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Abstract: The extraordinary advance in quantum computation leads us to believe that, in the not-too-
distant future, quantum systems will surpass classical systems. Moreover, the field’s rapid growth
has resulted in the development of many critical tools, including programmable machines (quantum
computers) that execute quantum algorithms and the burgeoning field of quantum machine learning,
which investigates the possibility of faster computation than traditional machine learning. In this
paper, we provide a thorough examination of quantum computing from the perspective of a physicist.
The purpose is to give laypeople and scientists a broad but in-depth understanding of the area. We
also recommend charts that summarize the field’s diversions to put the whole field into context.

Keywords: quantum computing; quantum artificial intelligence; quantum information

1. Introduction

Quantum computing (QC) is gaining popularity at a rapid pace. Its adaptability is
attracting enough attention to help it grow. Top enterprises from around the world, research
institutions, startups, and organizations with sufficient resources have all contributed to the
advancement of this remarkable sector. While many are skeptical of its ability to achieve
exceptional results at the level it claims, others are excited about the solutions it can provide
to modern-day challenges that are beyond the reach of traditional classical computing (CC).
It is vital to note that QC is not a technique or a paradigm for subduing or suppressing CC
in and of itself, but rather for picking up the pace where CC may be behind.

Quantum machine learning (QML), a growing topic that blends quantum information
(algorithms) with machine learning (ML) [1], or classical machine learning algorithms
applied on quantum devices, is one of the models in QC. We hope to tackle problems with
improved performance using this blending region, and in terms of complexity theory, we
should be able to reduce the running time and memory space.

On a quantum computer, quantum algorithms are step-by-step operations [2]: these
operations, which use quantum mechanics concepts, such as superposition and entan-
glement, improve speed, optimization, and other efficient computations that cannot be
performed on a traditional computer. Although this is a developing topic, much work has
been done to design algorithms that will function with quantum devices in the near future.
Ref. [3] provides a complete list of accessible quantum algorithms.

1.1. Contributions

The following are the specific contributions of our paper:

1. This paper provides foundational concepts about QC and a comprehensive analysis
of recent work, investigating the connection between physics and information science
and assessing the area’s growth.

2. We present flowcharts that summarize the field’s development and/or roadmap,
as well as a comparison of common quantum bit technologies and open source
development frameworks.

Data 2022, 7, 28. https://doi.org/10.3390/data7030028 https://www.mdpi.com/journal/data

https://doi.org/10.3390/data7030028
https://doi.org/10.3390/data7030028
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/data
https://www.mdpi.com
https://orcid.org/0000-0001-5857-0979
https://orcid.org/0000-0002-8690-0987
https://orcid.org/0000-0003-0279-7458
https://doi.org/10.3390/data7030028
https://www.mdpi.com/journal/data
https://www.mdpi.com/article/10.3390/data7030028?type=check_update&version=3


Data 2022, 7, 28 2 of 16

3. We explore the field’s current (experimental and theoretical) problems in achieving
fully scaled quantum devices. We also provide a summary of past developments as
well as a progress report on quantum information science topics of interest.

4. We provide a list of topics of interest, together with a high-quality list of reference
resources for a more in-depth study of each subject, based on the preferences of
the readers.

1.2. Structure

We begin by providing a layman introduction to quantum physics and machine
learning, followed by a concise overview of quantum information science related to those
subjects. We then present a complete list of effective QC models, along with research
developments. As indicated in several articles, we propose various implementable concepts
or future work. Finally, we look at a variety of cutting-edge applications that are (or have
been) already implemented, as well as how we perceive QC will be used in the near future.

In the following section, this paper explores topics related to modern physics and
artificial intelligence. After that, we go over some quantum information ideas. We devote a
part to providing a quantum computing timeline, followed by a discussion and conclusion.

2. Modern Physics and Artificial Intelligence

This part begins with a brief introduction to quantum mechanics, followed by a
discussion of machine learning. The next section explains how these two sciences were
joined with other fields of information science to establish quantum computing.

2.1. Quantum Mechanics

Quantum mechanics is the foundational theory that explains and provides all knowl-
edge about matter and light’s behavior. Objects in quantum physics have wave-like
qualities [4]. Despite the prevalent concept that quantum mechanics is limited to subatomic
particles, predictions have been made that QM will solve computational difficulties in
domains such as chemistry, physics, machine learning, and communication system security
enhancement [5].

