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Abstract

This study examines the capabilities of the Vision Trans-
former (ViT) model in generating visual embeddings for im-
ages of auto parts sourced from online marketplaces, such as
Craigslist and OfferUp. By focusing exclusively on single-
modality data, the analysis evaluates ViT’s potential for de-
tecting patterns indicative of illicit activities. The workflow
involves extracting high-dimensional embeddings from im-
ages, applying dimensionality reduction techniques like Uni-
form Manifold Approximation and Projection (UMAP) to vi-
sualize the embedding space, and using K-Means clustering
to categorize similar items. Representative posts nearest to
each cluster centroid provide insights into the composition
and characteristics of the clusters. While the results highlight
the strengths of ViT in isolating visual patterns, challenges
such as overlapping clusters and outliers underscore the limi-
tations of single-modal approaches in this domain. This work
contributes to understanding the role of Vision Transformers
in analyzing online marketplaces and offers a foundation for
future advancements in detecting fraudulent or illegal activi-
ties.

Introduction

The transformer architecture, originally developed for natu-
ral language processing (NLP), has proven highly success-
ful in a variety of tasks, from language translation (Vaswani
et al. 2023) to text generation (Radford and Narasimhan
2018). Its core strength lies in the self-attention mecha-
nism, which enables the model to capture relationships be-
tween all parts of an input sequence simultaneously. Build-
ing on the success of transformers, this architecture has been
adapted to computer vision through Vision Transformers.
These models take the same transformer principles—such
as self-attention and tokenization—and apply them to im-
age data by dividing images into fixed-size patches that are
treated as input tokens. Vision Transformers have reached
state-of-the-art benchmarks in computer vision, comparable
to and even exceeding CNNs (Dosovitskiy et al. 2021). The
adaptability of transformers to visual data demonstrates their
versatility and effectiveness, opening new avenues for im-
age analysis tasks such as object detection with models like
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DETR (Carion et al. 2020; Shehzadi et al. 2023) and image
synthesis with models such as DCGAN (Radford, Metz, and
Chintala 2016; Goodfellow et al. 2014). These models are
derivatives of the original Vision Transformer architecture,
each tailored for their specific tasks.

This study focuses exclusively on image classification
tasks using ViT-Base, a single-modal deep learning model
based on the Vision Transformer architecture. Specifically,
we fine-tune ViT-Base on a dataset comprising images from
online auto parts listings to evaluate its computer vision ca-
pabilities. Due to the nature of these online listings, only im-
age data is considered (single-modality), while textual data
such as captions from these posts is excluded. Figure 1 illus-
trates an example image from the dataset, highlighting the
typical content of these listings.

While previous works have demonstrated the superiority
of multimodal approaches (Hamara and Rivas 2024; Rashid
and Rivas 2024) using models like ImageBind and Open-
Flamingo, this study specifically evaluates a single-modal
approach. This analysis is significant in understanding the
limitations and potential of Vision Transformers when con-
textual data is unavailable or omitted. The contributions of
this research are as follows:

* We evaluate ViT-Base on a large-scale, real-world dataset
of online auto parts listings, focusing solely on visual
data to isolate the model’s ability to capture patterns.

E

Figure 1: Example of an interior view from an online auto
parts listing, showcasing a car’s seating and dashboard. This
image represents the type of visual data used for clustering
and analysis in this study.



* By clustering and analyzing image embeddings, we
demonstrate ViT’s effectiveness in grouping visually
similar items while also identifying challenges, such as
overlapping clusters and outliers.

e Our findings highlight the limitations of single-modal
models in the absence of contextual information, offering
a direct comparison to the performance of multimodal
approaches.

* We propose directions for enhancing single-modal mod-
els and emphasize the role they can play in scenarios
where multimodal inputs are unavailable or impractical.

This work offers a critical perspective on the capabilities
and constraints of Vision Transformers, laying a founda-
tion for future advancements in single-modal and hybrid ap-
proaches.

