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Abstract

The pervasive issue of human trafficking has increasingly manifested through
digital platforms, particularly in the form of textual online advertisements. Lever-
aging Natural Language Processing (NLP) for risk assessment in this domain has
garnered significant attention. This study presents a comprehensive empirical eval-
uation of machine learning models fine-tuned for emotion and sentiment analysis
tasks, specifically utilizing the BERT-Base Uncased and DistilBERT architectures.
These models are rigorously compared against a baseline model, also fine-tuned
on the BERT-Base Uncased architecture, for the task of human trafficking risk
prediction. Employing robust statistical methodologies, namely the Friedman and
Nemenyi tests, we scrutinize the performance metrics of these models. Our findings
indicate that while task-specific fine-tuned models exhibit promising results, only
the fine-tuned model in the emotion analysis task statistically outperforms the
baseline model in the human trafficking risk prediction task. This research not only
contributes to the growing body of work in NLP applications for social good but
also provides valuable insights for future research directions in the field.

1 Introduction

Human trafficking remains a critical issue in contemporary society, posing significant ethical and
humanitarian concerns. According to the Global Slavery Index, an estimated 30 million individuals
were subjected to involuntary servitude as of 2013, underscoring the magnitude of the problem [1]. A
substantial portion of this trafficking involves the exploitation of women in the sex industry, with the
United States emerging as a prevalent destination for trafficked individuals [10].

The digital landscape has further complicated the issue, as online platforms have become a prevalent
medium for the advertisement of sexual services, often masking underlying trafficking activities [5].

Previous analyses of these online advertisements have identified distinct characteristics that can
aid law enforcement agencies in the detection of trafficking-related content [22]. However, the
sheer volume of such advertisements presents a formidable challenge for manual processing and
intervention.
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Figure 1: Statistical assessment of the impact of different fine-tuned BERT models on classifying
trafficking risk based on text sequences from commercial sex advertisements.

In response to this challenge, Natural Language Processing (NLP) techniques have been increasingly
employed to automate the identification of trafficking-related advertisements [21]. Recent advance-
ments in the field have focused on feature extraction from online text to distinguish advertisements
with sexual content and further classify their risk of being related to human trafficking [15]. Con-
current research efforts have been directed towards the development of predictive models for risk
assessment based on these extracted features [24].

Situated within this context, the present study aims to investigate the impact of task-specific features
on the predictive accuracy of human trafficking risk assessment models, as depicted in Figure 1.
The BERT language model has demonstrated notable proficiency across various Natural Language
Processing (NLP) tasks, including sentiment and emotion analysis, as well as question answering,
among other tasks. In light of its great performance, we employ fine-tuned versions of the BERT and
DistilBERT models, originally pre-trained for emotion and sentiment classification tasks, to evaluate
their efficacy in this domain [13, 14]. To rigorously assess the performance differences among these
models, we employ Friedman and Nemenyi statistical tests, thereby providing a robust evaluation of
their relative effectiveness [12]. Therefore, our specific contributions are the following:

• We conduct a comprehensive empirical evaluation to assess the performance of task-specific
fine-tuned models vis-à-vis a baseline model in the domain of human trafficking risk
prediction, leveraging advanced statistical tests such as Friedman and Nemenyi.

• We provide critical insights into the advantages and limitations of sentiment, emotion, and
tone analysis for human trafficking risk prediction, thereby directing future research towards
potentially more impactful NLP tasks like Named Entity Recognition.

The remainder of this paper is structured as follows: Section 2 provides an overview of the relevant
literature, Section 3 delineates the methodological approach employed, Section 4 outlines the experi-
mental methodology, Section 5 presents an analytical discussion of the findings, and Section 6 offers
concluding remarks.

2 Related Work

The application of Natural Language Processing (NLP) techniques for the detection of suspicious
advertisements indicative of human trafficking has garnered considerable scholarly attention. Whitney
et al. [28] conducted an empirical investigation into the role of emojis as potential markers for
trafficking-related advertisements. Their work provides valuable insights into the nuanced linguistic
features that may be leveraged for risk assessment.

In a similar vein, Tong et al. [25] employed deep multimodal models to classify advertisements,
integrating both textual and visual elements. Their work culminated in the development of the Human
Trafficking Deep Network, a specialized model designed to identify high-risk advertisements. This
approach underscores the importance of multimodal data in enhancing predictive accuracy.

Szekely et al. [23] took a different approach by constructing a comprehensive knowledge graph from
a large corpus of online advertisements. Their methodology enables sophisticated data visualization
and querying capabilities, thereby facilitating more subtle analyses.

