
ORIGINAL ARTICLE

Evaluation of adversarial attacks sensitivity of classifiers with occluded
input data

Korn Sooksatra1 • Pablo Rivas1

Received: 21 July 2021 / Accepted: 28 April 2022
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract
With the noteworthy achievements of deep learning models, there are transformative applications that aim at cost reduction

and the improvement in human quality of life. Nevertheless, recent work aimed at testing a classifier’s ability to withstand

targeted and black-box adversarial attacks demonstrated that deep learning models, in particular, are brittle and lack certain

robustness that makes them particularly weak, and ultimately leading to a lack of trust. For this specific area, a question

arises concerning certain regions’ sensitivity in the input space against adversarial perturbations for a classification model.

This paper aims to study such a problem by looking into a Sensitivity-inspired Constrained Evaluation Method (SICEM) to

deterministically evaluate how much a region of the input space is vulnerable to adversarial perturbations compared to

other regions and also the entire input space. Our experiments suggest that SICEM can accurately quantify region

vulnerabilities on MNIST and CIFAR-10 datasets.

Keywords Adversarial attacks � Adversarial learning � Adversarial robustness

1 Introduction

Deep learning models have positively transformed many

areas , including computer vision [32], natural language

processing [20] and cybersecurity [35]. However, [11, 28]

discovered that by adding carefully crafted tiny perturba-

tions to a clean input, a strong deep learning classifier

could misclassify the input, and this input is called an

adversarial example. More specifically, such an action is a

so-called adversarial attack. Although some of the existing

works [5, 21, 24, 36, 38] proposed defensive mechanisms

against the attack, they failed to defend against some kinds

of adversarial attacks. For example, network distillation as

proposed in [24] fails to defend against the Carlini and

Wagner attack [4]. Also, adversarial training proposed in

[11, 21] cannot defend against adversarial examples that

are harder than the ones used for the training.

Consequently, adversarial attacks are still effective for

deep learning models and are a hot topic in the machine

learning area.

Furthermore, in deep-learning-based malware detection

[12, 13, 31, 37], an adversary can perturb only a part of the

input (i.e., an application) to let the application and the

malware properly function, and we call this an incomplete

input scenario. Motivated by this, we aim to find how much

a given part of the input is relatively effective compared to

the complete input or other parts of the input if there are

multiple given parts for the adversary to choose. However,

in this paper, we instead used image datasets for our

experiments since we could provide a better visualization

than using the dataset for malware detection.

Since in the case of L0 attack, an adversary can perturb

only a few attributes and therefore adds a considerable

perturbation to those attributes instead, perturbing only a

few attributes in a given input is possible to create an

adversarial example. For instance, Papernot et al. [23]

showed that only perturbing some attributes of an input to

which the output is much sensitive can create an adver-

sarial example. Further, Eykholt et al. [10] produced a

sticker for a stop sign to successfully mislead a deep

learning model to classify it as a speed limit sign. Because
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the sticker is just a part of the stop sign, such an attack also

utilizes only a part of the input. Additionally, Su et al. [26]

proposed an evolutionary mechanism that creates an

adversarial example by perturbing only one attribute (e.g.,

one pixel in an image sample), and later, [14] claimed that

an adversarial example was created by only perturbing

some non-robust features of a given input.

These works mentioned above inspired us to study why

some adversarial attacks fail to create adversarial examples

under the incomplete input scenario while some are suc-

cessful. Further, we invent and formulate the Sensitivity-

Inspired Constrained Evaluation Method (SICEM) that can

estimate how much a specific part of the input can create an

adversarial example compared to the complete one and

other parts.

In our experiment, we choose to use images as our

inputs since it is easy to visualize our results and allow an

adversary to perturb the whole images, their top halves, and

their bottom halves. After that we constructed two exper-

iments: individual-image basis and individual-class basis.

The individual-image basis experiment used SICEM to

evaluate each image and compared its result with the

baseline (i.e., the amount of added perturbation). On the

other hand, the individual-class basis experiment used

SICEM to each image belonging to each class and com-

puted the average result of each class. Then, we compared

the average results to the baseline (i.e., success rate and the

amount of added perturbation). As a result, SICEM

achieved an agreement of 65.9 and 72.35% on MNIST [19]

and CIFAR-10 [17] datasets, respectively, with the base-

lines on the individual-image basis. Also, it achieved the

agreement of 67.5 and 87.5% on MNIST and CIFAR-10

datasets, respectively, with the baselines on an individual-

class basis. We can summarize our contributions as

follows:

– We briefly describe famous state-of-the-art adversarial

attacks and how we modify them to address incomplete

inputs.

– To the best of our knowledge, SICEM is the first work

that adversarially evaluates a classifier with incomplete

inputs, and we also show how to mathematically design

it.

– We create and train classifiers for MNIST and CIFAR-

10 dataset on which we extensively construct experi-

ments of SICEM on individual-image and individual-

class basis. We show that the results from SICEM are

aligned with the one of the baselines defined in Sect. 6.

– We discuss our results obtained from experiments in

terms of effects of incomplete inputs on adversarial

attacks and agreement of SICEM. Implicitly, the results

have impacts on both an adversary and a learning

model developer.

The paper is organized as follows: Sect. 2 briefly describes

some relevant works; Sect. 3 provides the preliminaries for

the remainder of the paper; Sect. 4 describes and formu-

lates all the chosen adversarial attacks under the incom-

plete input scenario in this paper; Sect. 5 explains and

formulates SICEM in detail; Sect. 6 shows our extensive

experiments and the results; Sect. 7 discusses the results

from Sect. 6 and our future works, and everything is con-

cluded in Sect. 8.

2 Related work

Since SICEM is based on saliency maps, there are still

other works related adversarial examples that also depend

on saliency maps. In 2019, Etmann et al. [9] studied the

connection betweem adversarial robustness and saliency

map interpretability and found that a robust model showed

more interpretable saliency map than a non-robust one. In

2020, Mangla et al. [22] used saliency maps to improve

adversarial training for a robust classifier. In 2021, Wang

et al. [33] applied multilayer saliency features to propose

adversarial example detection, and then Sun et al. [27]

generated adversarial examples for facial expression clas-

sifiers by using a saliency map.

