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Background: TheMonkey Alcohol Tissue Research Resource (MATRR) is a repository and analyt-
ics platform for detailed data derived from well-documented nonhuman primate (NHP) alcohol self-
administration studies. This macaque model has demonstrated categorical drinking norms reflective of
human drinking populations, resulting in consumption pattern classifications of very heavy drinking
(VHD), heavy drinking (HD), binge drinking (BD), and low drinking (LD) individuals. Here, we
expand on previous findings that suggest ethanol drinking patterns during initial drinking to intoxica-
tion can reliably predict future drinking category assignment.

Methods: The classification strategy uses a machine-learning approach to examine an extensive set
of daily drinking attributes during 90 sessions of induction across 7 cohorts of 5 to 8 monkeys for a total
of 50 animals. A Random Forest classifier is employed to accurately predict categorical drinking after
12 months of self-administration.

Results: Predictive outcome accuracy is approximately 78% when classes are aggregated into 2
groups, “LD and BD” and “HD and VHD.” A subsequent 2-step classification model distinguishes
individual LD and BD categories with 90% accuracy and between HD and VHD categories with 95%
accuracy. Average 4-category classification accuracy is 74%, and provides putative distinguishing
behavioral characteristics between groupings.

Conclusions: We demonstrate that data derived from the induction phase of this ethanol self-admin-
istration protocol have significant predictive power for future ethanol consumption patterns. Impor-
tantly, numerous predictive factors are longitudinal, measuring the change of drinking patterns
through 3 stages of induction. Factors during induction that predict future heavy drinkers include being
younger at the time of first intoxication and developing a shorter latency to first ethanol drink. Overall,
this analysis identifies predictive characteristics in future very heavy drinkers that optimize intoxication,
such as having increasingly fewer bouts with more drinks. This analysis also identifies characteristic
avoidance of intoxicating topographies in future low drinkers, such as increasing number of bouts and
waiting longer before the first ethanol drink.
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ALCOHOL USE DISORDER (AUD) is a worldwide
public health concern and estimated to be the third

largest preventable cause of death in the United States (Mok-
dad et al., 2004). Population-based epidemiological surveys
conducted in the 1990s and early 2000s estimated lifetime
and past year prevalence of AUDs in the United States to be
between 13 to 23% and 7.4 to 8.5%, respectively (Grant,
1997; Grant et al., 2004). However, the most recent National
Epidemiologic Survey on Alcohol and Related Conditions
(NESARC-III) of adults in the United States reveals a sub-
stantial increase in AUD for both past year (13.9%) and life-
time (29.1%) outcomes. The NESARC-III data found
alarmingly higher rates in younger individuals (18- to 19-
year-olds), with a 26.7% past year and 37.0% lifetime AUD.
The NESARC-III also classified AUD severity as mild, mod-
erate, or severe, based on the number of DSM-V criteria
endorsed by respondents: mild = 2 or 3, moderate = 4 or 5,
and heavy ≥ 6 (of 11 different criteria).

To model the individual differences in severity of AUDs,
we developed a nonhuman primate (NHP) model of oral
alcohol self-administration (Baker et al., 2014; Grant et al.,
2008). This protocol identified a range of daily ethanol
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intakes that encompass 4 categorical levels of drinking sever-
ity: low drinkers (LD), binge drinkers (BD), heavy drinkers
(HD), and very heavy drinkers (VHD) (Baker et al., 2014).
These categories are reflective of AUD severity, with HD
and VHD drinking associated with signs of dependence and
significant increases in pathological outcomes to the brain
(Cuzon Carlson et al., 2011; Kroenke et al., 2014; Siciliano
et al., 2015; Welsh et al., 2011), bone (Gaddini et al., 2015),
and immune system function (Asquith et al., 2014). How-
ever, even though these categorical levels of drinking allow
the uniform comparison of multiple animal cohorts to a sin-
gle disease description, they do not, by themselves, identify
contributing drinking topographies that contribute to risk
for becoming a heavier drinker. Other animal models have
addressed aspects of risk factors for acquiring AUD with
outcome measures that include alcohol consumption (Lovin-
ger and Crabbe, 2005), but few studies have captured the
spectrum of chronic alcohol intakes that encompass the
human diagnosis of AUD. Here, we report on an extensive
set of drinking variables surrounding the initiation of daily
drinking to intoxication in our NHP model that are predic-
tive (i.e., risk factors) of chronic alcohol self-administration.
This data set allows the modeling of future categorical drink-
ing outcomes using an extensive set of phenotypic and
behavioral data.
Specifically, a wide range of data are collected and collated