Related Work

The application of transformer architectures in computer vi-
sion has recently gained significant attention. Initially de-
signed for natural language processing tasks, the Trans-
former model (Vaswani et al. 2023) demonstrated excep-
tional capabilities in learning relationships between sequen-
tial data, leading to its adaptation for image processing tasks.
Vision Transformer (Dosovitskiy et al. 2021) represents a
significant shift in image classification approaches, outper-
forming traditional Convolutional Neural Networks (CNN5s)
such as ResNet (He et al. 2016) in various benchmarks, par-
ticularly with large-scale datasets.

The success of ViT can be attributed to its self-attention
mechanism, which provides a global receptive field, un-
like the local receptive fields inherent in CNNs. Dosovitskiy
et al. (2021) demonstrated that ViT can capture long-range
dependencies across image regions, making it suitable for
diverse computer vision tasks. However, ViT’s dependence
on large datasets for pre-training has been a known limita-
tion, prompting studies like Touvron et al. (2021) to intro-
duce hybrid approaches, integrating CNNs and Transform-
ers for improved performance on smaller datasets.

Beyond image classification, several studies have adapted
the transformer architecture to other computer vision tasks.
Carion et al. (2020) proposed DETR (DEtection TRans-
former), which applies the transformer architecture to object
detection, while Radford, Metz, and Chintala (2016) lever-
aged transformer architectures for generative models, illus-
trating their versatility. Using self-attention for object detec-
tion and generative tasks further demonstrates the potential
of transformer-based models in capturing intricate patterns.

Recent works have also explored multimodal approaches
to tackle the challenges in computer vision tasks, partic-
ularly in understanding complex datasets like those found
in online marketplaces. Multimodal models like Image-
Bind (Girdhar et al. 2023) and OpenFlamingo (Alayrac et al.
2023) have demonstrated the effectiveness of combining text
and image data, which often provides richer context and im-
proves the interpretability of results. For instance, Hamara
and Rivas (2024) used a multimodal model for analyzing
car part listings from online marketplaces, achieving higher

clustering accuracy than single-modal approaches. These re-
sults highlight the limitations of single-modal models like
ViT when applied to data that could benefit from context.

In the domain of combating illicit activities in online mar-
ketplaces, machine learning models have shown promise.
Rashid and Rivas (2024) utilized multimodal transformers to
detect counterfeit products by integrating visual and textual
cues, achieving superior performance compared to image-
only models. Such studies underscore the advantage of using
multimodal data for tasks requiring contextual understand-
ing, which can be crucial in distinguishing between legiti-
mate and illicit listings. Our work diverges from these ap-
proaches by focusing solely on the visual component, eval-
uating the effectiveness of ViT in detecting patterns in a
single-modality context. This provides insight into the capa-
bilities and limitations of visual-only analysis in addressing
issues like the sale of stolen car parts.

Despite the promising results of multimodal approaches,
single-modality models have their advantages, particularly
in scenarios where only one type of data is available or
where computational resources are limited. Wu et al. (2020)
argued that simplifying the input modality can reduce com-
putational complexity and yield effective representations if
the model is sufficiently trained. Thus, our study aims to
contribute to this area by investigating how well a single-
modality ViT model can classify and cluster car parts from
online listings, identifying the strengths and areas for im-
provement.

Our work builds on the foundational advancements in Vi-
sion Transformers and contributes to the body of knowledge
by applying ViT to a practical, real-world problem involv-
ing the analysis of car part listings. The following section
discusses the ViT architecture.

Overview of ViT-Base Model

This section provides an overview of the ViT-Base model,
an implementation of the Vision Transformer architecture
specifically designed for image classification. Key aspects
of the model architecture, mechanisms, and training are de-
picted in Figure 2 and summarized next to highlight its ca-
pabilities for image classification.

Architecture

A VIiT draws directly from the transformer architecture
(Vaswani et al. 2023), adapting its self-attention mecha-
nism for image processing tasks. Unlike CNNs, which cap-
ture spatial hierarchies through convolutional layers (Cor-
donnier, Loukas, and Jaggi 2020), a ViT processes images
as sequences of tokens. These tokens are derived from im-
age patches and retain high-level spatial information through
embeddings.

