
Attribution Scores of BERT-Based SQL-Query
Automatic Grading for Explainability

Korn Sooksatra ID , Bikram Khanal ID , Pablo Rivas ID , Senior, IEEE
School of Engineering and Computer Science

Department of Computer Science
Baylor University

Email: {Korn Sooksatra1,Bikram Khanal1,Pablo Rivas}@Baylor.edu

Donald R. Schwartz ID

School of Computer Science & Mathematics
Department of Computing Technology

Marist College
Email: Donald.Schwartz@Marist.edu

Abstract—Automated grading of SQL queries poses a challenge
due to the complexity of the SQL language and the numerous
ways in which one can achieve the same results. While recent
advancements in machine learning-based automated grading
systems have demonstrated remarkable accuracy, there remains a
critical need for providing students with meaningful explanations
for the grades assigned by these machines. To address this need,
our study focuses on a specific recent work in automated grading
for SQL queries. We have developed a comprehensive workflow
that leverages machine learning models trained in that work. Our
objective is to gain insights into the behavior of the machine
learning model, particularly in terms of how it assigns grades
to SQL queries. Through our analysis, we have observed that
our workflow performs effectively, producing valuable attribution
scores for important tokens within SQL queries. These attribution
scores shed light on which query components are considered
significant by the machine learning model, thus enhancing our
understanding of the grading process and facilitating more
meaningful feedback for students.

Index Terms—model distillation, word embeddings, Bert,
natural language processing, machine learning, deep learning

I. INTRODUCTION

Grading SQL queries is a complex task that requires both
computational and pedagogical expertise [1], [2]. One of the
main challenges in this domain is the existence of multiple
correct solutions for a single query prompt [3]. Almost every
multi-table SQL query can be correctly written in many
different ways. This complexity is further compounded by the
various forms that SQL queries can take, including non-nested
and nested queries with or without aliasing [4]. The evaluation
process becomes particularly burdensome when dealing with a
large number of submissions across multiple course sections [5].
Several common challenges can contribute to this complexity:
the size of the query set, the number of tables in the underlying
database, the number of students submitting assignments, the
time it takes to grade the assignments, and the level of detailed
feedback we are able to give each student. Moreover, grading
SQL queries goes beyond identifying correct solutions; it also
involves the fair allocation of partial credit for submissions that
demonstrate a conceptual understanding but are not entirely
correct [6]. Awarding consistent partial credit, while giving
feedback as to why the query was incorrect, is critical.

Traditional methods for grading SQL queries, such as
static and dynamic analyses, have limitations [7]. The static
analysis approach attempts to evaluate queries by comparing the
structure of each student’s query with the structure of a correct
(answer key) query. Among other approaches, this can be
accomplished by either establishing equivalence classes for the
underlying expressions of each query or by determining whether
the queries are logically equivalent [8], [9]. Static analysis,
although useful for understanding query structure, often fails
to capture the full range of correct solutions, necessitating the
use of multiple answer-key queries and leading to inconsistent
grading outcomes [10].

In the dynamic analysis approach, the student queries are
actually executed using various test-data sets and the results are
compared with answer-key results [11]. Dynamic analysis often
struggles to differentiate between genuinely correct queries
and those that coincidentally produce correct results [12]. For
example, suppose a query asks the students to “Name the
Suppliers who ship parts from Seattle”. In the current data
set, it might be the case that the results of that query are the
same as the results for “Name the Suppliers who ship green
parts to a project in Seattle”. Dynamic analysis might give full
credit to both queries, since the resulting answer tables would
be identical. This challenge is heightened if an empty table is
generated as the correct answer – there are literally infinitely
many ways to generate an empty table result.

To address these challenges, Schwartz et al. introduced a
machine learning-based approach for grading SQL queries [13]–
[15]. This approach utilizes supervised learning techniques and
a unique parameter-sharing strategy to model the relationships
within SQL statements [16]. By incorporating advanced tech-
niques such as self-attention mechanisms and convolutional
neural networks, the model can comprehensively analyze the
spatial relationships within SQL queries [17], [18].

Previous work by Rivas et al. has extended the capabilities
of machine learning-based grading systems by addressing
binary classification, multi-class classification, and regression
problems [19]. However, these studies often relied on limited
datasets for model evaluation, leaving the model’s behavior
across a broader range of samples largely unexplored [19].