across individual animals and cohorts within the context of a
well-defined schedule-induced polydipsia (SIP) protocol
(Grant et al., 2008). Data include subject’s drinking pattern,
drinking behavior, age, and physiological response to intoxi-
cation during the induction period (see Table S1). As in pre-
vious studies, the induction period consists of 30 consecutive
days of drinking 0.5 g/kg ethanol, followed by 30 days of
drinking 1.0 g/kg, and finally 30 days of 1.5 g/kg for all ani-
mals. Unlike rodent studies to date, this induction phase
allows researchers to associate the same dose of ethanol and
resultant blood ethanol concentrations (BECs) with individ-
ual patterns of intake, such as rate and volume. The induc-
tion phase also serves as a precursor to the study of alcohol
consumption under relatively unrestricted access conditions.
Thus, following the induction phase all monkeys are given
daily “open access” to 4% w/v of ethanol and water for
22 h/d where they can choose to drink alcohol at any time.
We have used this design to consistently capture molecular
and behavioral data across cohorts of monkeys in a central
repository: www.matrr.com (Daunais et al., 2014).
Previously, a single cohort of 10 monkeys was used to

define aspects of alcohol drinking phenotypes during the
induction phase of this SIP model (Grant et al., 2008). In
that study, a modified principal component analysis indi-
cated that the largest daily volume of ethanol consumed
without a 5-minute lapse in drinking (i.e., a “bout”) during
induction of the 1.5 g/kg dose was the best predictor of
future categorization as either heavy or non heavy alcohol
drinking. Monkeys that could finish 1.5 g/kg ethanol in a
single bout were described as gulpers and went on to be

heavy drinkers, and those that took many bouts of small vol-
umes to finish the 1.5 g/kg dose were described as sippers
and proceeded to be non heavy drinkers (Grant et al., 2008).
The demarcation of heavy versus non heavy drinking in that
initial study was an average daily ethanol intake of 3.0 g/kg
ethanol over approximately 2 six-month periods of daily
open-access drinking. As noted above, we have further evalu-
ated these models in additional cohorts, and rather than just
heavy versus non heavy categories, we now have evidence
that this monkey model supports 4 distinct categorical drink-
ing levels based on natural breaks in ethanol intake distribu-
tion combined with BEC information from 31 animals in 4
distinct cohorts, and an analysis of categorical stability over
time (Baker et al., 2014).
In this study, we expand our induction phase data analyses

of predictive categorical alignment using 5 times more sub-
jects than our original study in conjunction with Decision
Tree machine-learning algorithms (Yang et al., 2010). These
algorithms are particularly useful in bioinformatics because
of their enhanced performance under specific adverse condi-
tions, for example, when variables are noisy or when the
number of variables is much larger than the number of
observations. Decision Tree-based algorithms are compati-
ble in tandem with numerous optimization strategies such as
bagging and gradient boosting (GB) (Lee et al., 2005). In
addition, Decision Tree-based algorithms show superior per-
formance in problems involving the classification of data into
multiple categories, and its underlying algorithm can reveal
which variables contribute in the task of classification (D�ıaz-
Uriarte and De Andres, 2006). They have been used to dis-
cern numerous clinical patterns in adult dependence treat-
ment (Connor et al., 2007), progression of cardiovascular
disease (Melillo et al., 2015), diabetes (Huang et al., 2015),
Parkinson’s disease (Przybyszewski et al., 2016), and hyper-
tension (Ramezankhani et al., 2016), among others. Indeed,
the wide acceptance of decision tree approaches in clinical
medicine currently has broad implications in all areas of
patient management (Ara�ujo et al., 2016; Lobach et al.,
2016). This strategy suggests that variables associated with
early drinking behaviors may predict the severity of future
alcohol abuse.

MATERIALS ANDMETHODS

Animals

Fifty rhesus monkeys (Macaca mulatta) from the Oregon
National Primate Research Center (ONPRC) were used in this
study. Animals were both male and female, derived from 7 cohorts,
designated as “4,” “5,” “6a,” “6b,” “7a,” “7b,” and “10.” Table 1
displays the sex of the cohorts and their average age and weight at
the beginning of 1.5 g/kg ethanol induction and after 2 consecutive
6-month periods of open-access drinking. Table 1 also indicates
assigned drinking categories.

All animals were born into a pedigreed population and remained
with their mothers in a multigenerational troop until weaning at
about 2 years of age. All monkeys were continually in a social set-
ting at ONPRC and transitioned to individual cages at least
3 months prior to the onset of ethanol self-administration according
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to established protocols (Helms et al., 2014b). Subjects were not
members of the cynomolgus (Macaca fascicularis) cohort that ini-
tially were defined as either heavy or non heavy drinkers using this
model (Grant et al., 2008). Rhesus cohorts 4, 5, 7a, and 7b were
used in the previous analyses to identify the 4 drinking categories
(Baker et al., 2014) and are used in these analyses along with
cohorts 6a, 6b, and 10. The age range encompasses late adolescence
to early middle age of captive monkeys, and data from a subset of
these monkeys addressing age as a risk factor for chronic alcohol
self-administration have been published (Helms et al., 2014b).