Moreover, some existing works focuses on evaluating a

learning model in term of adversarial robustness. In 2019,

Carlini et al. [3] have created a guideline to perform an

adversarial-example defense evaluation and also provided

a checklist for the most common errors that occurred in

many defense evaluations. Later, Dong et al. [8] have

reviewed some adversarial attacks and defenses and then

evaluated those with two robustness curves as the fair-

minded evaluation criteria. They also implemented an

adversarial robustness platform named RealSafe for eval-

uation experiments.

Noticeably, all the previous works focused on evaluating

a classifier with complete inputs. Without loss of general-

ity, SICEM is the first method that evaluates a classifier

with incomplete inputs for adversarial robustness.

3 Background

3.1 Notation

A deep learning model is function Fð�Þ where

F : Rn ! Rm, n is the size of its input, and m is the size of

its output. Further, its output depends on its input and its

parameters h (i.e., weights). In this paper, we focus on a

classification task; hence, Fð�Þi is a probability of the input

belonging to class i. Explicitly, the classifier is ended by a
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Softmax activation function. In addition, Zð�Þ, where

Z : Rn ! Rm, is the classifier’s output before the Softmax

activation function, and also Zð�Þi is the classifier’s output

for class i. Further, the remainder of this work denotes x as

an input, x� as its adversarial example, y as the correct class

of x without the confidence score and t as an adversary’s

targeted class. Note that the confidence score is obtained

from the Softmax layer.

3.2 Dataset and classifier

In this work, we use MNIST [19] and CIFAR-10 [17] as

our datasets for creating adversarial examples. It is worth

noting that all attributes of all the images are normalized to

range [0, 1] and although all the data are images,

throughout this paper, we refer to input as a 1-D vector

(i.e., x 2 Rn) for simplicity. MNIST dataset consists of

60000 training data and 10000 test data each of which is an

image of a digit. Note that both the training dataset and test

dataset are balanced. That is, the training dataset consists of

6000 images of each digit. Hence, we create a deep con-

volutional neural network and train it with the training data

by using the cross-validation method [2]. The network

consists of convolutional layers for extracting features,

dense layers for classifying according to the extracted

features and batch normalization [15] and dropout [25]

which are powerful regularization techniques. Its archi-

tecture is illustrated in Fig. 12 where a dense layer and a

convolutional layer are defined in the red rectangle. As a

result, we test the classifier with the test data and achieve

the accuracy of 99.39%.

Further, the CIFAR-10 dataset is composed of 50000

training data and 10000 test data each of which is an image

of the classes as follows: airplane (class 0), automobile

(class 1), bird (class 2), cat (class 3), deer (class 4), dog

(class 5), frog (class 6), horse (class 7), ship (class 8) and

truck (class 9). Note that both the training and test dataset

are balanced. Thus, we design a larger deep convolutional

network since a CIFAR-10 image is bigger than a MNIST

image and train it with cross-validation method, and the

network has the same components as our MNIST classifier

does including max-pooling layers to minimize features’

sizes. The network’s architecture is summarized in Fig. 13.

It is worth noting that we sometimes refer to the classes as

their indexes started by 0. For example, we may refer to

automobile class as an automobile or class 1 because its

index is 1 for simplicity. Consequently, our classifier can

achieve an accuracy of 85:59%.

The confusion matrices of both of our MNIST and

CIFAR-10 classifiers on the test data are, respectively,

shown in Figs. 1 and 2.

3.3 Adversarial example

An adversarial example is a sample added by carefully

crafted small perturbation so that the sample is classified as

a different class to the original sample. This was discov-

ered by Szegedy et al. [28] in 2013, and then in 2014,

Goodfellow et al. [11] further analyzed why adversarial

examples could mislead classifiers. Also, they proposed a

one-step attack called Fast Gradient Sign Method (FGSM)

and adversarial training to defend against the attack. Later,

FGSM was modified to be iterative to make it stronger in

[18]. In 2016, Papernot et al. [23] developed an attack

which altered only a few pixels in an image to create an

adversarial example and called it Jacobian-based Saliency

Map Attack (JSMA), and Kurakin et al. showed that

adversarial examples could be effective in the real world

even though a camera could reduce small perturbation.

Next, in 2017, Carlini and Wagner [4] created a state-of-

the-art adversarial attack by formulating an unconstraint

optimization problem and using a gradient approach to

solve it. More interestingly, in 2019, Su et al. [26] con-

structed an adversarial example that perturbed only one

pixel by using an evolutionary algorithm.

4 Generating adversarial examples
under incomplete input scenario

This section shows how each attack in popular metrics (i.e.,

L0, L1 and L2 attack) generates an adversarial example.

Also, the incomplete input situation where an adversary has

limited access to the input is considered. As described in

[10], we assume that the adversary is given mask M which

indicates which attributes in x the adversary can access and

perturb. Specifically, M 2 f0; 1gn, and Mi denotes attribute

i of M. Mi is 1 if the adversary is capable of perturbing xi
and 0 otherwise. In other words, if the adversary can per-

turb the whole input, Mi where i 2 f0; 1; :::; n� 1g is 1.

Further, we denote � to indicate the perturbation bound.

Then, we used the least required � for generating adver-

sarial examples to indicate the effectiveness of the attacks

and encourage the readers to read the original papers of the

following attacks for more details.

4.1 L0 attack

The metric of this kind of attack is based on the number of

perturbed attributes in x. In other words, � ¼ jjx� � xjj0 ¼Pn�1
i¼0 ½x�i � xi 6¼ 0� where � denotes the least required per-

turbation in term of its metric (i.e., L0 in this case) for

creating an adversarial example, and ½x� ¼ 1 if x is true
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and 0 otherwise. We choose the attack in [23] for this

metric because it is effective in that work.

4.1.1 Jacobian-based saliency map attack (JSMA)

This attack [23] is based on Jacobian matrix and finds

which attributes of x to which ZðxÞt is sensitive are by

using a saliency map where t is the targeted class which we

would like to achieve. Specifically, first, the Jacobian

matrix of Z(x) is calculated, and then for each class j,
oZðxÞj
ox

is obtained. The saliency map can be computed by con-

sidering each attribute of x. For attribute i, if
oZðxÞt
oxi

[ 0, and

also
P

j6¼t

oZðxÞj
oxi

\0, the value in the map with respect to xi

is
oZðxÞt
oxi

� j
P

j 6¼t

oZðxÞj
oxi

j, and 0 otherwise. After obtaining the

map, the attribute which has the highest value in the map is

increased, and then the map is created again. This method

is iterated until the targeted classifier predicts x as class

t. This is a targeted attack; however, we can adjust it to an

untargeted attack.