Quantum Theory

Quantum mechanics is a framework for understanding quantum phenomena [4].
This framework provides information on a particle’s state described by a wave function,
commonly represented as ψ(x, t). The Schrödinger equation describes the time evolution
of this wavefunction, which contains all available information about the particle [6]:

ih̄
∂|ψ(t)〉

∂t
= Ĥ(t)|ψ(t)〉. (1)

where h̄ is Planck’s constant and Ĥ(t) is the Hamiltonian operator, which, for general
purposes, represents the energy of the system.

2.2. Machine Learning

ML was coined by Arthur Samuel in 1959 to describe the field in which computers
may learn to do tasks without being instructed to do so [7,8]. Rivas [9] gave a depiction
of the ML ecosystem, while [8] depicted the multi-disciplinary fields of ML. The goal of
machine learning is to create algorithms that can learn from data on their own [10].

ML can be supervised or unsupervised [11]. Unsupervised learning is a technique
to learning from data, where multiple supervisory signals self-optimize a fitness function.
In contrast, supervised learning is a process where the algorithm learns from labels as
supervisory signals [9]. In recent years, ML has developed rapidly to higher dimensions,
such as deep learning, whose applications such as image classification, autonomous car
driving, speech recognition, and more are applicable to everyday life [12].
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Classical information theory, computer science, and quantum physics are all combined
in quantum computing. As a result, we can conclude that quantum information, which
has three main areas: quantum computing, quantum information theory, and quantum
cryptography. We shall discuss about the quantum computing, namely, the area of inquiry
that uses quantum phenomena, such as interference, superposition, and entanglement, and
Dirac or bracket notation; to operate on quantum states, these states represent data [13].

3. Quantum Information Science

As previously remarked, quantum computing is coined from two areas of sciences:
physics (quantum mechanics) and information science (mathematics, theoretical and ap-
plied computer science, among others).

The dots between information science and quantum physics principles are connected
here. We begin by outlining the postulates of quantum mechanics as they relate to quantum
information theory. We also include a one-line statement that defines quantum information
processing terminologies, such as entanglement, superposition, and speedup, among others.
This summary is based on Refs. [1,13–18].

3.1. Quantum Mechanics Postulates, Entanglement, Mixed States and Operations

The unique feature of a quantum computer in comparison to a classical computer is
that the bit (often referred to as “qubit”) can be in one of two states (0 or 1) and possibly
a superposition of the two states (a linear combination of 0 and 1) per time. The most
common mathematical representation of a qubit is

|ψ〉 = α|0〉+ β|1〉 (2)

Equation (2) is a superposition state, where α, β are complex numbers and |0〉, |1〉 are
computational basis states that form an orthonormal basis in this vector space. A qubit can
also be represented visually using a Bloch sphere, as shown in Figure 1.

|0〉

|1〉

|ψ〉

θ

φ

Figure 1. A Bloch sphere. This is used to visualize the qubit’s geometric state. It gives the angles and
basis vectors for the |ψ〉 representation.

We then move on to the postulates of quantum mechanics, which are preceded by a
diagram in Figure 2 that gives a summary representation of the postulates.

• Postulate 1: State Space. The state of a quantum system is described by a unit vector
|ψ〉 that lives in a Hilbert space H. This state contains all necessary information to
characterize the system.

• Postulate 2: Evolution. A closed quantum system undergoes a time evolution |ψ(t)〉.
This evolution is described by a unitary transformation that follows the Schrodinger
Equation (1).

• Postulate 3: Measurement. Quantum measurements can be expressed using sets of
measurement operators {Mm}. In an experiment, m represents the possible measure-
ment outcomes. Upon measuring a state, say |ψ(t)〉, the probability of an m outcome
is p(m).
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• Postulate 4: Composite Systems. Two or more physical systems can be treated as a
composite system. The state space of a composite system is the tensor product space
of the states of the component physical systems.

Figure 2. One easy way to show the quantum mechanics postulates chart. P1 defines the state space,
P2 defines the evolution, P3 defines the measurement, and P4 defines the composite system, where
|ψa〉|ψb〉 ≡ |ψaψb〉.