Monkeys were housed individually with 4 cages
(1.6 9 0.8 9 0.8 m) on a single rack: 2 cages located above and 2
below. Monkeys that weighed over 10 kg were allowed access to
both horizontal cages, but only 1 drinking panel was affixed to the
side of the cage. Each cohort was housed in a single room, and all
animals had visual and auditory access to other monkeys in the
room. Male monkeys were allowed tactile access to adjacent mon-
keys through grooming grids inserts in the common wall of the cage,
and female monkeys were allowed 2-hour access/d to a common
space by removing the horizontal barriers between the cages.

Ethanol Self-Administration

Self-administration data and food intake patterns were acquired
through operant panels, previously described in detail (Grant et al.,

2008; Vivian et al., 2001). Monkeys were induced to self-administer
4% ethanol w/v in water using a SIP procedure (Grant et al., 2008).
A key aspect of ethanol self-administration induction is that the
dose of ethanol the monkeys were required to consume each day
increased every 30 days beginning with 0.5 g/kg/d, then 1.0 g/kg/d,
and finally 30 days of 1.5 g/kg/d. In this manner, all monkeys drank
to levels that saturated metabolic capacity and increased BEC to at
least 50 mg/dl. While intoxication occurred when their BEC was
>80 mg/dl (Dawson et al., 2008; Li et al., 2007), low drinkers typi-
cally will not drink beyond 50 mg/dl (Grant et al., 2008). After
induction, the monkeys transitioned to 22 h/d access to ethanol
(4% w/v) and open access to water. Food was supplied at least 3
times a day during meals in the form of banana-flavored pellets
(Noyes, Lancaster, NH; Bio Serv, Flemington, NJ). Meals were a
minimum of 2 hours apart (2.06 � 0.16 hours) with the first meal
provided at the onset of the session. The open-access interval ana-
lyzed was two 6-month periods, as previously described in Grant
and colleagues (2008), see Fig. 1.

Computing and Statistics

All computations were executed on twin computers, each running
4 Intel Xeon E5620 processors (Intel Corporation, Santa Clara,
CA) at 2.4 GHz, having 4 cores per processor, that is, a total of 16
cores per server, with 47 GB of memory. All statistical analysis and

Table 1. Breakdown of Cohorts Used in the Study. Weights Are Derived from the Average Age of Animals Within the Cohort

ID N (n = 50) Sex

Beginning of 1.5 g/kg EtOH
Induction

After second 6 months of
Open Access Drinking category distribution

Age (years) Weight (kg) Age (years) Weight (kg) LD BD HD VHD

4 10 M 8.24 9.4 9.98 9.89 5 4 1 0
5 8 M 5.63 8.31 7.15 9.06 0 1 3 4
6a 6 F 3.93 4.73 5.36 5.39 0 0 0 6
6b 5 F 5.62 5.61 7.07 6.59 3 0 1 1
7a 8 M 4.18 6.89 5.7 8.27 3 1 2 2
7b 5 M 5.69 8.02 7.18 8.63 3 1 1 0
10 8 M 5.19 7.55 6.71 8.61 2 3 1 2

BD, binge drinking; HD, heavy drinking; LD, low drinking; VHD, very heavy drinking.

Fig. 1. Illustration of drinking protocol, experimental paradigm, and animal category distribution. Seven rhesus cohorts participated in a common
schedule-induced polydipsia protocol. While certain aspects of the protocol were cohort specific, the behavioral observations made during the common
induction phase was used to predict future drinking category classification based on common 12-month open-access drinking. The classification strategy
for low drinking (LD), binge drinking (BD), heavy drinking (HD), and very heavy drinking (VHD) animals is described previously (Baker et al., 2014). About
half of the animals in this study are either LD or BD animals (n = 26), and the other half are classified as HD or VHD (n = 24).
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data processing were performed using Pandas, NumPy, and SciPy,
which are packages for the Python programming language.
Python’s Scikit-Learn package was used for all machine-learning
algorithms.

Drinking Categories

Each of the 50 animals was classified into 1 of 4 different cate-
gories (LD, BD, HD, or VHD), as previously described (Baker
et al., 2014), see Fig. 1. Briefly, VHD category animals maintain an
average open-access daily ethanol intake >3 g/kg with more than
10% of days exceeding 4 g/kg. HD animals have ethanol intakes
>3 g/kg for more than 20% of open-access days. BD category ani-
mals have >2 g/kg ethanol intake for more than 55% of open-access
days and at least 1 event of >80 mg/dl BEC in a period of
12 months. LD animals make up the remaining individuals.

Drinking Behavior Attributes

This study recorded data from nearly 4,500 total sessions,
approximately 1 session per day per animal, and compiled different
quantitative attributes for each session, resulting in hundreds of raw
and derived measurements. This high dimensional data, either
derived or aggregated, was summarized into daily averages as
appropriate (Grant et al., 2008). A complete list of all the attributes
studied in our research can be found in Table S1.

