This paper aims
to perform experiments on ANC to verify if the current status
of ANC is ready for practical implementations of symmetric-
key encryption. In our investigation, we assess several entities
in ANC during training, encryption, and decryption of an ANC
model, including decryption accuracy analysis. Furthermore, we
study the resources required for deployment using different
quantization techniques to reduce the size of an ANC model and
its impact on performance and decryption accuracy. Our study
provides enough data for offering practical advice for using and
implementing ANC models.

Index Terms—adversarial generative network, adversarial neu-
ral cryptography, cryptography, privacy

I. INTRODUCTION

Generative adversarial networks (GANs) [7] have been in
attention and widely applied in several applications (e.g. com-
puter vision [8], [10], [12], natural language processing [11],
[14] and medical field [4], [9]. Essentially, Abadi and Anderson
[2] proposed adversarial neural cryptography (ANC), applying
GANs to create secure communication and provided privacy
between two entities. Later, Coutinho et al. [6] improved
ANC to make encryption and decryption algorithms stronger,
and Sooksatra and Rivas [15] reviewed these works and
the relationship between machine learning and cryptography.
Further, Sooksatra and Rivas [16] adapted ANC to create a
learning scheme that could perform a cryptographic integrity
check against a man-in-the-middle attack. As discussed, ANC
has been extensively applied in the field of cryptography.

Because the work in [2] is the main contribution of ANC,
we extended its experiments to evaluate if it could be used
in secure communication in general and the one in a mobile
device that had a small memory. This work shows a) how the
loss values of the sender, receiver and adversary during their
training in several input sizes; b) how much encryption and
decryption time vary in several input sizes and the numbers
of test samples; c) how decryption accuracy changes in many
input sizes; d) the experiment on the quantized versions of
the sender and receiver in terms of loss values during training,
encryption and decryption time and decryption accuracy in
many settings.

This paper is organized as follows: Section II provides a
review of adversarial neural cryptography and quantization
techniques for mobile devices; Section III shows extensive
experiments and their results; Section IV addresses the results
from the experiments and compare ANC to AES in terms of
encryption and decryption time; finally, Section V draws our
concluding remarks.

II. BACKGROUND

This section discusses preliminary knowledge before going
through the extended experiments in Section III. First, we
explain what ANC is and how it works. Then, second, we
briefly demonstrate what post-training quantization is and its
variants to understand how this minimizes the size of a learning
model.

A. Adversarial neural cryptography (ANC)

This scheme was first created in [2], and there are the
following works [6], [16] that extended and utilized this scheme.
ANC in [2] consists of a sender (named Alice), a receiver
(named Bob) and an adversary (named Eve). The scheme works
as follows. First, Alice has plaintext P and wants to send it
to Bob. However, Eve can eavesdrop on a message between
Alice and Bob, and Alice does not want Eve to understand
the message. Hence, Alice uses a shared key K to encrypt
P , obtains ciphertext C and sends it to Bob. Then, after Bob
receives C, it can use K to decrypt C and hopes to fully obtain
P where Eve does not have K. It is worth noting that the sizes
of P , C and K are the same, which is N . This scheme can
be illustrated in Figure 1, and its goals can be summarized as
follows:

• Alice needs to find a way to encrypt P , and Bob needs
to find a way to decrypt C so that Bob can fully recover
P from C and K.

• Alice needs to determine an encryption method so that
Eve cannot recover P from C.