To achieve the untargeted attack, we only need to

change the condition for creating the saliency map as fol-

lows: for attribute i and given y as the correct class of x, if
oZðxÞy
oxi

\0 and
P

j6¼y

oZðxÞj
oxi

[ 0, the value in the map with

respect to xi is j oZðxÞy
oxi

j �
P

j 6¼y

oZðxÞj
oxi

, and 0 otherwise. The

rest of the procedure are the same as the targeted attack.

Further, under the incomplete input scenario, the step

finding the highest-value in the saliency map only focuses

on xi where Mi ¼ 1 because the adversary cannot alter

attribute j where Mj ¼ 0.

4.2 L¥ attack

The metric used in this attack is the highest value of the

perturbation vector. Specifically, it can be computed by

� ¼ jjx� � xjj1 ¼ maxðjx� � xjÞ. We use the state-of-art

attacks described in [11] and [18] since one of them is

effective and very fast, and the other one is slower; how-

ever, it is much more difficult for humans to notice the

perturbations added by the latter.

4.2.1 Fast gradient sign method (FGSM)

Goodfellow et al. [11] showed how to create an adversarial

example in one step with respect to L1 norm. First, they

feed an input to the target classifier and then compute the

gradient from the obtained loss. Then, they take only the

sign of the gradient to know the direction of perturbation so

that they can increase the loss. At last, they multiply the

gradient’s sign with � which is the maximum perturbation

according to L1 norm. Their procedure can be formulated

as

x� ¼ Clipðxþ � � signðrxJyðxÞÞ; 1; 0Þ; ð1Þ

where x is the input, y is the correct class of x, JyðxÞ is the
loss function according to the output of x and class y,

signðzÞ is a function that outputs only the sign of z, x� is the
adversarial example and Clipðx; u; lÞ is a function that clips

the attributes of x that are higher than u to u and are lower

than l to l. This attack is untargeted.

Under the incomplete input situation, given mask M, (1)

can be formulated as

x� ¼ Clipðxþ � � signðM �rxJyðxÞÞ; 1; 0Þ;

where a� b is an element-wise multiplication between

a and b.

4.2.2 Iterative gradient sign method (IGSM)

In [18], this attack is named as basic iterative method. It

simply modifies from FGSM by iteratively adding pertur-

bations with a small step size. If a perturbation goes

beyond �, it will be clipped back to �. Step i is to add a

perturbation as

x�ðsþ 1Þ ¼ Clipðx�ðsÞ þ a � signðrx�ðsÞJyðx�ðsÞÞÞ; 1; 0Þ;
ð2Þ

where x�ðsÞ is an adversarial example in step s, x�ð0Þ ¼ x,

x is the clean input and y is the correct class of x.

Under the incomplete input scenario, given mask M, (2)

can be reformulated as

x�ðsþ 1Þ ¼ Clipðx�ðsÞ þ a � signðM �rx�ðsÞJyðx�ðsÞÞÞ; 1; 0Þ:

4.3 L2 attack

The metric used in this attack is the Euclidean distance.

Specifically, it can be computed by

jjx� � xjj2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn�1

i¼0

ðx�i � xiÞ2
v
u
u
t :

Further, we choose a state-of-the-art attack in this metric

for our experiment.

4.3.1 Carlini and Wagner attack (CWA)

This attack [4] is named after its inventors and showed that

it is a state-of-the-art attack for generating adversarial

examples. It also can be adjusted to become L0 and L1
attack; nonetheless, they are based on L2 attack. Specifi-

cally, this attack is modified from the attack in [28] by
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omitting all the constraint by converting x� to a function

based on the hyperbolic tangent function of variable w so

that the adversary can directly apply a gradient-based

technique on w without clipping any value. Thus, the

optimization problem of this attack is

min
1

2
ðtanhðwÞ þ 1Þ � x

�
�
�
�

�
�
�
�
2

þk � Lð1
2
ðtanhðwÞ þ 1ÞÞ; ð3Þ

where w 2 Rn, k is to balance the distance between the

minimization of the perturbation and the one of function

Lðx�Þ and Lðx�Þ is a loss function; therefore, we use

Lðx�Þ ¼ maxðmaxj 6¼t Zðx�Þj � Zðx�Þt;�jÞ recommended

by [4] where t is the targeted class and j measures how

much confidence the adversary desires. Clearly, this is a

targeted attack. Nevertheless, we can reformulate (3) to an

untargeted attack by adjusting loss function Lðx�Þ to

Lðx�Þ ¼ maxðZðx�Þy �max
j6¼y

Zðx�Þj;�jÞ;

where y is the correct class of x.

Under incomplete input scenarios, we change problem

(3) to

min jjdjj2 þ k � Lðxþ dÞ;

where d ¼ M � ð1
2
ðtanhðwÞ þ 1Þ � xÞ.

5 Sensitivity-inspired constrained
evaluation method (SICEM)

We propose a method (SICEM) to evaluate the incomplete

input against an adversarial attack compared to the com-

plete one by utilizing the Jacobian matrix idea in [23]

discussed in Sect. 4.1.1. Given input x, we feed forward x

to the target classifier F(x) and calculate the Jacobian

matrix of Z(x) with respect to x by
oZðxÞy
oxi

for i 2
f0; 1; :::; n� 1g where xi is attribute i of x and y is the

correct class of x. In other words,
oZðxÞy
oxi

implies the sensi-

tivity of ZðxÞy with respect to xi and therefore the sensi-

tivity of ZðxÞy to xi can be approximately computed by

Fig. 1 Confusion matrix of our

trained MNIST classifiers
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sðx; yÞi ¼ min 0;
oZðxÞy
oxi

�
X

y
0 6¼y

oZðxÞy0
oxi

0

@

1

A � Cðy; 1; 0Þi

0

@

1

A

�
�
�
�
�
�

�
�
�
�
�
�
;