Feature Generation

In machine learning, the attributes or variables that describe the
data are known as features and are used to train classification models
(Guyon et al., 2006). Features in this study are derived from raw
behavioral data observed during the 90-day ethanol induction period.
Most features are used in their original format; however, others require
additional processing or calculations to derive significance. To capture

longitudinal trends, a feature depicting relative change within each
measured attribute over a period of time is created, referred to here as
a relative delta. Specifically, each attribute was measured for the first
30 days, middle 30 days, and final 30 days of ethanol induction. These
effectively measure the relative change of each attribute’s median value,
as shown in Fig. 2 and defined in following formula:

Datrr
ij ¼ ln

MedianðAttribute½stagei�Þ
MedianðAttribute½stagej�Þ

� �
;

where i = {2,3}, j = {1,2}, and i 6¼ j Furthermore, the 1.5 g/kg
induction period was divided into 3 separate epochs of 10 days
each, defined as p3e1, p3e2, and p3e3, respectively. In order to
account for animal adaptation to stress induced by the third
induction period as previously reported (Grant et al., 2008), rela-
tive deltas for these periods were are also constructed as P3D1

, P3D2
,

and P3Dtotal
:

Forward Selection of Features

In addition to generating features, machine-learning algorithms
require an appropriate number of features (Barber, 2012). We used
a forward selection strategy to select the most appropriate features,
by testing a model iteratively, increasing the number of features at
each iteration, and measuring the accuracy using a N-fold cross-
validation (Alpaydin, 2014). Each forward selection iteration adds
the feature that gives the best increase in performance in combina-
tion with existing features already in a set of chosen features.

Random Forest ClassificationModel

We implemented the Random Forest (RF) decision tree for pre-
diction. RFs perform well on small data sets, resisting overfitting by
penalizing data outliers without skewing the distribution of the data

Attribute
(i.e. average number 
of drinks per bout) 

Day of Induction
(i.e., 1..100)

Phase 2Phase 1 Phase 3

1

10

Take the median:
m1=1

Take the median:
m2=1

Take the median:
m3=4

5

Get relative change:

∆1=
2 = 1

1 = 1
= 1

Get relative change:

∆2=
3 = 4

2 = 1
= 4

Step 1

Step 2

∆ =
3 = 4

1 = 1
= 4

If all the animals drank their 
allotments in the first drink, 
on average, due to the small 

size of the allotment, this 
generated feature (delta) 

would not show any 
significance, because each 
animal would have same 

value of 1.

Relative Features Generation Process

Fig. 2. Changing drinking behaviors over time. Measuring the relative changes in behaviors over induction phases captures the longitudinal effects of
changes in different drinking categories. Delta 1 (D1) captures changes between the second and first induction phases, Delta 2 (D2) captures changes
between the third and second induction phases, and Delta total (Dtotal) represents changes between the third phase and first phase of induction. The final
induction phase is likewise divided into 3 equal epochs of 10 days each, and similar deltas are calculated as P3D1

, P3D2
, P3Dtotal

, respectively. These val-
ues are normalized by their natural log to represent positive or negative trends that can be used to train decision tree algorithms.
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(Yang et al., 2010). RFs are common in bioinformatics and geno-
mics research, where the number of features can be several orders of
magnitude greater than the number of observations. An important
quality of RFs is the possibility of using several distinct low-dimen-
sional prediction models based on small subsets of features that,
together, increase classification accuracy (Yang et al., 2010). A GB
classifier was used to augment the number of RFs. GB uses a regres-
sion tree for each class, for a total of n classes, fitting the negative
gradient of a binomial or multinomial deviance loss function (Fried-
man, 2002). At each iteration, the GB algorithm draws small subsets
of the data at random without replacement and creates a base lear-
ner to classify that subset of data (Friedman, 2002). It may also be
internally optimized to prevent overfitting (Friedman, 2001).

A bagging technique is used to improve quality by reducing the
variance of the output error, avoiding overfitting, and improving
accuracy of the base classification model in spite of a limited sample
size of 50 (Breiman, 1996). Bagging makes use of several training
sets by uniform data sampling with replacement. Statistically, each
training set is expected to contain approximately 63.2% of unique
observations from the entire data set, while the rest are duplicates,
creating a bootstrapped data set (Aslam et al., 2007) and pushes
results toward optimal performance (Breiman, 1996).

Two-Step ClassificationModel

Having multiple categories and few observations (4 categories of
50 animals, and inconsistent observations per category, see Table 1)
is not an ideal classification framework, and thus, we reduced the
number of categories from 4 to 2 and implement a 2-step classifica-
tion process. The first step distinguishes between 2 combined groups
of similar categories: non heavy drinking group (LD and BD) versus
heavy drinking group (HD and VHD). The second step differenti-
ates the categories within groups. That is, LD and BD were sepa-
rated and classified individually as subcategories of the original non
heavy drinking group, and similarly, HD and VHD were separated
from the heavy drinking group and classified individually using dif-
ferent parameters for each classification subgroup. Choosing differ-
ent parameters for subcategories reduced the dimensionality of the
problem and further classified animals by identifying different
behavioral aspects.