Esfahani et al. [8] proposed an automated system for ad classification, focusing on the extraction of
contextual features from the text. They employed a variety of machine learning models, including
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Latent Dirichlet Allocation (LDA) [3] for topic modeling, FastText [4] for word vector representation,
and the pre-trained Bidirectional Encoder Representations from Transformers (BERT) [7] language
model. Their work aims to evaluate the efficacy of these models in analyzing unstructured data for
human trafficking risk assessment.

Li et al. [11] explored the identification of massage businesses potentially involved in human traf-
ficking through NLP techniques. Utilizing data from the Yelp.com platform, they developed multiple
models based on lexicon-based approaches as well as embeddings (BERT and Doc2Vec). Their find-
ings suggest that ensemble methods significantly outperform individual models, thereby advocating
for a more integrative approach.

The proliferation of online platforms has unfortunately provided human traffickers with new avenues
to disseminate their illicit activities. As such, the scholarly contributions in this domain are critical
for developing effective computational methods for identifying and mitigating the risks associated
with human trafficking.

3 Methodological Approach

The principal objective of this research endeavor is to empirically accept or reject the following
hypothesis:

The generically pre-trained language model BERT exhibits comparable perfor-
mance in the task of human trafficking risk detection as its specialized counterparts
fine-tuned for emotion and sentiment analysis tasks.

3.1 Baseline Model

As a point of reference, we employ a fine-tuned version of the BERT-Base Uncased model [26]
specifically adapted for the human trafficking risk detection task. The architecture of this baseline
model, denoted as BERTHT , is illustrated in Figure 2 (a). This model comprises a total of 109,483,778
parameters, aligning with the original BERT architecture [7].

The BERT model employs the Transformer architecture, which is fundamentally based on the attention
mechanism. The attention function can be described as mapping a query and a set of key-value pairs
to an output. Mathematically, the scaled dot-product attention is given by:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V,

where Q, K, and V are the query, key, and value matrices, respectively, and dk is the dimension of
the keys [27].

The BERT architecture utilizes multi-head attention, which can be expressed as:

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)W
O,

where each headi = Attention(QWQ
i ,KWK

i , V WV
i ), and WQ

i , WK
i , WV

i , and WO are parameter
matrices.

The model is trained using the masked language model (MLM) objective, which can be formalized
as:

L = − logP (wi|context; θ).

where wi is the masked word, context is the surrounding words, and θ are the model parameters.

By fine-tuning this architecture on the human trafficking risk detection task, we aim to evaluate its
efficacy as a baseline model for comparison with other task-specific models.

3.2 Experimental Models

We subject three distinct models to evaluation for the human trafficking risk classification task. The
first model is a fine-tuned version2 of a sentiment classification model [20], based on the DistilBERT

2https://huggingface.co/sbcBI/sentiment_analysis_model
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(a) Architecture of the Baseline Model (BERTHT ),
based on classic BERT. 110M parameters.

(b) Architecture of the Fine-Tuned Sentiment Anal-
ysis Model Based on DistilBERT. 67M parameters.

Figure 2: Comparative Architectures of Baseline and Fine-Tuned Models.

architecture. The architecture of this model is depicted in Figure 2 (b). The subsequent models are
fine-tuned sentiment3 and emotion4 classification models based on the original BERT architecture [7].
The architectures of these latter models are analogous to that of the baseline model (Figure 2 (a)).
BERT is a more comprehensive model, typically consisting of 12 layers (or 24 for its larger variant),
12 attention heads, and approximately 110 million parameters for its base version. It employs a
bidirectional Transformer encoder to understand the context and semantics of the words in a given
text. On the other hand, DistilBERT is a distilled version of BERT, designed to be smaller, faster, and
more efficient. It retains 95% of BERT’s performance while being 40% smaller, encompassing only
six layers and six attention heads. The model achieves this efficiency by forgoing certain architectural
elements, such as the token-type embeddings and the pooler, and employing knowledge distillation
techniques during training. The distillation process involves training DistilBERT to predict the output
of BERT, effectively transferring knowledge from the larger model to the smaller one. Despite
these reductions, DistilBERT maintains competitive performance across various natural language
understanding tasks, making it a suitable alternative for resource-constrained environments [20].

3.3 Evaluation Metrics

The models were rigorously trained and evaluated using comprehensive evaluation metrics, including
the F1 score, Accuracy, Precision, and Recall [16]. These metrics provide a multi-faceted view of
each model’s performance, enabling a detailed comparison.