Other Important Properties

• Superposition Linear combination of two states.
• Entanglement When the values of specific qualities of one system are correlated with

the values of the corresponding properties of the other system, two quantum systems
are said to be entangled.

• Speedup If the quantum algorithm requires fewer queries to solve a problem than the
classical approach, the outcome is a quantum speedup [19].

3.2. Quantum Information Science: An Overview

Quantum communication, quantum computing, and quantum sensing (and metrol-
ogy) are the three research categories in quantum information science. There are subcate-
gories and specific research activities that pertain to each of these groups—starting with
quantum communication, which is essentially the process of exchanging information on
a quantum level. Quantum cryptography and networking are two popular uses of this
burgeoning field. Moving on to quantum sensing, this branch of quantum information
studies how to make quantum devices interact with their surroundings. Quantum systems
and designs are examples of this type of application. In the subject of quantum information
science, quantum computing is the third most talked-about topic.

Quantum computers are now divided into two types: analog and digital. The analog
computer is a quantum computer that runs based on the system’s Hamiltonian and the
initial quantum state of qubits. Three forms of analog quantum computers exist:

• Adiabatic quantum computing (AQC) is a computational model that employs adiabatic
quantum mechanical processes [20].

• Quantum annealing (QA) is a technique for evaluating the minimum of an objective func-
tion that is built on AQC concepts but does not meet its stringent requirements [20].

• Quantum simulation (QS) is the use of a controllable quantum system to examine a less
controllable or accessible quantum system [21].

The digital quantum computer is the second type of quantum computer. It is a
quantum device that computes using a limited number of elementary operations, termed
gates, on quantum bits (qubits). Gate-based quantum computing is the most common type
of digital computer.

• Gate-based quantum computing (GBQC) accepts data and modifies it by a unitary op-
eration, which is expressed as a sequence of gate operations and measurements (i.e.,
the algorithm) and may be represented by a quantum circuit [22]. Quantum machine
learning is the GBQC’s driving force.

3.3. Quantum Computing System

As shown in Figure 3, there are two kinds of quantum computers: analog and digital
quantum computers. Both of these types of computers have some similarities, which are
“hardware” and “software” relative to traditional computers. This is depicted in Figure 4:
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Figure 3. Quantum information science (QIS) chart. QIS is divided into three categories: quantum
communication, quantum computing, and quantum sensing (and metrology). Quantum communi-
cation and quantum sensing have applications, such as quantum networking and quantum system
design, respectively. The field of QC splits into analog and digital computing. An analog quantum
computer could be any of three forms: adiabatic quantum computing, quantum annealing, or quan-
tum simulation. A digital quantum computer exists in the form of gate-based quantum computing,
using the features of QML for its operations.

Figure 4. Quantum computing system (QCS) Chart. QCS is a complete system that has two oper-
ational parts: hardware and software. The hardware of a QCS is essentially a quantum computer
(with variations such as trapped ion qubits and superconducting qubits, among others). Generally, a
quantum computer comprises essential components, which are quantum data planes, control and
measurement planes, control processor plane, and a host processor. Similarly, the software of a QCS
is composed of essential tools, which are simulation and debugging tools, optimization tools, and
verification tools.

The hardware of a quantum system, the quantum computer, is made up of various
components. The operation of these components necessitates the use of software tools. The
various programming tools as they apply to a quantum system are visually represented
in Figure 5.
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Figure 5. Programming quantum computers Chart. Quantum computers necessitate the use of two
key features to run efficiently: programming languages and programming tools. A programming
language can either be high level or low level. An example of low-level language programming is
quantum assembly language (QASM). A high-level programming language is functional (example
includes Quipper) and imperative (example includes ProjectQ).

3.4. Q-Gates, Circuits, and Algorithms

A quantum circuit is a representation of a quantum operation that is performed
sequentially. Logic qubits are transported on “wires” (shown by horizontal lines), and
quantum gates (represented by blocks) act on the qubits in a typical quantum circuit,
as depicted in Figure 6. The logical gate is a device that controls or processes data; the
Hadamard “H” gate and NOT “X” gate are two common examples.

Rx

H

Figure 6. A quantum circuit. The horizontal lines are referred to as wires representing qubits, while
the boxes represent operators acting on the qubits. Rx and H are the rotation operator and Hadamard
gates, respectively.