Feature Interaction Interpretation

In order to understand the interaction between features, partial
dependence plots (PDPs) were used to provide a visual understand-
ing of how 2 features interact to contribute to drinking category.
PDPs are 2-dimensional color plots used to inspect the significance
of the target function and a set of target features, marginalizing over
the values of all other features (the complement features), produced
fromGB regressors.

PerformanceMeasure and Base Case

Typically, standard accuracy is computed as the total number of
correctly classified samples over the total number of samples. Here,
our accuracy rate is modified to allow for a 2-step classification
model by multiplying the prior probability of a sample being in the
group LD and BD or in the group HD and VHD by the standard
accuracy in either of those 2 groups. Composite accuracy then is
computed by multiplication with standard accuracy of the first step
classification using a 10-fold cross-validation strategy that was aver-
aged across 20 runs. The base case is used to determine how well the
proposed methodology performs comparatively with only the na€ıve
approach. The base case is defined as follows: let D be the list of
“targets,” or the list of categories corresponding to each observation
in the training data; let g (D, c) be a function over the list of targets,
with the count of items in the list D that are equal to category c.

Given an observation of the data, x, we define our base case as a
na€ıve classifier:

Naive ClassifierðxÞ ¼ arg max
c

gðD; cÞ:

A na€ıve classifier is an educated guess that chooses the category with
strictly the greatest number of occurrences and is better than
choosing at random with no prior information of the data.

RESULTS

Derived Relative Deltas as a Representation of Longitudinal
Change

Changes in observed behavioral data over the course of
induction were measured as relative changes, referred to here
as deltas (D1, D2, Dtotal, P3D1

, P3D2
, P3Dtotal

). Figure 3 repre-
sents the relative changes for features associated with classi-
fying VHD versus HD. While there are trends in deltas
between drinking categories, the RF algorithm treats them
as independent characteristics that do not require stringent
statistical significance for them to contribute toward an over-
all picture of drinking behavior.

Forward Selection Identifies Feature Sets that Maximize
Accuracy

The forward selection strategy ranks the importance of
each feature, or set of features, in order to reduce feature set
dimensionality and plot classification accuracy as a function
of the number of features. All combinations of shared fea-
tures (Table S1) were investigated for robustness. Figure 4
illustrates how accuracy drops with an increase in the num-
ber of features. In order to maximize accuracy in the classifi-
cation of “heavy” (VHD + HD) drinkers versus “non
heavy” (LD + BD) drinkers, 5 features were discovered to
be optimal (Fig. 4A). Those features include sex and age at
induction, the relative delta between second and third induc-
tion periods (D2) for the median time between ethanol drinks,
the relative delta between second and first epochs of the last
induction period (P3D1

) for the sequence number of the max-
imum ethanol bout, and the relative delta between the third
and second epochs of the last induction period (P3D2

) for the
latency to first drink, see Table 2. In order to optimize accu-
racy between distinguishing LD from BD, 4 features were
identified (Fig. 4B), including the D2 for the mean length
of ethanol drinks and latency to first ethanol drink, and the
Dtotal for mean length of ethanol drinks and the total number
of bouts. Likewise, 6 separate features were determined opti-
mal to separately classify HD and VHD drinkers (Fig. 4C),
including sex, the D1 for the mean volume of ethanol drinks
and the mean length of ethanol drinks, and relative changes
in the third induction period for the average number of etha-
nol drinks per bout and total number of ethanol bouts.

It is important to note that while the number of fea-
tures and the feature content change as the classification
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schema changes, there are some behavioral characteristics
that remain consistent (Table 2). The total number of
ethanol bouts and the mean length of ethanol drinks is
important to differentiate between LD versus BD
drinkers and VHD versus HD drinkers, with a change
occurring predominantly within the third induction period
(P3D) a deciding factor in VHD versus HD drinker
classification.

Classification into Drinking Groups and Categories

Classification accuracy was determined based on the opti-
mal features for distinguishing “non heavy” from “heavy”
drinkers, LD from BD, and VHD from HD animals. The
resulting accuracy was 78% (Fig. 4A), 90% (Fig. 4B), and
95% (Fig. 4C), respectively. These values represent approxi-
mately a 3-fold increase over na€ıve classification.
Total, or composite, accuracy is calculated for the entire

model by determining category distribution and the accuracy
rates for both the first and second steps. The prior probabil-
ity of being in the non heavy group (LD and BD) and heavy
group (HD and VHD) is 52% and 48%, respectively. The
probability-adjusted accuracy of being correctly classified
within the non heavy and heavy drinking groups is 78%. The
first step accuracy of 78% is used to find a composite average
accuracy of 72% as follows:

Composite Accuracy ¼ 0:78 � 0:52 � 0:90þ 0:48 � 0:95ð Þ
¼ 0:72

The base case for 2-step classification is given by choosing
the most likely categories during both steps. In the first step,
the most likely group is the non heavy drinking group (LD
and BD) with a 52% probability of being correct. In the
second step, the most likely category is LD with a 62%
probability of being correct. Thus, the overall accuracy
for a 2-step naive classifier is 32%. Our classification
strategy represents approximately a 2.5-fold performance
improvement.