Next, we briefly review the loss function of Alice, Bob and
Eve defined in [2] to understand how to train them and the
experiments in Section III. Bob’s loss function was defined as

LB(P, PBob) = d(P, PBob)

where d(P, PBob) =
∑N−1

i=0 |P i − P i
Bob| and P i is bit i of

P . This loss is high when Bob only correctly recover a few
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Fig. 1: Training scheme of adversarial neural cryptography
which includes Alice as the sender, Bob as the receiver and
Eve as the adversary.

bits. Further, Eve’s loss function was similar to Bob’s one and
defined as

LE(P, PEve) = d(P, PEve). (1)

The last loss function is for both Alice and Bob. Since they had
to cooperate with each other to create a strong C against Eve
and fully recover P from C in Bob’s side, their cooperative
loss function was defined as

LAB(P, PBob, PEve) =LB(P, PBob)

+

(
N
2 − LE(P, PEve)

N
2

)2

.
(2)

The first part of (2) is simply Bob’s loss function because
Alice’s and Bob’s cooperative loss should be proportional to
Bob’s loss. Then, the second part is to make Eve’s decryption
not different from a random guess which is N

2 error.
Furthermore, the algorithm for training this scheme was

proposed in [2] which followed the instruction of GANs in [7].
In short, it starts with freezing Eve to train Alice and Bob one
time by using the gradient of LAB in (2), Then, it changes
to train Eve twice by freezing Alice and Bob and using the
gradient of LE in (1). It repeats these training for 20 epochs.

Despite the experiments in [2], we need to know the results
in several settings of N (i.e., 16, 32, 64 and 128) to use this in
the real world in which the number of bits is not only 16. Also,
we need to experiment regarding encryption and decryption
time because we expect these values not to be very different
from the ones of widely used symmetric encryption algorithms
(e.g., advanced encryption standard (AES) [13]).

B. Post-training quantization

We use this library in Tensorflow [1]. Specifically, this
is a technique after training to reduce the size of Alice
(i.e., encryption method) and Bob (i.e., decryption method)
for a small device (e.g., a mobile device) that has a small
memory. However, this sacrifices a little accuracy of the
models. We investigate two quantization methods: dynamic
range quantization and float16 quantization.

1) Dynamic range quantization: This quantization is the
simplest method that converts the weights of a learning model
from floating-point to 8-bit integer. Therefore, this method can
reduce the size of the learning model up to 4 times.

2) Float16 quantization: This method reduces the size of a
learning model by quantizing all the weights to 16-bit floating-
point. Hence, this can reduce the size of the learning model
up to 2 times and cause a minimal loss of accuracy.

III. EXPERIMENTS AND RESULTS

This section describes how we performed our experiments
and shows the particular results. Further, we explain the
implication of the results. We demonstrate the results in terms
of the following aspects:

• Alice’s, Bob’s and Eve’s losses during their training.
• Alice’s encryption time and Bob’s decryption time.
• Bob’s and Eve’s decryption accuracy.
• The quantized versions of Alice and Bob.

A. Experimental setup
We have experimented with Tensorflow version 2 [1] on

Google Colab Pro [5], and the sizes of plaintext, key and
ciphertext are equally N bits. We trained all the entities for
20 epochs and generated training samples (i.e., plaintexts and
keys) whose sizes depended on experiments; however, mainly,
their sizes are 1000000. Further, the training time with 1000000
training samples is around 6000 to 6500 seconds.

B. Alice, Bob and Eve during training
During the training with 1000000 generated training samples,

Alice and Bob successfully found a way to make Eve poorly
guess the plaintext from its particular ciphertext and also allow
Bob to recover the plaintext as seen in Figure 2. However,
the difference between Bob’s and Eve’s losses is inversely
proportional to N . Plus, the losses in Figure 2d are very close to
each other. Therefore, the result after N = 64 is not acceptable
with 1000000 training samples because the architecture is larger
and increases the number of parameters. Hence, it needs more
training samples to improve its performance.

C. Encryption and decryption time
We have also experimented with the scheme’s encryption

time and decryption time and found that no matter N is,
those values are almost the same. Further, both encryption
and decryption time linearly increase with the size of test
samples, as demonstrated in Figure 3.

D. Accuracy
Furthermore, we have investigated Bob’s and Eve’s accuracy

with the variation of N and the fixed number of training
samples (i.e., 1000000 samples). According to Figure 4, the
performance of the scheme was worse when we increased N .
In other words, Bob’s accuracy decreased, and Eve’s accuracy
increased when N increased.