The focus of this paper is to build upon the work of Rivas
et al. by providing a more comprehensive examination of the

https://orcid.org/0000-0003-4521-2237
https://orcid.org/0000-0003-2292-520X
https://orcid.org/0000-0002-8690-0987
https://orcid.org/0000-0003-4521-2237


model’s explainability [19]. Specifically, we aim to evaluate
the model’s performance across a comprehensive set of test
samples, offering a more robust assessment of its grading
capabilities. This research will contribute to the advancement
of automated SQL query grading systems and provide insights
into the strengths and limitations of machine learning-based
approaches in this domain.

The remainder of this paper is structured as follows: Section
2 provides an overview of our approach, Section 3 presents
an analytical discussion of the findings, and Section 4 offers
concluding remarks.

II. APPROACH

To rigorously investigate the decision-making behavior of
the binary classifier presented in [13], we leverage the state-of-
the-art explainability framework proposed by Hao et al. [20],
implemented through the dedicated Captum module.1 While
Captum’s primary design focuses on single-sample analysis,
our objective necessitates a more comprehensive evaluation
across an entire dataset. To this end, we have engineered a
custom Python script that interfaces with Captum to facilitate
batch processing and aggregate analysis.

A. Workflow Architecture

Our analytical pipeline consists of two core components: the
Captum module and a Python script, both of which operate on
a test dataset comprising SQL queries. The workflow, depicted
in Figure 1, can be formalized as a sequence of operations
defined as follows:

1) The Python script dispatches individual SQL query
samples to the Captum module.

2) Captum processes the received sample and computes
token-level attribution scores, denoted as Stoken.

3) The script accumulates the attribution scores Stoken into
a global score vector Sglobal.

4) If unprocessed samples remain, the sequence returns
to Step 1. Otherwise, the script computes the average
attribution score S̄ for each token.

5) Finally, the script generates a visual representation,
highlighting the top k positively and negatively influential
tokens based on S̄.

B. Handling BERT’s Subword Tokenization

The model in [13] employs the BERT architecture, known for
its subword tokenization scheme [21]. This tokenization often
results in fragmented and less interpretable attribution scores
at the subword level. To rectify this, we aggregate subword
scores into word-level scores during o3 of our workflow. The
aggregation is performed using the following equation:

Scoreword = max(Scoresubword1 ,Scoresubword2 , . . . ,Scoresubwordn).
(1)

Here, Scoreword is the aggregated word-level score, and
Scoresubwordi is the attribution score for the i-th subword. The

1https://github.com/pytorch/captum

maximum score is chosen to represent the word’s overall
influence, as it is assumed to be the most indicative of the
word’s contribution to the model’s decision-making process.

C. N-Gram Attribution Analysis

While Captum inherently provides unigram-level attribution
scores [20], we argue that n-gram-level attributions offer
more nuanced insights. For example, the attribution score
for the 3-gram ”WHERE LOCATION = ’Atlanta’” is more
contextually informative than that for the unigram ”Atlanta”.
To accommodate this, we extend our Python script to compute
n-gram scores during o3. The n-gram score is calculated as:

Scoren-gram =
1

n

n∑
i=1

Scorewordi . (2)

In this equation, Scoren-gram is the aggregated n-gram score,
and Scorewordi is the score for the i-th word in the n-gram. The
average is taken to ensure that each word contributes equally
to the n-gram’s overall attribution score.

III. RESULTS

Leveraging the same dataset as in the seminal work by Rivas
et al. [13], our investigation centers on binary classification
tasks and multi-label classification.

A. Binary Classification

For the binary classification, we define the positive class
(class 1) as indicative of SQL query correctness and the negative
class (class 0) as indicative of incorrectness. To this end, we
employ a pre-trained BERT model, as delineated in [13], and
extend its capabilities through integration with the Captum
explainability module. The analytical workflow is encapsulated
in Figure 1.