Testing Individual Cohort Accuracy

While animals studied here were clustered into separate
cohorts, their common experimental protocols enable an
evaluation of common behavioral features. Cohort-centric
evaluation, however, illustrates how well individual cohorts
are categorized even though each cohort was independently
run through the SIP protocol. Table S2 illustrates cohort-
specific accuracies, including precision and recall, when pre-
dicting whether animals will eventually aggregate with the
non heavy drinking group or the heavy drinking group, and
further predicting LD versus BD and HD versus VHD segre-
gation. While several cohorts exhibit robust prediction under

Fig. 3. Changes in behavior over time can be represented as deltas between the induction phases. Deltas provide a robust set of features to distin-
guish future drinking categories. Each pair of columns represents longitudinal changes for a specific time frame between 2 categories of drinkers. Collec-
tively, they provide a picture of how features change over time. Highlighted columns represent features automatically selected by the Random Forest
classifier as contributing most toward a distinguishing classification.
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certain conditions (HD vs. VHD predictions for cohorts
5 = 100%, 6a = 100%, 6b = 100%, 7a = 75%, 10 = 100%),
they do not fare as well under other conditions (LD vs. BD

predictions for cohorts 4 = 78%, 6b = 100%, 7a = 75%,
7b = 75%, 10 = 40%). The limited cohort size makes it diffi-
cult to use intracohort predictions as the basis for broader
hypothesis development or to draw conclusions about the
population in total.

Partial Dependency: Pairs of Features Affecting Future
Drinking Patterns

PDPs are useful to gauge complex relationships among
contributing characteristics that do not follow linear con-
straints. Figure 5 illustrates the likelihood of all pairs of fea-
tures on predicting “heavy” drinkers during the induction
protocol (see detailed data in Fig. S1). The heat map col-
orization, where red represents high likelihood, indicates
how features act independently (line graphs) and in concert
with other features. For example, trends toward increased
sequence number of maximum ethanol bout (P3D1

) com-
bined with trends toward decreased latency to the first etha-
nol drink (P3D2

) indicate an increased likelihood for animals
to not progress to become “heavy” drinkers. The age of etha-
nol induction also represents strong tendencies toward non
heavy drinking at adolescence, particularly when combined

Fig. 4. Optimal number of features chosen from forward feature selection. The horizontal axis represents the number of features chosen based on
contribution. The vertical axis shows the accuracy of the drinking category classification, which could take values from [0, 1], averaged for 20 runs of 10-
fold cross-validation, as well as the one-sigma range of accuracy deviation. Subpanel (A) illustrates that there are 5 optimal features for the aggregated
classification of LD + BD drinkers, defined as “non heavy,” versus HD + VHD groups, defined as “heavy” drinkers. Panel (B) demonstrates that there are
4 optimal features for the LD versus BD classification, and Panel (C) shows 6 features as optimal for HD and VHD category classification. The relevant
features are described in Table 2.

Table 2. Features Impacting Prediction of Drinking Categories

Feature Period

Heavy versus non heavy (accuracy = 0.78)
Sex Fixed
Age at ethanol induction (days) Fixed
Median time between ethanol drinks Δ2

Sequence number of the max ethanol bout P3D1

Latency to first ethanol drink P3D2

LD versus BD (accuracy = 0.90)
Mean length of ethanol drinks Δ2

Latency to first ethanol drink Δ2

Mean length of ethanol drinks Δtotal

Total ethanol bouts Δtotal

HD versus VHD (accuracy = 0.95)
Total ethanol bouts P3D1

Total ethanol bouts P3Dtotal

Average number of ethanol drinks per bout P3Dtotal

Mean volume of ethanol drinks Δ1

Mean length of ethanol drinks Δ1

Sex Fixed

BD, binge drinking; HD, heavy drinking; LD, low drinking; VHD, very
heavy drinking.
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with the decreased latency to the first ethanol drink (P3D2
).

As categorical features, such as sex, are uninformative in
PDP graphs, they are omitted from PDP figures.
PDPs for classification of LD versus BD and HD versus

VHD also represent strong relationships between features as
they contribute to the classification strategy (Figs S3 and S4,
respectively). For example, LD drinkers maintain mean
lengths of ethanol drinks and increase the total number of
ethanol bouts when compared to BD (Fig. S2) and this is
reflected in PDP graphs (Fig. S3). The likelihood of becom-
ing a LD is increased drastically as the trend in total number
of ethanol bouts increases, particularly when the trend for
the mean length of ethanol drinks per bout maintains or
increases. Other dependency relationships are also reported,
including a strong relationship for distinguishing a VHD
over a HD through a strong relationship between relative
changes in the third induction period, including a synergistic
relationship between the change in the average number of
ethanol drinks per bout (P3Dt

) and the total number of etha-
nol bouts (P3Dt

) (Fig. 3 and Fig. S4).