ð4Þ

where

Cðy; u; lÞi ¼
u� xi; if

oZðxÞy
oxi

\0

xi � l; otherwise ;

8
<

:

which indicates how much xi can be altered to the upper

(lower) bound u(l) if
oZðxÞy
oxi

\0 (
oZðxÞy
oxi

� 0) to reduce ZðxÞy.
Specifically, to achieve the goal of adversarial attacks, it

is intuitively suitable to change xi so that ZðxÞy and ZðxÞi
where i 6¼ y can change in the opposite directions. Pre-

cisely, if they change in the same directions with respect to

xi,
oZðxÞy
oxi

�
P

y
0 6¼y

oZðxÞ
y
0

oxi

� �
is positive, and therefore, sðx; yÞi

is zero as in (4). On the other hand, the value of sðx; yÞi in
the right-hand term in the minimization in (4) given as

oZðxÞy
oxi

�
X

y0 6¼y

oZðxÞy0
oxi

� �

� Cðy; 1; 0Þi
�
�
�
�

�
�
�
�

� �

consists of three parts. The first part is to quantify how

much ZðxÞy is sensitive to xi as discussed earlier. The

second part is to measure how much the other classes are

sensitive to xi, and this is guaranteed that the second part

changes in the opposite direction to the first part due to the

minimum function. The last part is also necessary because

if the first two parts have high values; however, xi cannot

be altered in the desired direction due to the limitation at

the upper bound (i.e., 1) or the lower bound (i.e., 0), xi
should not be significant, or in other words, sðx; yÞi should
not indicate the high sensitivity. Hence, sðx; yÞi must

include C(y, 1, 0) for more accurate sensitivity. In addi-

tion, sðx; yÞ ¼ fsðx; yÞi; 0� i� n� 1g is the vector of the

sensitivity of ZðxÞy with respect to all the attributes of x.

Next, the sensitivity of ZðxÞy for each xi is used to

compute the estimation of the sensitivity score of the given

input x and its mask M as described in Sect. 4 as

Fig. 2 Confusion matrix of our

trained CIFAR-10 classifiers
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Sðx;MÞy ¼
Xn�1

i¼0

ðsðx; yÞi �MiÞ: ð5Þ

Explicitly, in the case of the complete input, Mi ¼ 1 for

i 2 f0; 1; :::; n� 1g. Let Mc denote the mask for the com-

plete input and hence, the sensitivity ratio of class y for an

arbitrary mask (incomplete input) is

rðx;MÞy ¼
Sðx;MÞy
Sðx;McÞy

;

which implies how much FðxÞy is sensitive to incomplete

x with respect to mask M compared to the complete x.

6 Experiments

In this section, we experiment SICEM discussed in Sect. 5

on individual-image and individual-class bases from

MNIST and CIFAR-10 datasets with the chosen attacks

described in Sect. 4 under the incomplete input scenario.

The settings and success criterion of the aforementioned

attacks are explained as follows:

– JSMA: Its step size is set to 0.5 to increase an attribute,

and if the adversary creates an adversarial example with

�[ 0:05 � n (which implies that the adversary alters

more than 5% of attributes of x), the adversary fails to

create an adversarial example for x since the average �

in [23] is around 4%.

– FGSM and IGSM: � is initialized to 0.02 and is

iteratively increased by 0.02 until it successfully creates

an adversarial example. However, if � exceeds 0.16, the

adversary fails to create an adversarial example for the

given input. We choose the number 0.16 because if � is

greater than this, the perturbation may be too obvious.

Moreover, for IGSM, the step size is 0.02, and the

maximum number of iterations is b �
0:02c.

– CWA: k is initialized to 0.01, and the maximum of the

inner iteration is 50. k is iteratively multiplied by two

until the attack successfully alters the prediction of a

classifier to a wrong class for x or k exceeds 100.

Furthermore, if k exceeds 100, it is considered as a

failure to create an adversarial example for the given

input x.

It is worth noting that all the attacks in this experiment are

untargeted because we simply would like to compare the

attacks’ performances in different uncovered parts of

images to perturb. Also, we obtained all the hyperparam-

eters of the attacks shown above from our empirical

experiments that showed that attacks were effective and did

not consume much time. Further, to verify the correctness

of SICEM, we have different baselines for individual

image and individual class bases.

6.1 Individual image

We randomly pick an image from the test dataset of

MNIST and another one from the test dataset of CIFAR-10

which are, respectively, shown in Figs. 3 and 4. Clearly,

the image of number 4 classified by our MNIST classifier

with the confidence of 100% and the image of automobile

classified by our CIFAR-10 classifier with the confidence

of 94.75% are picked from MNIST and CIFAR-10 data-

sets, respectively. In this experiment, we assume that there

are three scenarios for the adversary. The first one is that

the adversary can access and perturb the whole input (the

complete input). The second one is that the adversary can

perturb only the top half of the input, and the last one is that

the adversary can perturb only the bottom half of the input.

Explicitly, the adversary is given incomplete inputs with

totally different parts. In specific, mask M for the complete

input scenario is Mc as discussed in Sect. 5, and we create

mask Mt for the top half of an image by setting 1 to the top

half of the mask and setting the other attributes to 0. On

contrary, for the bottom half scenario, we set 1 to the

bottom half of its mask and set 0 to the other attributes and

denote it by Mb.

Fig. 3 Clean image of number four with 100% confidence classified

by our MNIST classifer

Fig. 4 Clean image of automobile with 94.75% confidence classified

by our CIFAR-10 classifier
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Figures 5, 6, 7 and 8, respectively, show FGSM, IGSM,

CWA and JSMA performed on the image of number 4 and

automobile. When the adversary is allowed to perturb the

whole image and the top half of the image of number four,

all of them are misclassified as number nine because this

image easily turns to number nine by connecting the heads

of number four with small perturbations. On the other

hand, when the adversary is allowed to perturb the bottom

half of the image, the image is misclassified as several

numbers (i.e., number three, number five and number

eight) since there is no similar number that is very close to

four by perturbing its bottom half. Furthermore, the per-

turbations in Figs. 5c and 8c are very obvious and certainly

perceptible by humans especially the adversarial example

in Fig. 8c which is considered as a failure because �

exceeds 5% of the image and clearly looks like number

three. Explicitly, the adversary allowed to perturb the top

halves requires higher � than the one allowed to perturb the

complete images to successfully create those adversarial

examples in Figs. 5b, 6b, 7b and 8b. On the other hand, the

adversary allowed to perturb the bottom halves also needs

higher � than the one allowed to perturb the top halves to

achieve those adversarial example in Figs.5c, 6c, 7c and 8c.