Algorithms are used in computers to complete predefined tasks. Quantum algorithms
work with any actual quantum computation model [23]. Quantum computers can run
classical algorithms, but not the other way around. This is due to entanglement and
situations such as qubit superposition. Quantum algorithms are created using two key
quantum gates—Hadamard and phase gates—which take advantage of the quantum
interference, parallelism, and function evaluation properties. The Quantum Algorithm Zoo
website [3] includes a thorough list.

In Table 1, we show different quantum algorithms as they fit under various categories
of activities and applications.
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Table 1. Quantum algorithm classifications.

Quantum Algorithms

Quantum Fourier transform Amplitude amplification

Simon’s algorithm Grover’s algorithm
Shor’s algorithm Quantum counting

3.5. Common Quantum Applications

There are many quantum applications in use today, and we will go over a few of them
here: information encoding, quantum teleportation, and quantum cryptography.

3.5.1. Information Encoding

Quantum computers are projected to employ quantum data for information processing,
similar to how classical computers use classical data for information processing. Because
of the established conceptuality of QC outperforming CC, the ability to execute classical
operations, and the restrictions in generating quantum data, the problem of converting
classical data to quantum data has attracted a lot of attention in recent years, with various
advancements. This procedure is known as data encoding.

Because data arrive in various formats, there are multiple methods for transforming
conventional data to quantum data. The following is a list of data encoding methods that
have been confirmed to work:

• Basis encoding;
• Amplitude encoding;
• Qsample encoding;
• Dynamic encoding.

In [1], a summary is given of the various forms of information encoding that have
been described, along with possible outcomes.

3.5.2. Quantum Teleportation

Teleportation uses the entanglement property to transport quantum information from
one quantum state (qubit) to another. This procedure is frequently used between two parties
that are attempting to communicate. There are five phases to transferring an unknown
quantum state q0 between parties q1 & q2:

1. Parties q1 and q2 create an entangled pair.
2. q1 applies a CNOT gate with the unknown state q0.
3. q1 applies a Hadamard gate to the first qubit of the result in 2.
4. q1 measures the results from 3.
5. q1 communicates the measurement results with q2.

Using an IBM simulator (Qiskit), we give a circuit schematic (Figure 7) of the telepor-
tation process in context.

|q0〉 X • H

|q1〉 H •

|q2〉
B1 B2 B3

c /
0 1

Figure 7. Quantum teleportation circuit. There are three qubits (q0, q1 and q2) and two classical bits
(represented by the / sign on the c wire). In addition, there are two Hadamard gates and two CNOT
gates. Finally, measurements are made on the classical channels. Each dashed vertical line represents
a barrier (B1, B2, and B3) to split some circuit parts for sequential order of operation.
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3.5.3. Quantum Cryptography

Quantum key distribution (QKD) is another name for quantum cryptography. QKD
is a type of key distribution that encrypts and decrypts communications using quantum
physics principles to establish a high-level secure data transmission between two or more
parties. As a general rule, today’s most popular and commonly utilized form of encryption
is known as RSA encryption. Without going into too much detail about RSA because that
is outside the scope of this paper, the most important thing to know is that the security
system relies heavily on huge numbers that are not impossible to crack but difficult to factor.
Peter Shor’s prime factorization algorithm (executed on a quantum computer) presents a
significant challenge to this method. QKD, which is based on quantum physics, provides a
more efficient way of encrypting data.

Principle A secure transmission of QKD necessitates two communication channels.
The encrypted message is sent over a classical channel (such as the telephone), while the
quantum keys needed to decrypt the message are sent over a quantum channel (such as
qubit transfer).

In QKD, numerous protocols are employed. The BB84 (Bennett and Brassard, 1984)
protocol was the first to be established, and several protocols have since been built on it.
B92, E91, decoy state, and a slew of other protocols are among them.

BB84 This is based on three fundamental aspects of quantum physics:

• No-cloning theorem;
• State collapse when measured;
• Irreversible measurement.

4. Quantum Computing Frameworks

In Table 2, we offer a mix of open source quantum computing tools largely driven by
large-scale industry players, with the purpose of making it easier to design quantum algorithms.

Table 2. Each quantum computing tool’s programming language, computing paradigm, and descrip-
tion are mentioned in the table.