DISCUSSION

Not everyone who drinks alcohol is at equal risk for
developing an AUD. While risk factors can be identified in
human populations, few studies examine baseline data prior
to ethanol exposure, and life histories of ethanol consump-
tion are highly subjective. In contrast, controlled animal
models can play a key role in disentangling the interaction
between risk factors and consequences of alcoholism.
Specifically, the historical and current environmental vari-
ables of rearing, housing, nutrition, medical care, sex, age,
and genetics can be controlled. NHPs provide especially
useful subjects for the study of risk factors, as they display
dimensions of cortical processing in cognitive tasks, experi-
ence complex social and affective processes, absorb and
metabolize ethanol at similar rates as humans, and show
individual differences in the self-administration of ethanol
from avoiding intoxication up to physical dependence
(Cuzon Carlson et al., 2011; Grant and Bennett, 2003;
Welsh et al., 2011). Translational risk factors between NHP
and humans that lead to excessive alcohol drinking have
been identified, including social factors (Helms et al., 2012),
endocrine factors (Helms et al., 2014a), and age at the
onset of drinking (Helms et al., 2014b).
The use of SIP is necessary to induce oral ethanol self-

administration in macaque monkeys and provides an experi-
mentally rigorous, accurate, and reproducible procedure for
establishing stable, chronic ethanol drinking. The induction
procedure optimizes the association of drinking ethanol with
the postingestive effects of intoxication. The stepwise
increase in daily dose from 0.5 to 1.0 to 1.5 g/kg helps to cir-
cumvent taste aversions. Although the parameters of SIP
used here are unlikely to be encountered as most humans first
experience alcohol, SIP can be induced in humans (Doyle
and Samson, 1988) and other schedules of reinforcement can

generate other forms of adjunctive behaviors in humans such
as smoking, eating, and talking (Falk, 1984, 1998). Impor-
tantly, in our model alcohol self-administration continues
after the conditions of SIP are suspended, an effect not found
when rodents are food deprived and induced to drink alcohol
through a SIP procedure (Falk, 1998).
Once open-access conditions were established and ethanol

self-administration was assessed, we leveraged the previously
described, categorically distinct, drinking patterns during the
open-access conditions, that is, LD, BD, HD, or VHD
(Baker et al., 2014), for potential alignment to drinking
behaviors that emerge during the SIP induction phases using
machine-learning classification strategies. After applying RF
decision approaches with bagging and GB to enhance behav-
ior selection, we are able to identify 5 features of drinking
that are predictive of broad “heavy drinking group” and
“non heavy drinking group” classifications with 78% accu-
racy. Using additional pattern analysis, we are able to iden-
tify 4 induction phase behaviors that subclassify the heavy
drinking group into HD and VHD with 95% accuracy, and
we are able to identify 3 induction phase behaviors that sub-
classify non heavy drinking group into BD and LD with
90% accuracy.
There are several features that contribute to the classifica-

tion of future heavy drinkers group and non heavy drinkers
group. It is important to remember that these features are
selected as a group by the machine-learning algorithm to
optimize the categorizations, and these features may not
themselves be statistically different between the categories.
These features appear to work in concert and demonstrate
variable impact on each other over their spectrum of influ-
ence, and many of them have been previously reported in the
human literature. For example, the age of first intoxication is
the age at which monkeys begin the 1.5 g/kg ethanol induc-
tion period. Although the “age at first drink” has been ques-
tioned as a predictor of future alcohol problems (Kuntsche
et al., 2016), a longitudinal study on the age of “first intoxi-
cation” had a positive correlation with heavy drinking and
drinking-related problems. Our findings support the fact that
an earlier age of first intoxication leads to higher likelihood
of becoming a heavy drinker; however, there is a possible
cohort or small number confound because only 1 cohort was
older and only 1 was younger (Table 1). While sex was also
found to be a predictive factor, this is a potential confound
in this study because the small number of females included
were biased toward heavy drinking animals. The most likely
reason for the bias toward heavy drinking in the females
studied to date is their age at the onset of drinking to intoxi-
cation, which was in the late-adolescent/young adult stage.
This is known to be the age of highest risk for male monkeys
in our rhesus population (Helms et al., 2014a,b), and older
adult females have not been characterized and added to the
population base used in these studies. It is important that
unlike rodent studies or even human self-report studies,
NHP studies are small by necessity. We show here that the
open-access paradigm allows us to combine data across
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many cohorts and many years, increasing the sample size to
50 animals. Future cohorts will continue to add to the diver-
sity of this data set (including sex and age).