3.4 Statistical Hypothesis Testing

To ascertain the validity of the research hypothesis, we conducted statistical hypothesis testing
to compare the performance of the experimental models against that of the baseline BERTHT

3https://huggingface.co/Ghost1/bert-base-uncased-finetuned_for_sentiment_
analysis1-sst2

4https://huggingface.co/amitkayal/bert-finetuned-sem_eval-english
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Figure 3: Exemplary posts illustrating the heterogeneity of character elements, thereby posing
challenges for conventional NLP methodologies. Personally identifiable information has been
redacted.

model. Specifically, we employed statistical tests to determine whether the observed differences in
performance metrics were statistically significant, thereby providing empirical evidence to either
support or refute the initial hypothesis [6].

4 Experimental Methodology

This section delineates the experimental setup and methodologies employed to evaluate the perfor-
mance of the proposed models for human trafficking risk prediction. We commence by detailing the
dataset characteristics and partitioning strategy, followed by the evaluation metrics and statistical
tests utilized to validate the models. Subsequently, we elaborate on the specific configurations and
computational resources involved in the training process. Finally, the results are presented and
analyzed to draw meaningful conclusions on the efficacy of the models in the task at hand.

4.1 Data

The dataset under investigation comprises 128,182 textual posts, each of which is categorically
labeled as either posing a risk of human trafficking or not. These posts are characterized by their
free-text nature and may include a diverse range of elements such as emojis and other non-ASCII
characters. Due to ethical considerations and privacy constraints, the dataset is not publicly accessible.
However, its validity has been corroborated through multiple peer-reviewed studies [19, 2, 9, 17, 18].
Figure 3 provides illustrative examples of posts, highlighting the complexities associated with the
textual and character elements commonly encountered in the dataset.

Before model training, the dataset was partitioned to create a testing subset. Specifically, a random
subsampling strategy was employed to allocate 10% of each class to the testing set, resulting in a
total of 12,819 posts. The residual dataset, consisting of 115,363 posts, was further divided into
training and validation sets. The training set encompasses 95% (109,594 posts) of the remaining data,
while the validation set constitutes the remaining 5% (5,769 posts). In terms of class distribution,
the dataset is imbalanced, with the “high risk” class accounting for 31.88% and the “low risk” class
making up the remaining 68.12% (approximately twice the “high risk” sample size).

4.1.1 Class imbalance mitigation

To mitigate and verify the model wasn’t biased toward the majority class, we divided the larger
"low risk" group into two parts to create two balanced training sets. We then duplicated the "high
risk" entries in both sets to maintain balance. As a result, each training set now contains 76,068
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Table 1: Performance metrics for the trained models, where bold font indicated the top performing
model

Model F1 Accuracy Precision Recall AUC

Fine-tuned Emotion Model 0.75 0.84 0.76 0.74 0.90
Fine-tuned Sentiment Analysis (DistilBERT) 0.72 0.83 0.77 0.67 0.89
Fine-tuned Sentiment Analysis (BERT) 0.73 0.83 0.77 0.69 0.89

Baseline Model (BERTHT ) 0.73 0.83 0.74 0.72 0.89

advertisements. The proportion of the number of examples per class is similar, with "low risk" at
52% and "high risk" at 48%. For the actual training phase, we utilized 95% of the data (72,265 ads)
for training purposes, while the remaining 5% (3,803 ads) were set aside for validation. To test the
models, we employed the original split testing set, which comprises 12,819 posts.

4.2 Evaluation Methodology

The baseline model, denoted as BERTHT , served as a comparative standard and achieved an accuracy
of 83%, an F1 score of 73%, a precision of 74%, and a recall of 72%.

To statistically validate the efficacy of the proposed models, hypothesis testing was conducted.
Specifically, non-parametric statistical tests, namely the Friedman test and the Nemenyi post-hoc test,
were utilized [6]. These tests provide a robust framework for comparing multiple algorithms and
determining the statistical significance of observed performance differences.

4.3 Experimental Configuration

To facilitate the training and evaluation of the models, we employed the transformers
Python library. Specifically, we utilized the DistilBERTForSequenceClassification and
BERTForSequenceClassification classes for the fine-tuned models targeting sentiment anal-
ysis and emotion recognition. The DistilBERTForSequenceClassification model comprises
66,955,010 parameters, while the BERTForSequenceClassification model contains 109,483,778
parameters.