Tool Programming
Language

Quantum Computing
Paradigm

Framework Description

Cirq Python Discrete gate model A library for creating, manipulating, and optimizing
Noisy Intermediate Scale Quantum (NISQ) circuits,
which can then be executed on quantum computers
and simulators.

dwave-system Python Quantum annealing An API for using the D-Wave system as a sampler in
the D-Wave Ocean software stack, either directly or
via Leap’s cloud-based hybrid solvers.

FermiLib Python Discrete gate model An open-source software suite that makes it easier
to create and test algorithms for quantum computer
simulations of fermionic systems.

Qbsolv C Quantum annealing A deconstructing solver that splits a huge quadratic
unconstrained binary optimization (QUBO) problem
into pieces to obtain a minimal value.

QGL.jl Julia Discrete gate model A QGL compiler with a focus on performance.

Qiskit.js JavaScript Discrete gate model Quantum Information Science Kit for JavaScript.

Qrack C++ Discrete gate model A complete framework for constructing universal vir-
tual quantum processors that is GPU accelerated.

Quirk JavaScript Discrete gate model A browser-based quantum circuit simulator with
drag-and-drop functionality. A toy for experimenting
with and learning about small quantum circuits.

Strawberry
Fields

Python Continuous gate model A Python library for developing, optimizing, and
implementing photonic quantum computers.
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4.1. Comparing Common Types of Quantum Bit Technologies

The search for a suitable physical system in which to implement quantum logic opera-
tions has been going on for a long time. In Table 3, we discuss three major qubit technology
options for building a quantum computer. These quantum technologies, trapped-ion
qubits [24,25], superconducting qubits [26,27], and photonic qubits [28,29], are thought to
be well advanced.

Table 3. A comparison of three qubit technologies: trapped ion, superconducting, and photonic
qubits is shown in the table based on their operations and fundamental properties.

Trapped Ion Qubit Superconducting Qubit Photonic Qubit

To produce qubits, lasers are used to ion-
ize atoms and trap them in electric po-
tentials. The status of the qubits is then
measured using an extra laser.

The qubits are created by combining a
superconducting resonator with a nonlin-
ear inductor to make an artificial atom.

The squeezed state (light working as
qubit) is created by distributing laser light
to an array of squeezers (microscopic de-
vices comprised of relatively small ring
resonators) .

Stable qubits can be generated using
trapped ion technology, and forming an
entangled state is simple. Working with
large numbers of qubits in this system is
challenging, and implementing a whole
quantum algorithm is even more compli-
cated. Decoherence is a difficult problem
to solve.

Building and accurately measuring
qubits with superconducting technology
is simple. These qubits have a nanosec-
ond time scale and a quick decoherence
time. Qubits must be cooled to near ab-
solute zero to function, and computation
is subject to quantum noise.

Qubits are far more stable in photonic
technology and can readily entangle a
huge number of photons. It is possible
to perform computation at room tempera-
ture, but it is less fault-tolerant, and er-
ror correction is harder. According to
this technique, quantum supremacy is at-
tained.

4.2. Challenges in the Field of Quantum Computation

As we get closer to a fully scalable quantum computing age, the current state of
quantum computation faces many hurdles, from experimental to theoretical. Professionals
in the field have recognized a few issues, which we summarize here.

4.2.1. Experimental Challenges of Quantum Computing: Quantum Computers

Neutral atoms for quantum computing by [30] stated that although quantum comput-
ers have been shown to outperform traditional computers, there is yet to be a quantum
computer that can perform an operation that cannot be emulated on a regular computer.
Because a quantum computer takes around 50 qubits and several gates ranging from 104 to
achieve a calculation that cannot be emulated on a conventional computer, this is essentially
a scale-up problem. In the concluding section of their article, David et al. stated that: “From
the view of an experimental physicist, the task of exerting precise control over a large
number of individual quantum particles is a grand challenge” [30]. They went further to
explain that the following requirements must be met for successful quantum computation:

• Putting atoms in precise quantum states;
• Manipulating the interactions of the atoms to carry out logical procedures;
• Obtaining the computational output by monitoring the resultant states.