Our analysis culminates in a rich set of attribution scores,
specifically focusing on 5-grams, which are visually rendered
in Figure 2. A striking observation is the clear demarcation be-
tween positive and negative attribution scores corresponding to
class 0. The positive scores, color-coded in blue, predominantly
appear at the terminal segments of SQL queries, often enclosed
within parentheses. This pattern is not merely coincidental but
rather indicative of the model’s tendency to rely on tokens
situated at the query’s terminus for inferring its incorrectness.
Such queries are generally flawed, either due to the absence
of requisite conditions or due to syntactic irregularities like
excessive or incomplete parentheses, thereby justifying the
model’s attribution.

Conversely, the negative scores, color-coded in red, are dis-
persed throughout the queries without manifesting a discernible
pattern. This seemingly random distribution is, in fact, aligned
with the model’s strategy for ascertaining query correctness. It
suggests that these red-coded 5-grams serve as pivotal elements
in the model’s decision-making process, acting as reliable
indicators of validity.

Through these findings, we not only validate the efficacy
of the model in [13] but also enrich it by unveiling nuanced
patterns and tendencies that were previously underexplored.

https://github.com/pytorch/captum


(3) The script aggregates the scores
for each token

2) Captum sends back attribution
scores for tokens

Yes

No

All SQL queries?

(5) The script visualizes the scores.

1) The python script sends a SQL
query to Captum

(4) The script goes back to step (1)
when not all queries are processed.

Fig. 1: The workflow of our approach to generate attribution scores based on the entire dataset

5 0 5 10 15
Score

('Select', '*', 'From', 'Vaccines', ';')
('*', 'From', 'Vaccines', ';', '[SEP]')

('inum', ')', ')', ')', ';')
('r', ')', ')', ')', ';')

('*', 'from', 'person', 'p', ';')
(',', 'CityCreated', 'from', 'VACCINES', ';')

(')', '>', '30', ')', ';')
('TV2', ')', ')', ')', ')')

('zr', ')', ')', ')', ';')
(')', '>', '=', '320', ';')

('V', ')', ')', ')', ')')
('SELECT', 'Price', ',', 'CityCreated', 'FROM')

('amount', ')', '>', '30', ';')
('tre', '.', 'inum', ')', ')')

('s1', '.', 'price', ',', 's2')
('INum', 'FROM', 'Ingredients', 'ORDER', 'BY')
('Price', ',', 'CityCreated', 'FROM', 'Vaccines')

('.', 'sourcecity', ')', ';', '[SEP]')
('s', '.', 'sourcecity', ')', ';')

('SELECT', 'INum', 'FROM', 'Ingredients', 'ORDER')

Fig. 2: Attribution scores of top 10 5-grams in the positive (blue) and negative (red) influences to class 0 (negative class)

This contributes to a more robust and interpretable machine
learning model for SQL query grading, thereby advancing the
state of the art in this domain.

B. Multi-Label Classification

1) Correct: Positive Attribution Scores. The 5-grams with
high positive attribution scores signify elements indicative
of a correct SQL statement. For instance, the 5-gram
(’delivers’, ’WHERE’, ’pnum’, ’=’, ’P100’)
suggests that the correct usage of the WHERE clause with a
proper condition (like pnum = P100) is highly influential
in predicting the correctness of the statement. Similarly,
5-grams such as (’FROM’, ’DELIVERS’, ’WHERE’,
’PNUM’, ’=’) and (’Ingredients’, ’WHERE’,
’SourceLoc’, ’=’, ’âNYCâ’) indicate the model’s
sensitivity to correct clause sequencing and the equality

condition, which are crucial in forming syntactically and
semantically correct SQL queries.

Negative Attribution Scores. On the contrary, 5-grams with
high negative attribution scores reflect patterns often present
in incorrect SQL statements. The presence of 5-grams like
(’TABLE’, ’.’, ’PRICE’, ’,’, ’V’) and (’=’,
’âNBCâ’, ’)’, ’)’, ’;’) demonstrate a confusion in
the syntactic structure or misuse of SQL elements, which
the model associates with incorrectness. The 5-gram (’BY’,
’ing’, ’.’, ’sourceloc’, ’;’) is particularly in-
triguing as it may imply an incorrect form of a keyword or
an incoherent sequence of tokens, leading to the negative
contribution towards the prediction of a correct SQL query.