For an input image x € RH*WXC where H, W, and
C represent the height, width, and number of color chan-
nels respectively, the image is divided into non-overlapping
patches of size P x P. Each patch is flattened into a vector
and linearly projected into an embedding space, forming a
sequence of patch embeddings:
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Figure 2: Vision Transformer architecture, illustrating the process of dividing an input image into patches, applying a linear
projection, and processing through a transformer encoder. The final output is classified using an MLP head. Adapted from

(Dosovitskiy et al. 2021; Vaswani et al. 2023).

where Xjass 18 @ learnable class embedding, E is the patch
embedding matrix, and E is the positional embedding.
The resulting sequence is fed into a stack of transformer
layers, each consisting of multi-headed self-attention and
MLP blocks, normalized with LayerNorm and connected via
residual connections (Dosovitskiy et al. 2021).

Patch Embedding

A critical innovation in ViT is its patch embedding mecha-
nism. Instead of processing raw pixel data, ViT divides each
image into patches, typically of size 16 x 16 pixels. Each
patch x,, is flattened into a vector and passed through a lin-
ear projection layer:

x,E, EeRF*OxD

where D is the dimension of the embedding space. This
transformation retains essential visual features, enabling the
model to process spatial information effectively.

Positional Encoding

Images, unlike text, lack an inherent order. To encode spatial
information, ViT introduces positional embeddings, Epos,
which are added to the patch embeddings. These positional
encodings can be either learnable or fixed and ensure that
spatial relationships between patches are preserved, provid-
ing the transformer with context about each patch’s location
within the image.

Self-Attention

The self-attention mechanism is central to ViT’s ability to
capture global dependencies across the image. For a se-
quence of input embeddings z € RY* P self-attention com-
putes pairwise relationships using query (Q), key (K), and

value (V) matrices:

. QK'
Attention(Q, K, V) = softmax ( ) V.
VD
Multi-headed self-attention extends this by employing mul-
tiple attention mechanisms in parallel, allowing the model
to focus on different aspects of the input. This mechanism
enables ViT to capture both local and global relationships,
unlike CNNs, which are limited by their receptive field (Cor-
donnier, Loukas, and Jaggi 2020).

Training

Training ViT from scratch demands substantial data and
computational resources due to its reliance on self-attention,
which scales quadratically with the number of patches.
Pre-training on large-scale datasets like ImageNet-21k pro-
vides a strong initialization, allowing fine-tuning on smaller,
domain-specific datasets. In this study, ViT is fine-tuned on
a car part image classification dataset, where the pre-trained
classification head is replaced by a task-specific feedforward
layer:

y = softmax(Wzp,),

where zy, is the output of the final transformer layer, and
W < RP*X maps the latent space to the K output classes.

By leveraging pre-training, ViT achieves robust perfor-
mance even with limited task-specific data, highlighting its
flexibility and effectiveness in single-modality image classi-
fication tasks.

Methodology

This study investigates the use of Vision Transformers
for clustering images of auto parts collected from online
consumer-to-consumer marketplaces. The methodology de-
picted in Figure 3 involves dataset acquisition, embedding
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Figure 3: In the proposed methodology, the input data are images that are embedded with a ViT and then analyzed in search of

cluster information.

extraction, clustering, and visualization. A detailed overview
of each step is presented below.

Dataset

The dataset used in this study was derived from two popular
consumer-to-consumer (C2C) platforms, Craigslist and Of-
ferUp. Posts containing car parts were identified and scraped
using automated tools. From OfferUp, a total of 650,654
posts were collected, comprising approximately 500GB
of images. Similarly, 637,679 posts were obtained from
Craigslist, amounting to S0GB of image data. Each post of-
ten contained multiple images, providing a diverse and mul-
timodal dataset. The complete data collection methodology,
including filtering criteria, scraping procedures, and dataset
structure, is detailed in our prior work (Hamara and Rivas
2024).

For this analysis, we selected a random sample of 85,000
images from the full collection, focusing exclusively on the
visual component. The text data, while valuable for provid-
ing context, was intentionally excluded to evaluate the effec-
tiveness of single-modal Vision Transformers in capturing
visual patterns. This subset was processed into embeddings
for clustering and visualization.

As clustering is an unsupervised task, this study has no
traditional train/val/test split. Instead, we performed a de-
duplication step to ensure no duplicate images were included
in the dataset, preventing potential biases in cluster forma-
tion. The dataset was used purely for exploratory analysis,
with no supervised learning involved. This ensures that the
clustering results reflect the inherent structure in the data
rather than being influenced by a label.