This implies that for this image of number four, perturbing

the complete image is easier than perturbing only the top

half of the image for creating an adversarial example.

However, perturbing only the bottom half of the image is

the most difficult among these complete and incomplete

input scenarios. Moreover, this claim is empirically con-

firmed in Fig. 9. That is, the least required � of the bottom

half is higher than the ones of whole image and top half

under both FGSM and IGSM. Another thing that can be

implied from Fig. 9 is FGSM requires higher � to mislead

our MNIST classifier than IGSM where FGSM and IGSM

denote the confidence score of the correct class (i.e.,

number four) by performing FGSM and IGSM, respec-

tively, and FGSM and IGSM denote the highest confidence

score among the other classes by performing FGSM and

IGSM, respectively. Therefore, FGSM is weaker than

IGSM. Further, perturbing only the top half is much easier

than perturbing only the bottom half because it requires

lower � to mislead the classifier than the bottom half.

To formally explain why allowing to perturb only the

bottom half of number four is more difficult than per-

turbing only the top half to create an adversarial example,

we apply SICEM explained in Sect. 5 and create the map

of s(x, 4) shown in Fig. 11a where x is the image of

number four. Noticeably, the top half of the map is darker

Fig. 5 FGSM applied on a, d complete images, b, e top halves of images and c, f bottom halves of images

Fig. 6 IGSM applied on a, d complete images, b, e top halves of images and c, f bottom halves of images
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than the bottom half, and rðx;MtÞ is higher than rðx;MbÞ.
This implies that ZðxÞ4 is easier to be reduced by per-

turbing the attributes in the top half than perturbing the

ones in the bottom half. According to [14], intuitively, the

attributes in the top half of the image create more non-

robust useful features than the ones in the bottom half. This

analysis with SICEM guarantees that our claim discussed

earlier is correct.

Next, we focus on the image of an automobile from

CIFAR-10. As seen in Figs. 5, 6, 7, the adversarial

Fig. 7 CWA applied on a, d complete images, b, e top halves of images and c, f bottom halves of images

Fig. 8 JSMA applied on a, d complete images, b, e top halves of images and c, f bottom halves of images

Fig. 9 These graphs summarize the confidences of number four and the highest-confidence class excluding number four over �
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examples generated by FGSM and IGSM require the exact

same � which is 0.02, and also � that CWA requires is very

low. Explicitly, they need much lower � than the image of

number four. This is because of the layer-wise linearity of

the classifier as discussed in [11]. In other words, the larger

the input is, the less � is required to create an adversarial

example. Further, the image of an automobile whose size is

3072 is much larger than the image of number four whose

size is 784. Nevertheless, JSMA needs higher � for creating

an adversarial example for the image of an automobile than

the image of number four due to the metric of L0 norm.

It is not clear to compare the hardness of creating an

adversarial example in different scenarios by performing

FGSM and IGSM since they require the same �. However,

the confidence score in Figs. 5e and 6e are lower than the

ones under other scenarios. This may imply that perturbing

only the top half is the most difficult scenario to create an

adversarial example. Additionally, the results from CWA

and JSMA in Figs. 7 and 8 encourage that allowing to

perturb only the attributes in the top half is the most dif-

ficult for creating an adversarial example of this image due

to their required �. Moreover, Fig. 10 shows an interesting

phenomenon. Such a phenomenon is that by performing

FGSM, the adversary can successfully create an adversarial

example with � ¼ 0:02; nonetheless, when the adversary

increases �, the confidence of automobile surprisingly

increases, and it is classified as automobile again at

� ¼ 0:14. The explanation of this is that the gradients’ signs

are computed obtained from the current input at that time.

Because a deep learning model is a very complicated

function, at any point of the input, the gradients’ signs can

be different. Thus, increasing � does not guarantee suc-

cessfully finding adversarial examples. This is also a reason

why IGSM is stronger than FGSM due to its refinement

step. Note that automobile is class 1 in the CIFAR-10

dataset.

To formally conclude this, the sensitivity map of the

image is created in Fig. 11b. Note that for each pixel, we

perform the summation of the sensitivity across all the

channels (i.e., RGB). It can be noticed that the bottom half

is much darker than the top half, and yet,

rðx;MtÞ1\rðx;MbÞ1. This implies that perturbing the top

half is more difficult than perturbing the bottom half of the

image to find an adversarial example.

After that we further experiment on it by randomly

picking 200 images from the test data of MNIST and 200

images from the test data of CIFAR-10. Then, we evaluate

the images one by one whether SICEM correctly tells if

their top halves are easier than their bottom halves to find

adversarial examples. First, we have to discuss three defi-

nitions below which define the baseline of this basis and

other important terms.

Definition 1 (Baseline for individual-image basis) Given

image x and attack a, x’s top half is more difficult to attack

by a when at least one of the following is true:

– The attack successfully finds an adversarial example on

the bottom half and cannot find one on the top half.

– The attack requires less � on the bottom half than the

top half to find an adversarial example.

Similarly, x’s bottom half is more difficult to attack by

a when at least one of the following is true:

– The attack successfully finds an adversarial example on

the top half and cannot find one on the bottom half.

– The attack requires less � on the top half than the

bottom half to find an adversarial example.

Definition 2 (Decision by using SICEM for individual-

image basis) Given image x, x’s top half is more difficult to

find an adversarial example than its bottom half when the

sensitivity score of its top half is lower than its bottom half.

Similarly, x’s bottom half is more difficult to find an

adversarial example than its top half when the sensitivity

score of its bottom half is lower than its top half.

Definition 3 (Agreement for individual-image basis)

Given image x and attack a, SICEM has an agreement on

image x with a baseline when both of them have the same

result about image x. For example, SICEM results that x’s

top half is more difficult to attack than the bottom half, and

the baseline also results in the same; then, SICEM has an

agreement with the baseline.