4.2.2. Theoretical Challenges of Quantum Computing: Quantum Simulators

Quantum machine learning by Biamonte et al. [19] noted that quantum algorithms
could only outperform traditional algorithms in exceptional circumstances, according to
research. The quantum speedup, which is the outcome of superimposing a quantum state,
was the most popular at the time. They thoroughly described the concept of quantum
speedup. After their research, four fascinating questions were posed. These questions
impacted research focus, which is still happening today since it would provide a more
concise way to apply quantum machine learning to everyday applications—the input,
output, costing and benchmarking issues were the topics of discussion.

Because quantum algorithms have been shown to be faster than classical methods,
data encoding takes up more time (converting classical data to quantum data since the
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readily available data are classical). Until a more rapid encoding program is produced, this
is a significant disadvantage. In this domain, several efforts have been made to solve the
input problem. In [31], a demonstration of how data can be mapped into a particular space
where quantum states exist was exploited. In the work of Schuld [32], it was pointed out
that machine learning and quantum computing have certain similarities. This resemblance
is known as the “kernel model.” In simple terms, a kernel model is a type of machine
learning that characterizes information (data) based on how similar and distinct they are
from one another. A clear picture of data encoding (embedding) was offered in a more
recent publication by Schuld [33]. This article did not directly address the cost of data
encoding, but it did provide a concise overview of the various data encoding methods.

5. Quantum Computing’s Chronology and Origin Sequence

In this part, we give a quantum chronology that stretches from the 1935 EPR para-
dox [34] to the year 2020. A diagram demonstrating the flow of quantum computing
processes related to the three science domains mentioned earlier is also included.

5.1. Quantum Computing Chronology

Since the 1935 observation of the EPR paradox, various research projects have resulted
in the development of quantum computing systems and cutting-edge technologies. We
have put together a timeline in Figure 8 and Table 4 showing how these changes have
proceeded over time.

Figure 8. A short timeline exploring the development of quantum technology dating back to 1935.

Table 4. From 1935 until the present, a brief history of quantum technology development.

Year Activity Reference

1935 EPR Paradox [34]
1964 Bell’s Inequality [35]
1982 Quantum Computer envisaged by Richard Feynman [36]
1993 Quantum Teleportation proposed [37]
1994 Shor’s Factoring Algorithm [38]
2001 Experimental factorization of 15 by IBM [39]
2014 Data transfer by Quantum Teleportation [40]
2020 Quantum Advantage: Jiuzhang [41]
2021 Quantum communication over optical fibers over 600 km in length [42]
2021 127 Qubits Milestone: IBM [43]

5.2. From Physics to Quantum Computing

The origins of quantum computing may be traced back to two disciplines of physics:
modern and classical. The convergence and divergence of the quantum computing dis-
cipline are seen in Figure 9. In this context, some contributions and applications on high
energy physics have been reported [44–47].
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Figure 9. Quantum computing journey from two fields of science: information science and quantum
physics.

6. Discussion
6.1. State of the Art

Colin Williams published the first book on quantum computing, dubbed Explorations in
Quantum Computing [48]. However, significant advancements in the subject have occurred
since the book’s release in 1998. We investigated the progress of quantum information
science as it applies to three essential disciplines: quantum computing, quantum sensing,
and quantum communication, all of which were discussed previously. We executed a series
of searches on the well-known Scopus database (for no apparent reason) to generate data
on publications published on topics closely connected to these fields. Quantum sensing,
quantum metrology, quantum sensor, quantum hypothesis testing, and/or quantum radar were
some of the themes we considered for “quantum sensing and metrology”. For “quantum
computing and algorithms”, we considered topics such as quantum computing, quantum
computer, quantum computation, and/or quantum algorithm. Similarly, quantum communication,
quantum network, quantum cryptography, quantum modem, quantum internet, and/or quantum
bus were the selected topics for “quantum communication”. The time frame for the search
was 1996 through 2020 (over 20 years of its existence). The following is the search query,
data, and visual plot shown in Figures 10 and 11.