The multimodal nature of the dataset, including both text
and images, highlights its potential for future research in-
volving multimodal models. However, due to privacy con-
cerns, the dataset will remain confidential.

Embeddings

The pre-trained ViT-Base model, with its 12 transformer lay-
ers and 768-dimensional output space, serves as the feature
extractor. For each image x;, the model generates a fixed-
size embedding vector z; € R7%8:
zZ;, = VIT(XZ),

where z; encapsulates key visual features of x;. These em-
beddings are high-dimensional representations designed to
capture semantic and structural information within the im-
ages. The embeddings were subsequently normalized and
stored for downstream tasks, including dimensionality re-
duction and clustering.

Clustering

To analyze and interpret the extracted embeddings, we ap-
plied clustering methods to group similar images. Given the
high dimensionality of the embeddings, we used UMAP
(Uniform Manifold Approximation and Projection) for
dimensionality reduction (Mclnnes, Healy, and Melville
2020), projecting the data into a lower-dimensional space
(2D) for visualization. UMAP preserves both local and
global data structures, making it ideal for embedding analy-
sis.

For the clustering process, k-means was used due to its
simplicity and effectiveness in partitioning data into non-
overlapping clusters. We experimented with reduced embed-
ding dimensions of 16, 32, 64, and 128. For each configura-
tion, we evaluated clustering quality using three metrics:

 Silhouette Score (Rousseeuw 1987), which measures
how similar an object is to its cluster compared to other
clusters.

e Calinski-Harabasz Index (C-H) (Calinski and
Harabasz 1974), which evaluates inter-cluster variance.

e Davies-Bouldin Index (D-B) (Davies and Bouldin
1979), which quantifies the average similarity between
clusters.

The k-means objective function minimizes the within-
cluster variance:

k
T=3"5 el

i=1xeC;

where C; is the set of points in cluster ¢, and y; is the cen-
troid of cluster i. After experimentation, the optimal value of
k was determined to be 20, balancing intra-cluster cohesion
and inter-cluster separation.

While K-Means is a widely used clustering algorithm due
to its simplicity and efficiency, it has inherent limitations.
Specifically, K-Means assumes that clusters are spherical
and equally sized, which may not align with the underly-
ing structure of the data. Additionally, K-Means struggles
with irregularly shaped clusters and is sensitive to the ini-
tial cluster centroids. Alternative clustering methods, such
as DBSCAN (Ester et al. 1996) or hierarchical clustering
(Murtagh and Contreras 2012), could provide a better fit for
complex structures in the data. Future work could explore
these methods to assess whether they yield improved clus-
tering quality for this dataset.
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Figure 4: UMAP visualization of embeddings reduced to 64 dimensions, illustrating the clustering of images from online auto
parts listings. Each color represents a distinct cluster identified using K-Means, revealing patterns and relationships within the

dataset.

Results of Clustering Dimensions

Our experiments revealed that using 64 dimensions provided
the best overall performance. Table 1 summarizes the clus-
tering metrics across different embedding dimensions.

Table 1: Reduced embedding dimensions along with cor-
responding index scores. Calinski-Harabasz and Davies-
Bouldin are abbreviated as C-H and D-B, respectively.

Dim. Silhouette C-H D-B

16 0126 9255 4.412
32 0134 9375 4.274
64 0152 9424 4.164
128 0151 9443 4.253

While 128 dimensions slightly outperformed 64 in the
Calinski-Harabasz Index, 64 dimensions offered the best
trade-off between computational efficiency and cluster pu-
rity. The low Silhouette Scores suggest some overlap be-
tween clusters, attributed to outliers in the dataset, such as
images containing mixed content (e.g., both powertrains and
vehicle exteriors). This limitation highlights the challenges
of single-modal approaches, especially when applied to mul-

timodal datasets.

Interpretation

The clustering results indicate that ViT’s embeddings can
group visually similar images effectively, with a clear differ-
entiation between major categories of auto parts. However,
the presence of outliers emphasizes the importance of con-
text, which a single-modal approach may miss. This finding
underscores the potential advantages of multimodal models
but also demonstrates the capability of ViT for image-only
analysis in domains where additional modalities are unavail-
able or impractical.