The disparity between the positive and negative attribution
scores in these 5-grams underlines the importance of contex-
tually appropriate keywords and their correct order in SQL



10 5 0 5 10 15
Score

('delivers', 'WHERE', 'pnum', '=', 'P100')
('FROM', 'DELIVERS', 'WHERE', 'PNUM', '=')

('WHERE', 'INUM', '=', 'âI100â', ';')
('Ingredients', 'WHERE', 'SourceLoc', '=', 'âNYCâ')

(',', 'SourceCity', 'FROM', 'SNACKS', ';')
('&', 'Sponsor', '_', 'Nameâ', ';')

('Price', ',', 'Citycreated', 'FROM', 'Vaccines')
(',', 'SourceCity', 'FROM', 'Snacks', ';')
(',', 'SourceCity', 'FROM', 'snacks', ';')

('SourceCity', 'FROM', 'snacks', ';', '[SEP]')
('TABLE', '.', 'PRICE', ',', 'V')

('=', 'âNBCâ', ')', ')', ';')
('.', 'PRICE', ',', 'SNACKS', '.')
('BY', 'ing', '.', 'sourceloc', ';')

('zReceives', ')', ')', ')', ';')
('.', 'PRICE', ',', 'V', '_')

('num', ')', ')', ')', ';')
('PARKS', '.', 'location', '=', "'")

('WHERE', 'PARKS', '.', 'location', '=')
('treats', '.', 'inum', '=', "'")

(a) Correct

5 0 5 10 15
Score

('.', 'vnum', ',', 'delivers', '.')
('V', ',', 'DELIVERS', 'D', ',')
('p', '.', 'location', 'ASC', ';')

(',', 'citycreated', 'FROM', 'vaccines', ';')
('DNUM', ')', ')', ')', ')')

('delivers', '.', 'vnum', ',', 'delivers')
('*', 'from', 'person', 'p', ';')

(',', 'CITYCREATED', 'FROM', 'VACCINES', ';')
('SourceCity', 'FROM', 'snacks', 'S', ';')

('BY', 'parks', '.', 'parkname', ';')
('Vaccines', 'where', 'cityCreated', '=', "'")

('HQLOC', '=', 'PARKS', '.', 'LOCATION')
('.', 'HQLOC', '=', 'PARKS', '.')

('<', '>', 'TRE', '.', 'VNUM')
('distinct', 'Vac', '.', 'VNum', 'from')

('select', 'distinct', 'Vac', '.', 'VNum')
('P', '.', 'location', ';', '[SEP]')

('tre2', '.', 'inum', ')', ')')
("'", 'Susan', 'Piper', "'", ';')

('=', 'P', '.', 'location', ';')

(b) Partially correct

5 0 5 10 15
Score

('from', 'person', 'having', 'min', '(')
('id', '=', 'person', '.', 'id')
('_', 'year', '=', '1991', ';')

('id', '=', 'p2', '.', 'id')
('production', '_', 'year', '=', '1991')

('Director', '.', 'id', '=', 'person')
('category', '=', 'âBest', 'Filmâ', ';')

('id', ')', 'from', 'person', 'where')
('.', 'category', '=', 'âBest', 'Filmâ')

('where', 'Director', '.', 'id', '=')
('.', 'title', ')', '=', "'")

('r', 'NATURAL', 'JOIN', 'person', 'p')
('(', 'SELECT', 'scene', '_', 'no')
('[CLS]', 'SELECT', 'p', '.', 'id')
('p', '.', 'id', 'FROM', 'person')

('scene', '_', 'no', ',', 'COUNT')
('SELECT', 'scene', '_', 'no', ',')

(',', '(', 'SELECT', 'scene', '_')
('role', ',', '(', 'SELECT', 'scene')

('SELECT', 'p', '.', 'id', 'FROM')

(c) Noninterpretable

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Score

('id', 'FROM', 'person', 'WHERE', 'id')
('writer', 'where', 'id', '=', "'")

('year', 'from', 'writer', 'where', 'id')
('from', 'writer', 'where', 'id', '=')

('id', '=', "'", '00000402', "'")
('[CLS]', 'SELECT', 'id', 'FROM', 'person')

('SELECT', 'id', 'FROM', 'person', 'WHERE')
('where', 'id', '=', "'", '00000402')