The models were trained throughout three epochs. The fine-tuned emotion and sentiment analysis
models based on BERT required approximately three hours for training, whereas the DistilBERT-
based sentiment analysis model was trained in approximately two hours for the original training
dataset. For the balanced datasets, the BERT-based models required roughly one hour and 35 minutes,
and the DistilBERT models took about 40 minutes for each set.

The computational resources allocated for this task included machines equipped with 20 CPU cores,
1 GeForce RTX 4060 8GB GPU, and 64GB of RAM.

4.4 Results

In this section, we present the results of the evaluation of the different models. In addition, we provide
the results obtained for the statistical tests.

4.4.1 Model evaluation

The performance of the trained models was evaluated using the metrics specified in Section 3.3 and
the Area Under the Receiver Operating Characteristic Curve (AUC). Table 1 presents the quantitative
results for each model.

The fine-tuned Emotion model based on BERT demonstrated superior performance across all metrics,
outperforming the baseline model. To further elucidate these findings, Figure 4 illustrates the Receiver
Operating Characteristic (ROC) curves for the evaluated models. Notably, the AUC for the Emotion
model based on BERT was the highest, registering at 0.90. The curve corresponding to the Emotion
model based on BERT most closely approximates the ideal curve, further substantiating its efficacy.
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Figure 4: ROC curve for the trained models and the baseline. A is the emotion model based on BERT.
B is the sentiment analysis model based on BERT, while C is based on DistillBERT. D is the baseline
model based on BERT.

Table 2: Class imbalance mitigation results. S refers to the balanced datasets used during training: 0
or 1. DBERT stands for DistilBERT

Model S F1 Accuracy Precision Recall AUC

Fine-tuned Emotion Model 0 0.71 0.80 0.65 0.80 0.88
1 0.72 0.80 0.65 0.81 0.88

Fine-tuned Sentiment Analysis (DBERT) 0 0.69 0.78 0.62 0.77 0.85
1 0.69 0.78 0.62 0.77 0.85

Fine-tuned Sentiment Analysis (BERT) 0 0.71 0.79 0.63 0.82 0.87
1 0.70 0.78 0.61 0.83 0.87

Baseline Model (BERTHT ) 0 0.70 0.79 0.63 0.79 0.86
1 0.70 0.79 0.64 0.79 0.86

4.4.2 Class imbalance mitigation

As described in Section 4.4.1, we assessed our trained models using the evaluation metrics outlined
in Section 3.3 and the AUC. The results for models trained on balanced datasets, as mentioned in
Section 4.1.1, are summarized in Table 2.

The models fine-tuned on the original dataset performed better than those trained on the balanced
dataset. We observed an increase in recall but a more significant decrease in precision. This might be
because the balanced training sets had 33% less data than the original dataset, which was necessary
to achieve balance. Nevertheless, the fine-tuned emotion model, even when trained on the balanced
dataset, demonstrated superior performance in all metrics compared to the other models.

4.5 Statistical tests

Statistical hypothesis tests were conducted to validate the observed differences in model performance.
The Friedman Test was applied to four subsamples of the test dataset, aiming to ascertain whether the
models’ performances were statistically indistinguishable. The Friedman estimator, denoted as χ2

F ,
is calculated as follows:

χ2
F =

12N

k(k + 1)

 k∑
j=1

R2
j −

k(k + 1)2

4
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where N is the number of blocks (subsamples), k is the number of treatments (models), and Rj is the
rank sum for the jth treatment across all blocks. The Friedman estimator yielded a value of 10.799,
exceeding the critical value of 6.992 at a 99% confidence level, thereby rejecting the null hypothesis
H0. This suggests that the models do not perform equally.

Subsequently, the Nemenyi Test was employed to perform pairwise comparisons between the models.
The performance of two classifiers is significantly different if the corresponding average ranks differ
by at least the critical difference denoted as CD that is calculated as:

CD = qα

√
k(k + 1)

6N

where critical values qα are based on the Studentized range statistic divided by
√
2 [6]. The test

indicated that the Emotion model had ranking differences exceeding the CD = 2.345 for the baseline
and the Sentiment Analysis model based on DistilBERT, thereby rejecting the null hypothesis H0

at a 95% confidence level. This confirms that the Emotion model significantly outperforms both
the baseline BERTHT and DistilBERT within the context of human trafficking risk prediction. See
Appendix A for more details.

5 Discussion

The empirical evaluation elucidates that the fine-tuned Emotion model predicated on the BERT
architecture outperforms the baseline and the DistilBERT-based Sentiment Analysis model. Utilizing
rigorous statistical hypothesis testing, we were able to substantiate this observation with a 95%
confidence interval. However, it is important to note that the statistical tests were inconclusive in
establishing the superiority of the Sentiment Analysis model over the baseline model.