Quantum Sensing and Metrology (QSM):
((ALL(‘‘quantum sensing’’) OR ALL(‘‘quantum metrology’’) OR
ALL(‘‘quantum sensor’’) OR ALL(quantum hypothesis testing) OR
ALL(‘‘quantum radar’’) AND PUBYEAR > 1995 AND PUBYEAR < 2021)

Quantum Computing and Algorithm (QCA):
((ALL(‘‘quantum computing’’) OR ALL(‘‘quantum computer’’) OR
ALL(‘‘quantum computation’’) OR ALL(quantum algorithm) AND
PUBYEAR > 1995 AND PUBYEAR < 2021)

Quantum Communication (QC):
((ALL(‘‘quantum communication’’) OR ALL(‘‘quantum network’’) OR
ALL(‘‘quantum cryptography’’) OR ALL(quantum modem) OR
ALL(‘‘quantum internet’’) OR ALL(quantum bus) AND PUBYEAR >
1995 AND PUBYEAR < 2021)

Figure 10. Query search used in Scopus database to generate data of the publications on the topics,
quantum sensing, quantum communication, and quantum computing from 1996 to 2020.
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Figure 11. Quantum information science progress report. This graph shows the progression of the
number of published documents in the areas of quantum sensing and metrology, quantum computing
and algorithms, and quantum communications, respectively. It dates from 1995 through 2020.

In the future, we may be confronted with the possibility of using a quantum computer
for everyday tasks. Quantum computing, on the other hand, has yet to achieve that aim,
and as a result, it is frequently referred to as “near-term” computing.

Quantum computing is a subset of artificial intelligence that combines quantum
mechanics concepts with linear algebra and computer science functions to create a super-
computer. It faces several challenges as a developing field. These difficulties exist in both
the hardware and software aspects of the sector. Despite this, there are positive advances
that push us in the path of one day realizing the potential it has, hopefully in our lifetime.

6.2. Emerging Quantum Machine Learning Technology

Traditional machine learning’s effective problem-solving application has shown limita-
tions in areas such as the difficulty of searching algorithms [49] and the costly estimation of
kernel functions due to vast feature spaces, to name a few. Theoretical answers to some of
them and others were established in QML’s recent advances. A good example can be found
in the work of [31], where they experimentally achieved a quantum feature space-based
classifier. A number of quantum classifiers have been implemented recently, as reported
in [50], and their performance is frequently compared to that of their classical counterparts.
There have also been advancements in the field of quantum deep learning [51], with recent
work by [52] implementing a quantum generative adversarial network on a supercon-
ducting quantum processor for learning and the generation of real-world handwritten
digital images, and [53] implementing quantum convolutional neural networks (QCNN)
for different applications; among them is the use of QCNN to create a quantum error
correction method that is optimized for a particular error model. It is vital to highlight the
combinatory “hybrid quantum–classical algorithms”, which include recent advances, such
as those seen in [54], where hybrid quantum variational autoencoder was applied to a repre-
sentation learning task as well as the work of [55] implementing hybrid quantum–classical
convolutional neural network on a Tetris dataset for classification.

7. Conclusions

The study of quantum computational learning theory encompasses a wide range of
topics. An extensive survey article that covers every aspect of the field, we believe, would
be overwhelming. However, in a reasonable span, this succinct review presents a diverse
range of topics, all of which are made more accessible using charts, tables, and figures. As
a result, we provide a suitable first reference to modern quantum computing for a wider
audience with no prior knowledge of the area. Since we recognize that our introductory
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review will lead to more specific questions, Table 5 lists resources for future reading, aiming
to provide an in-depth grasp of the quantum computing field.

Table 5. A collection of further reading resources encompassing subfields, such as quantum machine
learning, quantum algorithms, and quantum ethics, is provided below.

Interesting Reads Reference

Quantum Learning and Optimization [56–59]
Quantum Machine Learning [19,32,33,44,54,60]
Quantum Fault Tolerance and Error Correction [61–65]
Quantum System Simulation [21,25,66–69]
Quantum Algorithm Designs [70–75]
Quantum Hardware Test Development [76–80]
Quantum Cryptography [81–87]
Hybrid (Quantum–Classical) Computing [54,55,88–90]
Ethical Quantum Computing [91–93]

Finally, we assert that the relationship between classical artificial intelligence, machine
learning, and deep learning are in direct dependency on quantum artificial intelligence,
which includes quantum computation systems in their entirety, quantum machine learning,
which includes quantum Fourier transforms, amplitude amplification, algorithms, and
quantum deep learning, which includes quantum neural networks, quantum convolutional
neural networks, and other concepts. Figure 12 depicts the symbiotic dependencies between
the aforementioned knowledge areas.

Figure 12. Quantum artificial intelligence is a superset of quantum machine learning and quantum
deep learning.
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