('person', 'WHERE', 'id', '!', '=')
('id', '!', '=', "'", '00000903')

('where', 'id', '=', "'", '00000402')
('writer', 'where', 'id', '=', "'")

('from', 'writer', 'where', 'id', '=')
('year', 'from', 'writer', 'where', 'id')
('_', 'year', 'from', 'writer', 'where')

('year', '_', 'born', 'DESC', 'LIMIT')
('BY', 'year', '_', 'born', 'DESC')

('ORDER', 'BY', 'year', '_', 'born')
("'", 'ORDER', 'BY', 'year', '_')

('00000903', "'", 'ORDER', 'BY', 'year')

(d) Cheating

Fig. 3: Attribution scores of top 10 5-grams in the positive (blue) and negative (red) influences to classes.

syntax. This observation can guide educators in emphasizing
the critical elements and common pitfalls while teaching SQL
to students. Moreover, it highlights areas that automated SQL
training tools could focus on to improve student performance.

2) Partially Correct: Positive Attribution Scores. 5-
grams with high positive attribution scores reveal pat-
terns and sequences typically associated with partially cor-
rect SQL statements. The 5-gram (’.’, ’vnum’, ’,’,
’delivers’, ’.’) suggests that the correct punctuation
and use of identifiers within SQL may lead to partial
credits even if not entirely correct. Sequences like (’V’,
’,’, ’DELIVERS’, ’D’, ’,’) show a pattern of cap-
italization and delimiter use that appears to align with par-

tially correct syntax, whereas (’p’, ’.’, ’location’,
’ASC’, ’;’) indicates proper clause ordering. It is no-
table that 5-grams involving table and column names, such
as (’,’, ’citycreated’, ’FROM’, ’vaccines’,
’;’), contribute positively, implying that the model recognizes
some semantic understanding even if the overall syntax might
not be perfect.

Negative Attribution Scores. Conversely, 5-grams
like (’Vaccines’, ’where’, ’cityCreated’,
’=’, "’") and (’HQLOC’, ’=’, ’PARKS’,
’.’, ’LOCATION’) with negative scores suggest a
misunderstanding of the query structure or relationships
between tables and columns. 5-grams such as (’<’, ’>’,



’TRE’, ’.’, ’VNUM’) could indicate syntax errors or
incorrect use of operators, which are detrimental to the
partial correctness of an SQL statement. The recurrence of
incorrect or out-of-place syntax, as seen in (’tre2’, ’.’,
’inum’, ’)’, ’)’), emphasizes common mistakes that
students might make, which the model flags as predictors of
an incorrect statement.

The distinction between the positive and negative 5-grams
helps identify areas where students may achieve partial under-
standing and where they are most likely to falter. Educators
can leverage these insights to focus on teaching the correct
use of SQL syntax and the importance of query structure,
which are pivotal in crafting partially correct SQL statements.
Such knowledge is vital for refining SQL training methods and
providing targeted feedback to students.

3) Noninterpretable: Positive Attribution Scores. 5-grams
with high positive scores point towards elements or con-
structs that are commonly associated with uninterpretable
statements. For example, the 5-gram (’from’, ’person’,
’having’, ’min’, ’(’) suggests a misuse of the
HAVING clause without a preceding GROUP BY, which is
a frequent source of confusion. Similarly, (’_’, ’year’,
’=’, ’1991’, ’;’) might indicate an incorrect naming
convention or a misuse of underscore. The use of non-
standard characters in (’category’, ’=’, ’âBest’,
’Filmâ’, ’;’) could reflect encoding issues or incorrect
string literals that lead to a lack of clarity in statements.

Negative Attribution Scores. Conversely, 5-grams with
negative attribution scores appear to include more standard SQL
expressions. For instance, (’r’, ’NATURAL’, ’JOIN’,
’person’, ’p’) indicates a proper use of join operations,
and (’SELECT’, ’p’, ’.’, ’id’, ’FROM’) follows
the typical format of a selection query. These suggest a level of
interpretability that the model associates with better-understood
statements.

Analyzing these 5-grams enables us to identify specific SQL
patterns that lead to misunderstandings or errors, potentially
aiding in the design of better SQL instruction and error
messaging. Highlighting these patterns could serve as a focus
for educational interventions aimed at reducing the frequency
of uninterpretable SQL statements by students.