A salient aspect of the experimentation lies in the class imbalance inherent in the dataset. As
delineated in Section 4.1, the dataset exhibits a disproportionate representation of the "low-risk" class
relative to the "high-risk" class. Although the results from the class imbalance mitigation didn’t show
any indication of this imbalance being an issue, it will be very beneficial for future research to count
on a bigger and more balanced dataset. Future models could be susceptible to this disproportion and
cause model bias. The implications of such bias are far-reaching, especially considering the critical
nature of the human trafficking risk prediction task.

More varied data will allow us to further verify our hypothesis. That is, we could deepen our
experiments to evaluate the impact of NLP task-specific features in the human trafficking risk
prediction task.

6 Conclusion

The primary objective of this research was to rigorously evaluate the efficacy of task-specific fine-
tuned models in comparison to a baseline model fine-tuned on the overarching task of human
trafficking risk prediction. Our empirical findings indicate that the fine-tuned Emotion model, based
on the BERT architecture, exhibited superior performance metrics. The observed differences in model
performance were statistically significant, as corroborated by the Friedman and Nemenyi statistical
tests. However, the performance of the Sentiment Analysis model was not statistically better than the
baseline.

The inconclusive nature of these results raises questions about the inherent utility of sentiment in
enhancing the predictive capabilities for human trafficking risk assessment. Specifically, our findings
suggest that some task-specific features may not necessarily contribute to a significant improvement
in the identification of human trafficking instances from noisy textual data. This has implications for
the broader field of human trafficking research, indicating that the focus may need to shift towards
other Natural Language Processing tasks, such as Named Entity Recognition, which could potentially
offer substantial contributions to the risk prediction task.

We recommend future research to employ a balanced and bigger dataset. This would enable a more
robust evaluation of model performance and could potentially yield more conclusive insights into the
utility of task-specific fine-tuned models for human trafficking risk prediction.
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A Appendix: Statistical Hypothesis Tests

A.1 Friedman Test

For the Friedman Test, we use a total of 4 subsamples of the testing dataset. The goal is to test
whether the four models perform equally or not. Table 3 shows the Accuracy score obtained from the
different models on each subsample. For each of the subsamples, we determined the resulting mean
ranking. This resulted in the values shown in parentheses.

Table 3: Models Performance Accuracy for the four different subsamples.
Subsamples Baseline Emotion SA (BERT) SA (DistilBERT)

0 0.8397 0.8525 0.8416 0.8358
1 0.8375 0.8451 0.8426 0.8383
2 0.8403 0.8524 0.8426 0.8381
3 0.8338 0.8481 0.8410 0.8342

Avg. (Rank) 0.8378 (3.5) 0.8495 (1) 0.8419 (2) 0.8366 (3.5)

The Friedman estimator for this ranking is equal to 10.799. The critical value at α = 0.01 is 6.992.
10.799 > 6.992, thus, with 99% confidence, H0 is rejected and we can say that models don’t perform
equally.

A.2 Nemenyi Test

The Nemenyi estimator for the four subsamples and four models, with a confidence level of 95%,
is equal to 2.345. The critical value for α = 0.05 is equal to 2.569. Table 4 shows the ranking
differences for every pair of models.

Table 4: Differences of models’ ranking. SA: Sentiment Analysis.
Baseline Emotion SA (BERT) SA (DistilBERT)

Baseline 0
Emotion 2.5 0
SA (BERT) 1.5 1 0
SA (DistilBERT) 0 2.5 1.5 0

The ranking differences between the Emotion model predicated on the BERT architecture and the
Sentiment Analysis model utilizing DistilBERT, as well as between the Emotion model based on
BERT and the baseline model also employing BERT, exceed the critical threshold set by the Nemenyi
estimator (2.5 > 2.345). Consequently, at a 95% confidence level, we reject the null hypothesis H0,
thereby substantiating that the performance of the Emotion model is statistically distinguishable from
both the baseline model and the Sentiment Analysis model based on DistilBERT.

11


	Introduction
	Related Work
	Methodological Approach
	Baseline Model
	Experimental Models
	Evaluation Metrics
	Statistical Hypothesis Testing

	Experimental Methodology
	Data
	Class imbalance mitigation

	Evaluation Methodology
	Experimental Configuration
	Results
	Model evaluation
	Class imbalance mitigation

	Statistical tests

	Discussion
	Conclusion
	Appendix: Statistical Hypothesis Tests
	Friedman Test
	Nemenyi Test