Definition 4 (b% agreement for individual-image basis)

Given a set of images and a set of attacks, SICEM has b%
agreement with a baseline when the average percentage of

images in the set, on which SICEM has agreements with

Fig. 10 This graph shows the confidences of automobile and the

highest-confidence class excluding automobile over � where only top

half is allowed to perturb
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the baseline is b where b 2 ½0; 100�. For instance, given set

of images X and set of attack A ¼ fa1; a2; a3g, with attack

a1, a2 and a3, there are, respectively, 70%; 65% and 84% of

images in X on which SICEM has agreements with the

baseline. Thus, SICEM has ð70þ 65þ 84Þ=3 ¼ 73%

agreement with the baseline.

According to Definition 4, the agreement of SICEM

with the baseline for MNIST dataset by performing the

four attacks is 65:9% and for the CIFAR-10 dataset is

72:35:%.

6.2 Individual class

This experiment uses the 400 images picked in Sect. 6.1 to

find their sensitivity and perform the attacks to determine

the success rates and average required � in each class.

Then, we will evaluate how much SICEM is accurate with

respect to each class.

Table 1 shows the average sensitivity score, computed

from (5), for each class of the datasets where Mt is the

mask for the top half and Mb is the mask for the bottom

half. Explicitly, the scores of images of the CIFAR-10

dataset are much higher than the ones of images of the

MNIST dataset. This is the main reason that a CIFAR-10

image is much easier to find an adversarial example than a

MNIST image. Further, it can be noticed from the table that

images in MNIST of which top halves are easier to find

their adversarial example are in class 3, 5 and 6. Similarly,

perturbing the top halves of CIFAR-10 images in classes 2,

3, 4, 5, 6 and 7 is easier to find adversarial examples than

perturbing the bottom halves. Next, we will check if this

conclusion is correct.

Fig. 11 Sensitivity maps: a the top half appears to have more sensitive regions; b shows sensitivity near the bottom half

Table 1 Average sensitivity

score of each class with mask

Mt and Mb of MNIST and

CIFAR-10 datasets

Mask Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9

MNIST dataset

Mt 16.33 30.04 27.57 45.82 48.66 53.62 75.65 20.4 38.66 36.9

Mb 30.07 56.79 67.08 43.06 54.32 40.46 38.51 49.53 57 41.3

CIFAR-10 dataset

Mt 1556.4 3800.1 3930 2952.4 5583.1 8088.3 6387.6 2638 3927.4 3457.6

Mb 1975.7 11299 3057.3 2213.6 5418.4 5138.8 4510.3 2525.5 9046.2 8918.5
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We perform the attacks on the images under complete

and incomplete scenarios and list all success rates and

average required � of finding adversarial examples in each

class for comparison. Tables 3 and 4 show the success rates

and average required �, respectively, to find adversarial

examples after performing the adversarial attacks on the

test images of MNIST dataset where t-attack denotes that

the adversary performs attack with mask Mt and b-attack

denotes that the adversary performs attack with mask Mb.

Similarly, Tables 5 and 6 show the success rates and

average required �, respectively, after performing the

attacks on the test images of CIFAR-10 dataset. Note that

we consider only the images that are correctly classified by

our classifiers. We define the baseline for this basis and

some important terms below.

Definition 5 (Baseline for individual-class basis) Given

class c and attack a, c’s top half is more difficult to attack

by a when at least one of the following is true:

– The success rate of the top half is less than the one of

the bottom half.

– If the success rates of the top and bottom halves are

equal, the average required � to find adversarial

examples of the top half is greater than the one of the

bottom half.

Similarly, c’s bottom half is more difficult to attack by

a when at least one of the following is true:

– The success rate of the bottom half is less than the one

of the top half.

– If the success rates of the top and bottom halves are

equal, the average required � to find adversarial

examples of the bottom half is greater than the one of

the top half.

Definition 6 (Decision by using SICEM for individual-

class basis) Given class c, the top halves of the images

belonging to class c are more difficult to find an adversarial

example than their bottom halves when the average sen-

sitivity score of the top halves is lower than their bottom

halves. Similarly, the bottom halves of the images

belonging to class c are more difficult to find an adversarial

example than their top halves when the average sensitivity

score of the bottom halves is lower than their top half.

Definition 7 (Agreement for individual-class basis) Given

class c and attack a, SICEM has an agreement on class

c with a baseline when both of them have the same result

about class c. For example, SICEM results that c’s top half

is more difficult to attack than the bottom half, and the

baseline also results in the same; then, SICEM has an

agreement with the baseline.

Definition 8 (b% agreement for individual-class basis)

Given a set of classes and attack a, SICEM has b%
agreement with a baseline when the percentage of classes

in the set, on which SICEM has agreements with the

baseline is b where b 2 ½0; 100�. For example, given set of

classes C ¼ fc1; c2; c3g and attack a, SICEM has agree-

ments with the baseline on class c1 and c2. Then, SICEM

has 2
3
� 100 ¼ 66:67% agreement with the baseline.

According to Definitions 5 and 8, for each attack, the

classes of MNIST images, top halves of which are easier to

create adversarial examples than their the bottom halves,

are: class 1, 3, 4, 5, 6 and 9 for FGSM and IGSM (70%

agreement for each); class 1, 3, 4, 5, and 9 for CWA (60%
agreement); class 1, 2, 3, 4, 5 and 6 for JSMA (70%

agreement).

Hence, for the MNIST dataset, in terms of average

sensitivity scores, success rates and required �, the mean

agreement of SICEM is ð70þ 70þ 60þ 70Þ=4 ¼ 67:5%.

Next, we will consider the CIFAR-10 dataset.

As shown in Table 1, the images in CIFAR-10, the top

halves of which are easier to attack than the bottom are in

classes 2, 3, 4, 5, 6 and 7. After this, we will evaluate how

much correct SICEM is for the CIFAR-10 dataset.

To evaluate which part of an image is easier to attack,

we use the same criterion in MNIST earlier. Note that we

do not count class 0 and 7 in FGSM and class 7 in IGSM

since their top halves are as vulnerable as their bottom

halves. Essentially, for each attack, the classes of CIFAR-

10 images, top halves of which are easier to create

adversarial examples than their the bottom halves, are:

class 0, 2, 3, 5, 6 and 8 for FGSM (60% agreement); class

2, 3, 4, 5, 6 and 7 for IGSM (100% agreement); class 2, 3,

4, 5, 6 and 7 for CWA (100% agreement); class 3, 4, 5, 6

and 7 for JSMA (90% agreement).