4) Cheating: Positive Attribution Scores. The 5-grams
with the highest positive attribution scores are indicative of
queries that could constitute cheating. These 5-grams include:

(’id’, ’FROM’, ’person’, ’WHERE’, ’id’)
(’writer’, ’where’, ’id’, ’=’, "’")
(’year’, ’from’, ’writer’, ’where’, ’id’)
(’from’, ’writer’, ’where’, ’id’, ’=’)
(’id’, ’=’, "’", ’00000402’, "’")

Such patterns often contain direct references to specific ‘id‘
values, which likely implies that the query was crafted to
retrieve a single record, circumventing the intent of creating a
generalized query.

Negative Attribution Scores. Conversely, the 5-grams with
the highest negative attribution scores are less suggestive of

cheating and may correspond to more generic queries:

(’where’, ’id’, ’=’, "’", ’00000402’)
(’writer’, ’where’, ’id’, ’=’, "’")
(’from’, ’writer’, ’where’, ’id’, ’=’)
(’year’, ’from’, ’writer’, ’where’, ’id’)
(’_’, ’year’, ’from’, ’writer’, ’where’)

These patterns, surprisingly similar to some with positive
attributions, may appear in contexts that do not imply cheating
or may be part of a larger query structure that is inherently
more general.

The overlap in 5-grams between the positive and negative
attributions suggests that context is crucial for interpreting
whether the use of specific constants is a sign of cheating. While
the model has learned to identify potential cheating patterns,
the presence of these patterns alone does not conclusively
determine the intent or correctness of the query. Additional
contextual analysis may be required to differentiate between
cheating and legitimate use of specific ‘id‘ values. The primary
reason for this, we argue, is that there is very little support
for this particular class; i.e., there are very few labeled SQL
statements in this category.

IV. CONCLUSION

In our analysis of the work conducted by Rivas et al. [13], we
examined their innovative use of the BERT model to address the
SQL-grading problem, achieving substantial improvements over
previous methodologies. However, a notable limitation of their
work was the absence of a robust explainability mechanism
for the model’s decision-making process.

To address this gap, we leveraged the Captum module and
devised a script capable of computing token scores (including
sets of tokens in the case of n-grams) within the context
of binary classification, as presented in [13]. Our approach
facilitates a comprehensive understanding of why the model
classifies queries as correct or incorrect, accomplished through
a thorough examination of the entire dataset.

Our findings indicate that the model places specific emphasis
on particular areas or tokens to justify predictions of class 0
(incorrect), while relying on more general query components
to predict class 1 (correct).

It is worth noting that the work presented in [13] extends
beyond binary classification, encompassing multi-class classifi-
cation and regression tasks. Our future plans involve extending
our approach to those tasks as well, further enhancing the
model’s interpretability and its applicability to a broader range
of challenges.

ETHICS STATEMENT

This study utilizes a combination of a publicly available
dataset, as cited in the manuscript, and additional data collected
internally. The internal dataset has been anonymized to protect
the identities of the students involved. Due to the presence
of personally identifiable information in the original internal
data, we are unable to release this portion of the dataset to the
public.



Moreover, we recognize the potential for inherited biases
within the BERT embeddings used in our model. While we
have taken steps to assess and address ethical considerations,
we acknowledge that these biases may still exist. We advocate
for continued research aimed at mitigating such biases and
are committed to maintaining a high level of methodological
transparency in our work.

ACKNOWLEDGEMENTS

This work is supported by the National Science Foundation
under Grant Nos. 2039678, 2136961, and 2210091. The views
expressed herein are solely those of the author(s) and do not
necessarily reflect those of the National Science Foundation.

REFERENCES

[1] J. Guo, Z. Zhan, Y. Gao, Y. Xiao, J. Lou, T. Liu, and D. Zhang,
“Towards complex text-to-sql in cross-domain database with intermediate
representation,” 2019.

[2] T. Yu, R. Zhang, K. Yang, M. Yasunaga, D. Wang, Z. Li, J. Ma, I. Li,
Q. Yao, S. Roman, Z. Zhang, and D. Radev, “Spider: a large-scale
human-labeled dataset for complex and cross-domain semantic parsing
and text-to-sql task,” 2018.