Additionally, we also discovered that when we fixed N , we
could increase Bob’s accuracy and decrease Eve’s accuracy
by increasing the number of training samples. We empirically
guarantee this claim with the illustration in Figure 5.
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(a) N = 16.
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(b) N = 32.
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(c) N = 64.
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(d) N = 128.

Fig. 2: Progression of the loss functions during training iterations for different N values.
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(a) Encryption time over the number of test samples.
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(b) Decryption time over the number of test samples.

Fig. 3: Encryption time of Alice and decryption time of Bob over the numbers of test samples for each N .

E. Quantization for mobile devices

In this section, we have modified the trained models to
reduce their sizes so that they could fit mobile devices which
had tiny memories. We have used dynamic range quantization
and float16 quantization for the quantized models. As seen in
Figure 6, 7, 8 and 9, the encryption and decryption time of

all the trained models linearly increased with the number of
test samples. Also, the encryption and decryption time of the
quantized models were lower than the ones of the standard
model. Further, these gaps were getting smaller when N is
larger. Next, when we considered only the quantized models,
the encryption and decryption time of dynamic quantization
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(a) Bob’s accuracy.

25 50 75 100 125
# of bits

0

1

2

3

Ev
e'

s a
cc

ur
ac

y 
(p

er
ce

nt
)

(b) Eve’s accuracy.

Fig. 4: Accuracy of recovering plaintext over N .
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(a) Bob’s accuracy.
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(b) Eve’s accuracy.

Fig. 5: Accuracy of recovering plaintext with N = 128 over the numbers of training samples.
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(a) Encryption time.
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(b) Decryption time.

Fig. 6: Encryption and decryption time of standard and tiny models with N = 16 over the number of test samples.



0.0 0.2 0.4 0.6 0.8 1.0
# of test samples 1e6

0

20

40

En
cr

yp
tio

n 
tim

e 
(s

ec
on

d) Normal
Dynamic
Float16

(a) Encryption time.
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(b) Decryption time.

Fig. 7: Encryption and decryption time of standard and tiny models with N = 32 over the number of test samples.
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(a) Encryption time.
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(b) Decryption time.

Fig. 8: Encryption and decryption time of standard and tiny models with N = 64 over the number of test samples.
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(a) Encryption time.
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(b) Decryption time.

Fig. 9: Encryption and decryption time of standard and tiny models with N = 128 over the number of test samples.
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(a) Bob’s accuracy.
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(b) Eve’s accuracy.

Fig. 10: Accuracy of recovering plaintext over N in several models.

and float16 quantization were very close to each other when
N = 16 and N = 32 as seen in Figure 6 and 7; nonetheless,
float16 quantization took longer time to encrypt and decrypt
messages than dynamic quantization when N increased as
demonstrated in Figure 8 and 9.

Moreover, as expected, the accuracy of Bob and Eve in
the quantized models was not significantly different from the
standard one as demonstrated in Figure 10.

In addition, we have investigated the sizes of Alice and
Bob in dynamic range quantization, float16 quantization and
the standard one and found that both quantizations could
significantly reduce the sizes according to Table I. Further,
dynamic range quantization was more effective than float16
quantization since it had a constant ratio that was less than
float16 quantization. Plus, the ratio of float16 quantization is
proportional to N ; this implies that it is not good when N is
large (e.g., 128).