In summary, the mean agreement of SICEM on the

CIFAR-10 dataset is ð60þ 100þ 100þ 90Þ=4 ¼ 87:5%

which is significantly higher than the agreement on the

MNIST dataset. The reason behind this will be discussed in

Sect. 7.

At last, derived from all the results in Sects. 6.1 and 6.2,

all the agreement are summarized in Table 2.

7 Discussion and future works

7.1 Effect of incomplete input

According to the results, limiting an adversary by allowing

him/her to perturb only some attributes of an input sig-

nificantly affects the performance of the attacks, especially

FGSM, because their success rates are lower than or equal

to the ones with the complete input. However, the results of
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JSMA are surprising because complete images in some

classes are more difficult to attack than their incomplete

ones to find adversarial examples. The reason behind this is

that JSMA does not consider function C(y, u, l) as we do in

Sect. 5. Thus, JSMA may choose an attribute that can be

altered a little; nevertheless, it is not worth increasing �. In

summary, SICEM cannot be always effective for L0 attack

that does not consider function C(y, u, l) (e.g., JSMA)

when comparing the sensitivity scores between two parts

that share some attributes.

7.2 Agreement of SICEM

SICEM can evaluate how difficult a given part of an input

can be used to create an adversarial example compared to

another part or the whole input, especially for L2 and L1
attacks. Further, as seen in the experiments of MNIST and

CIFAR-10 dataset, we can conclude that SICEM can work

better (higher agreement) with a larger input (i.e., a

CIFAR-10 image) than with a smaller input (i.e., a MNIST

image), except for L0 attacks (e.g., JSMA). The reason is

that an attack requires less � for a bigger input to find an

adversarial example as explained in Sect. 6.1, and SICEM

measures an instant sensitivity of a classifier’s output with

respect to the input. Therefore, a small change by the attack

on a big input corresponds to what SICEM measures; then,

the larger input is, the higher agreement SICEM can

achieve. However, L0 attacks do not care how much each

attribute changes. Thus, they usually add huge perturbation

for a pixel. That is, SICEM may not be aligned with L0
attacks.

Furthermore, we plan to test SICEM with ImageNet [7]

to empirically prove that it can perform better in a larger

input and improve SICEM not to only depend on the

instant sensitivity of the output with respect to the input.

However, with the limitation of our resources, we leave

this for future work.

7.3 Generative models

Additionally, since a lot of applications depend on gener-

ative models based on deep learning (e.g., compression

[30], realistic video generation [34] and adversarial neural

cryptography [1, 6]), we plan to find an evaluation method

for complete and incomplete input adversarial attacks

[16, 29] in the future.

7.4 AI ethics statement

First, we have used the dataset (i.e., MNIST and CIFAR-

10) which is publicly available through the Tensorflow

platform. We did not produce or use any sensitive or pri-

vate information, and therefore, we do not anticipate any

potential harm from using any data from this research.

Further, to ensure that the classifiers work well with the

dataset, we utilized architectures of strong classifiers. Also,

at first, we started using the simplest attack (i.e., FGSM) to

make sure that an adversarial attack works fine for the

classifiers and dataset. Then, we implemented more attacks

and applied SICEM to them.

Although SICEM can be a guide for an adversary to

attack a classifier with limited access to its input, we intend

to let the learning classifiers’ developers use SICEM to

improve the classifiers and make them robust to adversarial

attacks. That is, an adversary cannot efficiently exploit

SICEM to improve his/her attack if the target classifier’s

developer is aware of utilizing SICEM to implement his/

her classifier.

8 Conclusion

This paper has presented the formulation of state-of-art

adversarial attacks for classification models under an

incomplete input by inducing occlusion. Further, we have

created a Sensitivity-Inspired Constrained Evaluation

Method (SICEM) for analyzing any given part of input

space and quantify the likelihood of an adversary to pro-

duce an adversarial example successfully. While our

hypothesis empirically holds for the average case, SICEM

seems to experience a certain degree of difficulty when L0-

based attacks are implemented that do not consider the

upper and lower bounds of attributes’ valid values. SICEM

performs well with images from MNIST, and CIFAR-10

Table 2 Agreement of SICEM

in each attack on each dataset
Dataset Agreement

JSMA (%) FGSM (%) IGSM (%) CWA (%) Mean (%)

Individual image

MNIST 64.5 67.8 67.8 63.5 65.9

CIFAR-10 72.5 71.2 71.2 74.5 72.35

Individual class

MNIST 70 70 70 60 67.5

CIFAR-10 90 60 100 100 87.5
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datasets picked at random. Further, SICEM performs sig-

nificantly better for larger inputs. Further research involves

experimenting with ImageNet data to confirm the findings

in this paper; then a similar evaluation of generative

models [1, 6, 30] under the incomplete input scenarios

seems a logical next step.

A Code to reproduce experiments

The code to reproduce all the experiments in this paper can

be found in the attached supplementary zip file entitled:

sicem.zip

This .zip includes the weights for MNIST and CIFAR-

10 trained classifiers; please change the path variable in the

code to your working space to avoid overwriting the pre-

trained classifiers. Also, beware that training the deep

convolutional network, calculating the success rate, and

individual-image agreement section consume a significant

amount of time. Please make sure you have sufficient time.

However, all the results are already shown in the python

notebooks, and you do not need to re-run all the experi-

ments. Nonetheless, if you do want to re-run everything,

please follow our advice above (Figs. 12, 13).