[3] S. Chu, B. Murphy, J. Roesch, A. Cheung, and D. Suciu, “Axiomatic
foundations and algorithms for deciding semantic equivalences of sql
queries,” Proceedings of the VLDB Endowment, vol. 11, pp. 1482–1495,
2018.

[4] J. Li, A. König, V. Narasayya, and S. Chaudhuri, “Robust estimation
of resource consumption for sql queries using statistical techniques,”
Proceedings of the VLDB Endowment, vol. 5, pp. 1555–1566, 2012.

[5] R. Lee, T. Luo, Y. Huai, F. Wang, Y. He, and X. Zhang, “Ysmart: yet
another sql-to-mapreduce translator,” 2011.

[6] B. Chandra, B. Chawda, B. Kar, K. Reddy, S. Shah, and S. Sudarshan,
“Data generation for testing and grading sql queries,” The VLDB Journal,
vol. 24, pp. 731–755, 2015.

[7] J. Cunha, J. Fernandes, R. Pereira, and J. Saraiva, “Graphical querying
of model-driven spreadsheets,” pp. 419–430, 2014.

[8] A. V. Aho, Y. Sagiv, and J. D. Ullman, “Equivalences among relational
expressions,” SIAM Journal on Computing, vol. 8, no. 2, pp. 218–246,
1979.

[9] S. Chu, B. Murphy, J. Roesch, A. Cheung, and D. Suciu, “Axiomatic
foundations and algorithms for deciding semantic equivalences of sql
queries,” arXiv preprint arXiv:1802.02229, 2018.

[10] Y. Law, H. Wang, and C. Zaniolo, “Relational languages and data models
for continuous queries on sequences and data streams,” Acm Transactions
on Database Systems, vol. 36, pp. 1–32, 2011.

[11] J. Wang, Y. Zhao, Z. Tang, and Z. Xing, “Combining dynamic and static
analysis for automated grading sql statements,” J Netw Intell, vol. 5,
no. 4, pp. 179–190, 2020.

[12] A. Kelkar, “Bertrand-dr: improving text-to-sql using a discriminative
re-ranker,” 2020.

[13] P. Rivas, D. Schwartz, and E. Quevedo, “Bert goes to sql school:
Improving automatic grading of sql statements,” in The 25th International
Conference on Artificial Intelligence (ICAI 2023), 2023, pp. 1–8.

[14] D. Schwartz and P. Rivas, “An automated sql query grading system
using an attention-based convolutional neural network,” in The 18th
International Conference on Frontiers in Education: Computer Science
and Computer Engineering, 2022, pp. 1–12.

[15] P. Rivas and D. R. Schwartz, “Modeling sql statement correctness with
attention-based convolutional neural networks,” in The 19th International
Conference on Scientific Computing (CSC 2021), 2021.

[16] J. Triloka, H. Hartono, and S. Sutedi, “Detection of sql injection
attack using machine learning based on natural language processing,”
International Journal of Artificial Intelligence Research, vol. 6, 2022.

[17] A. Li, P. Ng, P. Xu, H. Zhu, Z. Wang, and B. Xiang, “Dual reader-
parser on hybrid textual and tabular evidence for open domain question
answering,” 2021.

[18] C. Tang, B. Wang, Z. Luo, H. Wu, S. Dasan, M. Fu, Y. Li, M. Ghosh,
R. Kabra, N. Navadiya, D. Cheng, F. Dai, V. Channapattan, and P. Mishra,
“Forecasting sql query cost at twitter,” 2021.

[19] H. Bao and M. Clavel, “A model-driven approach for enforcing fine-
grained access control for sql queries,” Sn Computer Science, vol. 2,
2021.

[20] Y. Hao, L. Dong, F. Wei, and K. Xu, “Self-attention attribution:
Interpreting information interactions inside transformer,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 35, no. 14, 2021,
pp. 12 963–12 971.

[21] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.


	Introduction
	Approach
	Workflow Architecture
	Handling BERT's Subword Tokenization
	N-Gram Attribution Analysis

	Results
	Binary Classification
	Multi-Label Classification
	Correct
	Partially Correct
	Noninterpretable
	Cheating


	Conclusion
	References