The following section will analyze the findings to evaluate
their implications for auto parts classification and clustering.

Results and Discussion

Our analysis revealed clusters that exhibit distinct patterns
and characteristics, as shown in the UMAP visualization in
Figure 4. These clusters highlight coherent groupings within
the dataset, capturing similarities in image features while
also exposing outliers that may require further investiga-
tion. The visualization demonstrates that the use of UMAP
effectively reduced the high-dimensional embedding space



to two dimensions, preserving important structural relation-
ships within the data.

Cluster Analysis

Using k-means clustering with £ = 20, we identified distinct
groups of images corresponding to specific auto part cate-
gories. To validate these clusters, we employed k-Nearest
Neighbors (KNN), locating the ten posts nearest to each
cluster centroid based on Euclidean distance. The alignment
of these nearest images with their respective centroids, as
displayed in Figures 5, 6, and 7, supports the validity of our
clustering approach.

The distinctiveness of some clusters was evident in their
thematic consistency. For example:

* Cluster 0: Primarily contained full vehicle exteriors, in-
cluding sedans, SUVs, and trucks.

¢ Cluster 1: Dominated by individual exterior compo-
nents, such as mirrors, bumpers, and grilles.

¢ Cluster 2: Grouped powertrain elements, including en-
gines, transmissions, and drivetrain components.

¢ Cluster 3: Captured body panels like doors, trunks, and
hoods, as illustrated in Figure 8a and Figure 8b.

¢ Cluster 4: Focused on towing accessories, such as trailer
hitches and tow bars.

The clustering performance metrics from Table 1 corrob-
orated these observations. For 64 dimensions, the Calinski-
Harabasz Index (942.4) indicated strong inter-cluster sep-
aration, while the Davies-Bouldin Index (4.164) suggested

moderate intra-cluster cohesion. However, the low silhou-
ette score (0.015) revealed some degree of cluster overlap,
which is reflected in the presence of outliers.

The results indicate that some clusters exhibit significant

Figure 6: Representative images from posts located near a
cluster centroid that appears to represent images of objects
that look like lights.

Figure 5: Representative images from posts located near a
cluster centroid that appears to represent images of objects
that look like wheels.

Figure 7: Representative images from posts located near a
cluster centroid that appears to represent images of objects
that look like bumpers.



(a) Hood of a vehicle, represent-  (b) Trunk of a vehicle, repre-
ing an image grouped in clus- senting another image grouped
ter 3. in cluster 3.

Figure 8: Examples of images from cluster 3, showcasing
body panels. These images highlight the visual consistency
of cluster 3 in grouping related components, such as vehicle
hoods and trunks.

overlap, which may be partially attributed to the limita-
tions of K-Means. Since K-Means assumes spherical clus-
ters, it may struggle to capture more complex relationships
between auto-part images. For example, DBSCAN, which
groups data points based on density, could potentially han-
dle cases where clusters have irregular shapes or varying
densities. Likewise, hierarchical clustering may offer a more
flexible way to identify nested structures in the data. Future
work should explore these methods to determine their ef-
fectiveness in improving clustering performance for online
marketplace images.

Since this study employs an unsupervised clustering ap-
proach, no separate train/val/test split exists. Instead, the
dataset was processed as a whole, with a de-duplication step
ensuring no duplicate samples were present. This allows
the clustering results to emerge naturally from the data’s
inherent structure rather than being influenced by training
procedures. Future work could explore whether supervised
approaches or hybrid methods incorporating labeled data
might further refine these clusters.

Outliers and Limitations

The UMAP visualization also revealed a number of outliers
that did not align well with any cluster. These outliers often
included images with mixed or ambiguous features, such as
a single image displaying both powertrain components and
exterior parts. This highlights a key limitation of using a
single-modal approach: while ViT is effective at capturing
visual patterns, it lacks the contextual understanding that
multimodal models can provide by integrating textual de-
scriptions or other metadata.

Additionally, the low silhouette score suggests that some
clusters may overlap, particularly in cases where visual sim-
ilarities exist between different auto parts. For instance, mir-
rors and body panels may share reflective surfaces or ge-
ometric shapes that lead to misclassification. Addressing
this issue would likely require incorporating additional data
modalities or refining the embedding process to better dif-

ferentiate these subtle features.