B Architectures of MNIST and CIFAR-10
classifiers

C Success rate and average required �

Tables 3 and 4 show the success rates and average required

�, respectively, to find adversarial examples after per-

forming the adversarial attacks on 200 images of MNIST

dataset where t-attack denotes that the adversary performs

attack with mask Mt and b-attack denotes that the adver-

sary performs attack with maskMb. Similarly, Tables 5 and

6 shows the success rates and average required �,
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Fig. 12 Architecture of our MNIST classifier. Note that a dense layer and a convolutional layer are defined in the red rectangle
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Table 3 Success rate of each attack on MNIST

Attack Class 0

(%)

Class 1

(%)

Class 2

(%)

Class 3

(%)

Class 4

(%)

Class 5

(%)

Class 6

(%)

Class 7

(%)

Class 8

(%)

Class 9

(%)

All

(%)

L0 attack

JSMA 84.87 99.91 85.37 99.1 98.46 99.89 99.48 99.61 63.12 98.7 92.92

t-JSMA 47.65 99.82 58.82 96.21 98.87 97.3 99.9 79.92 19.52 92.28 79.15

b-JSMA 80.06 99.56 41.86 87.92 64.55 86.95 31.37 99.51 45.76 99.6 74.15

L1 attack

FGSM 27.2 93.46 24.42 46.21 68.03 69.63 29.28 76.28 36.57 75.85 55.18

t-FGSM 1.84 34.19 1.84 23.25 33.09 18.79 6.82 4.82 3.41 27.56 15.78

b-

FGSM

6.03 31.98 3.97 7.88 7.99 7.99 3.15 48.13 9.71 22.75 15.39

IGSM 70.14 100 69.09 93.61 97.75 97.41 75.45 99.11 77.38 98.4 87.95

t-IGSM 5.62 88.6 6.1 57.88 61.99 40.94 19.1 14.57 9.09 60.82 37.16

b-IGSM 23.01 81.89 16.38 21.96 21.11 29.81 9.02 92.03 26.24 44.39 37.51

L2 attack

CWA 96.01 97.35 95.74 96.51 98.46 95.39 96.33 97.64 98.35 99.2 97.11

t-CWA 90.49 92.67 39.27 94.21 95.59 72.89 84.89 71.16 89.05 97.49 82.77

b-CWA 94.58 85.69 92.44 58.48 92.42 56.92 85.94 95.28 92.77 93.49 85.09
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Fig. 13 Architecture of our CIFAR-10 classifier. Note that a dense layer and a convolutional layer are defined in the red rectangle in Fig. 12
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Table 4 Average � of successful attacks on MNIST

Attack Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 All

L0 Attack

JSMA 18.51 12.16 19.29 13.75 15.71 13.63 14.38 11.08 15.77 15.31 14.93

t-JSMA 11.4 13.25 14.48 13.76 12.79 16.18 14.44 14.71 5.1 18.41 13.45

b-JSMA 17.15 14.04 10.19 17.38 15.73 16.35 7.09 10.92 11.31 14.99 13.5

L1 Attack

FGSM 0.034 0.092 0.028 0.0472 0.0727 0.076 0.0349 0.0731 0.0407 0.0744 0.0577

t-FGSM 0.0016 0.0416 0.0019 0.0251 0.0366 0.0222 0.0073 0.0043 0.0038 0.0321 0.0179

b-FGSM 0.0069 0.0383. 0.0042 0.0077 0.0083 0.0082 0.0033 0.0514 0.0112 0.0238 0.0168

IGSM 0.0874 0.0814 0.0838 0.0973 0.098 0.0972 0.0921 0.0892 0.088 0.0917 0.0904

t-IGSM 0.0069 0.1054 0.0075 0.0672 0.0722 0.0506 0.0239 0.0163 0.0114 0.0742 0.0444

b-IGSM 0.0305 0.0974 0.0207 0.0266 0.0243 0.0376 0.0109 0.0981 0.0329 0.0493 0.0439

L2 Attack

CWA 2.9584 2.0118 3.342 2.6368 2.3762 3.3345 2.8919 2.2474 2.385 2.5532 2.6258

t-CWA 3.2467 2.2268 1.6202 2.5411 2.477 2.6164 2.8617 2.4528 2.5626 2.4433 2.4936

b-CWA 3.0243 2.0205 3.3613 2.281 2.8305 2.2126 2.9567 2.1454 2.6353 2.2222 2.5971

Table 5 Success rate of each attack on CIFAR-10

Attack Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 All

L0 Attack

JSMA 97:79% 100% 100% 100% 100% 100% 100% 100% 99:15% 100% 99:68%

t-JSMA 93:15% 58:53% 98:87% 100% 100% 99:87% 100% 99:89% 91:15% 97:46% 93:43%

b-JSMA 95:7% 100% 99:75% 99:76% 99:87% 98:06% 99:78% 99:57% 99:25% 99:67% 99:15%

L1 Attack

FGSM 99:88% 99:58% 98:6% 99:59% 99:87% 100% 98:78% 99:89% 94:14% 99:12% 98:89%

t-FGSM 87:34% 28:95% 80:89% 91% 87:31% 96:38% 87:24% 71:4% 42:54% 88:2% 74:85%

b-FGSM 77:82% 94:63% 72:61% 83:63% 89:47% 92:24% 64:04% 82:56% 73:67% 63:95% 79:21%

IGSM 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

t-IGSM 100% 98:84% 100% 100% 100% 100% 100% 100% 99:89% 100% 99:86%

b-IGSM 100% 100% 100% 100% 100% 99:87% 100% 100% 100% 100% 99:99%

L2 Attack

CWA 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

t-CWA 99:88% 100% 100% 100% 100% 100% 100% 100% 99:89% 100% 99:98%

b-CWA 99:88% 100% 100% 100% 100% 100% 100% 100% 100% 100% 99:99%

Table 6 Average � of successful attacks on CIFAR-10

Attack Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 All

L0 Attack

JSMA 37.13 27.88 15.7 16.23 12.77 16.87 24.22 23.57 25.35 31.87 23.61

t-JSMA 37.48 38.39 16.9 17.23 12.94 18.14 22.4 32.59 49.1 33.99 28.74

b-JSMA 44.93 27.76 23.29 21.21 19.28 26.91 31.8 29.24 22.5 40.46 29.01

L1 Attack

FGSM 0.0229 0.0225 0.0266 0.0213 0.0208 0.0211 0.0202 0.0225 0.032 0.0238 0.0235

t-FGSM 0.0425 0.0068 0.026 0.0256 0.027 0.0254 0.032 0.0226 0.0246 0.0441 0.0276

Neural Computing and Applications

123



respectively, after performing the attacks on 200 images of

CIFAR-10 dataset.
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