It is interesting that almost all the informative features
(Table 2) are ones that operate on longitudinal scales, where
observed behaviors increase or decrease during the induction

Partial dependence grid: likelihood of becoming a Non-heavy Drinker

Fig. 5. Partial dependence plot for optimal non-heavy drinker classification features. Partial dependence plots indicate how features act independently
(line graphs) and in concert with other features. The plots in this figure illustrate the likelihood of an animal remaining a non heavy drinker given the optimal
features predicted. For example, trends toward increased sequence number of maximum ethanol bout (P3D1

) combined with trends toward decreased
latency to the first ethanol drink (P3D2

) indicate an increased likelihood for animals to not progress to become “heavy” drinkers. All pairwise relationships
are illustrated, with red areas indicating a greater likelihood for becoming a future heavy drinker under the combined influence of the represented features,
while blue areas indicate areas of lower likelihood.
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period. For example, a decrease in the latency to first ethanol
drink within the last (intoxicating) induction phase is a driv-
ing factor to distinguish heavy from non heavy drinkers.
There is also longitudinal variability between the second and
third induction phases where the heavy drinking animals
increase their median time between ethanol drinks, while the
non heavy maintained a longer time between drinks.
The 2-step classification strategy implemented here pro-

vides insight into a more granular inspection of drinking cat-
egories. Specifically, as few features that distinguish heavy
from non heavy drinking groups are in common with distin-
guishing BD from LD or VHD from HD drinkers, there is
an indication that common behaviors place populations at
risk of heavy drinking, but separate sets of behaviors may be
responsible for extreme individuals. For example, the
amount of ethanol the monkeys need to drink doubles from
induction phase 1 to induction phase 2, and among the heavy
drinkers, the HD appropriately increase their mean volume
of ethanol drinks and mean length of ethanol drinks. How-
ever, the VHD display more variation (increasing and
decreasing) in their mean volume of ethanol drinks and their
mean length of ethanol drinks. Features changing during the
third (intoxicating) phase of induction are especially impor-
tant in distinguishing VHD from HD. The HD increase the
number of ethanol bouts at the beginning of the intoxicating
phase and decrease the average number of ethanol drinks per
bout at the end of the intoxicating phase. The VHDmaintain
their total number of ethanol bouts and increase their num-
ber of ethanol drinks per bout throughout the intoxication
phase of induction. As these characteristics of drinking
(fewer bouts with more drinks) would collectively insure
higher BECs, it appears that the VHD monkeys adapt their
drinking during induction to optimize intoxication when a
reliable intoxicating dose of ethanol (1.5 g/kg) is available.
This topography of drinking is then maintained or exagger-
ated when given the opportunity to drink nearly unlimited
amounts of alcohol in the 22 h/d “open-access” sessions (see
also Grant et al., 2008). On the lower end of the drinking
spectrum, the LD tend to increase latency to first ethanol
drink, between phases 2 and 3 of induction, perhaps to avoid
intoxication in the third phase. While the LD and BD begin
induction with a similar number of ethanol bouts, the LD
consistently increase the number of ethanol bouts through-
out the 3 phases of induction, again perhaps to avoid intoxi-
cation. The binging monkeys have a higher mean length of
ethanol drinks than the LD in phase 1, but the BD decrease
the length of their drinks when they reach phase 3. Thus,
during the induction phases as the daily dose of ethanol
increases, the BD monkeys transition to taking shorter
drinks than the LD. This topography that emerges in drink-
ing the intoxicating dose of 1.5 g/kg ethanol appears to allow
for occasional days of intoxicated drinking under the open-
access conditions while keeping daily averages within the
range of LDmonkeys.
In conclusion, we used a machine-learning approach to

determine the most informative behaviors during alcohol

induction phases to predict future categorical open-access
drinking patterns in monkeys. Our high classification
accuracies and PDP analyses affirm previous findings
(Grant et al., 2008), while providing greater insight into
granular behavioral associations to AUDs. Interestingly,
most of the predictive factors were longitudinal changes
of drinking patterns associated with drinking increasing
doses of ethanol over the induction phases. In particular,
the difference between drinking 1.0 g/kg and 1.5 g/kg
under SIP resulted in changes in the topography of intake
that reflects risk for future heavy drinking. The future
VHD monkeys drank in a “gulping” style (decreasing
drink time while maintaining drink volume) that helps
ensure intoxication. The future LD monkeys drank in a
“sipping” style (longer latency to start drinking, a shorter
length of ethanol drinks, and an increase in the number
of bouts) that is consistent with avoiding intoxication.
While the features in and of themselves may not be sta-
tistically significant, we have identified which features
when taken together are highly predictive of future drink-
ing categories. These early, predictive drinking patterns
suggest a remarkable adaptation of drinking topographies
that support a biological predisposition in some monkeys
to seek intoxication and in other monkeys to avoid intox-
ication. Future genetic data from these and future cohorts
will include genomic data (DNA polymorphisms), gene
expression data, and epigentic data, which could identify
baseline risk factors, and potential translational biomark-
ers, for categorical drinking. Understanding the genetic
mechanisms associated with these categorical levels of
drinking will help translate the risk and protective factors
to the human population.
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Fig. S2. Relative deltas for optimal LD versus BD classifi-

cation features.
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BD classification features.
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HD classification features.
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