Implications for Single-Modality Models

Despite the noted limitations, the results underscore the ca-
pability of ViT to classify and group auto part images based
purely on visual data. This finding is particularly relevant
for applications where only image data is available or where
multimodal approaches are infeasible due to computational
or privacy constraints.

The ability of ViT to effectively group visually distinct
categories, such as powertrain components versus exterior
panels, demonstrates its potential for tasks involving large-
scale, single-modality datasets. These results also high-
light the utility of dimensionality reduction techniques like
UMAP in improving interpretability and revealing structural
relationships in high-dimensional data.

While the ViT-based approach successfully groups visu-
ally similar auto-part images, the presence of overlapping
clusters and outliers suggests that additional context could
improve clustering quality. A multimodal approach, such as
the one explored in (Hamara and Rivas 2024), leverages
both images and textual descriptions from online market-
place listings to enhance representation learning. By incor-
porating textual context, models like ImageBind (Girdhar
et al. 2023) can better differentiate between visually simi-
lar objects that serve different functions (e.g., two identical-
looking car parts belonging to different vehicle models).

Future work should explore other multimodal Vision-
Language Models (VLMs) that integrate textual metadata
with image embeddings to refine clustering performance.
This could provide richer semantic groupings and mitigate
some of the cluster overlap observed in the single-modal set-
ting.

Big Picture Perspective

The findings of this study contribute to the broader un-
derstanding of single-modal architectures in computer vi-
sion. While multimodal approaches often outperform single-
modal models by leveraging complementary information,
this work demonstrates that a well-optimized ViT-based
pipeline can achieve meaningful results in specific domains.
For instance, the ability to detect patterns in C2C auto part
listings could support applications in crime prevention and
fraud detection.

Moreover, the challenges identified, such as cluster over-
lap and the handling of outliers, highlight areas for fur-
ther research. Enhancing single-modal models through tech-
niques like self-supervised learning or advanced embedding
strategies could mitigate some of these issues. Future work
could also explore how these methods compare to multi-
modal models, providing insights into the trade-offs between
simplicity and performance in practical applications.

Conclusions

This analysis demonstrates that while ViTs perform reason-
ably well in clustering auto parts listings, the dataset poses
challenges for a single-modal approach. Our study diverged
from previous studies that employed multimodal techniques



(Hamara and Rivas 2024), which leveraged the fusion of
visual and textual data to capture richer contextual infor-
mation. For instance, the multimodal approach achieved a
silhouette score of 0.3819, significantly outperforming the
0.015 score from our single-modal ViT-based approach.
This disparity underscores the advantages of multimodal
models like ImageBind, which are better equipped to han-
dle datasets containing both images and textual metadata.

Despite these limitations, our results highlight ViT’s abil-
ity to isolate visual patterns in a dataset where text and im-
ages are often complementary. ViT was able to group listings
into reasonably coherent clusters; however, cluster overlap
and the presence of outliers revealed key shortcomings. One
major limitation stems from the exclusion of textual data,
such as captions, which often provide crucial contextual in-
formation about the images. Without this data, the model
struggled to distinguish between visually similar compo-
nents that serve different functions. Furthermore, many list-
ings included images of multiple vehicle components within
a single post, contributing to less distinct clusters and com-
plicating the clustering process.

The findings of this study suggest several areas for im-
provement. One promising direction is to fine-tune the ViT
model with a domain-specific pre-training dataset, allowing
it to better capture the nuances of auto part imagery. Another
potential enhancement involves experimenting with hybrid
models incorporating textual embeddings while maintaining
a primary focus on visual data. Additionally, post-processing
techniques such as outlier detection and filtering could be
developed to improve the clarity and coherence of clusters.

Ultimately, the results of this study serve as a stepping
stone toward developing robust tools for analyzing online
marketplaces. By improving clustering performance and in-
tegrating contextual information, this approach could play a
critical role in detecting patterns of illicit activity, such as
identifying stolen auto parts or fraudulent listings. Contin-
ued efforts in refining single-modal and multimodal methods
will help bridge the gap between theoretical advancements
and practical applications in this domain.
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