IV. DISCUSSION

According to the training time of 6000 to 6500 seconds
for creating one cipher, we can utilize a parallel system to
reduce this number since we need to create as many ciphers
as possible to often alter ciphers for users to prevent them
from attackers. However, for large N , ANC takes much time
to create one cipher because it needs much more training
samples to decrease Eve’s accuracy as seen in Figure 4b and
increase Bob’s accuracy as seen in Figure 4a. Further, we
compare the encryption and decryption time of ANC which
are bound to N2, to the ones of advanced encryption standard
(AES) [3] which is bounded to N and generally used for
symmetric encryption. Nevertheless, we can compare only in
the setting of N = 128, the minimum size of an input in AES.
Hence, we used pycrypto module in Python to implement AES
and obtained its encryption and decryption time with several
numbers of test samples. Then, we used the information in
Figure 3 to compare to the result of AES and summarized it in

Table II and III. Noticeably, AES is around 50−60 times faster
than ANC in terms of both encryption time and decryption
time. If we expect to replace AES with ANC, this needs to be
improved.

Additionally, we applied quantization on ANC to reduce its
size for practical secure communication in a mobile device.
As discussed in the previous section, we could encrypt and
decrypt a message in a quantized model faster than in a standard
model. Furthermore, as noticed, dynamic range quantization
takes significantly less time to encrypt and decrypt messages
than float16 quantization in large N , and the quantized ANC
of dynamic range quantization is much smaller than the one of
float16 quantization. Moreover, the accuracy of Bob and Eve in
float16 quantization is slightly worse than the ones of dynamic
range quantization; however, the accuracy of those methods
are almost the same as the regular ANC as seen in Figure 10.
Thus, we recommend using dynamic range quantization rather
than using float16 quantization.

V. CONCLUSION

In this paper, we briefly explain what ANC is [2], its loss
function and the training algorithm. Further, we propose using
a quantization library (i.e., dynamic range quantization and
float16 quantization) in Tensorflow version 2 to reduce ANC’s
size for mobile devices. According to all the results, those
quantized models worked very well despite sacrificing a little
accuracy. Then, we show the result of our experiment that can
be concluded as follows:

• ANC with a large N needs more training samples than
ANC with a smaller N .

• Encryption and decryption time of Alice and Bob are
almost constant with several settings of N .

• Among the quantized versions, dynamic range quan-
tization outperforms float16 quantization in terms of
encryption and decryption time and Bob’s accuracy in our
experiments.



TABLE I: Size of Alice or Bob in adversarial neural cryptography and its quantized versions and the ratio between the sizes of
its quantized versions and the one of its standard one.

Type N = 16 N = 32 N = 64 N = 128

Standard (KB) 41 53 102 299
Dynamic (KB) 9 13 25 75
Dynamic (ratio) 0.22 0.25 0.25 0.25

Float16 (KB) 12 18 43 141
Float16 (ratio) 0.29 0.34 0.42 0.47

TABLE II: Encryption time of ANC [2] and AES with N = 128 and several numbers of test samples. Note that Ratio is
computed by dividing encryption time of AES to encryption time of ANC.

Method 100 samples 1000 samples 10000 samples 100000 samples 1000000 samples

ANC 0.049 0.12 0.61 4.28 42.64
AES 0.00095 0.0019 0.0081 0.075 0.75
Ratio 51.58 63.16 75.31 57.07 56.85

TABLE III: Decryption time of ANC [2] and AES with N = 128 and several numbers of test samples. Note that Ratio is
computed by dividing decryption time of AES to decryption time of ANC.

Method 100 samples 1000 samples 10000 samples 100000 samples 1000000 samples

ANC 0.048 0.1 0.6 4.22 42.18
AES 0.0015 0.0018 0.0076 0.079 0.75
Ratio 32 55.56 78.94 53.42 56.24

Furthermore, we suggest that solutions for reducing training,
encryption, and decryption time are required because we need
more training samples for ANC with a big N to use ANC in
real-world secure communication scenarios.

From the perspective discussed here, ANC can be beneficial.
While AES is widely used for symmetric encryption and
performs very well, one can produce as many ciphers as needed
with ANC. Thus, it can be difficult for attackers to find a
vulnerability on a cipher created with ANC before another one
replaces the cipher. Therefore, if ANC-based ciphers can be
popularized for symmetric-key encryption, it will positively
impact cryptography.
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