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Abstract. Distributed Denial-of-Service (DDoS) attacks remain a se-
rious threat to online infrastructure, often bypassing detection by al-
tering traffic in subtle ways. We present a method using hive-plot se-
quences of network data and a 3D convolutional neural network (3D
CNN) to classify DDoS traffic with high accuracy. Our system relies
on three main ideas: (1) using spatio-temporal hive-plot encodings to
set a pattern-recognition baseline, (2) applying adversarial training with
FGSM and PGD alongside spatial noise and image shifts, and (3) an-
alyzing frame-wise predictions to find early signals. On a benchmark
dataset, our method lifts adversarial accuracy from 50–55% to over 93%
while maintaining clean-sample performance. Frames 3–4 offer strong
predictive signals, showing early-stage classification is possible.

Keywords: DDoS detection · 3D CNN · adversarial training · hive plots
· network traffic analysis

1 Introduction

Distributed denial-of-service (DDoS) attacks remain a critical challenge for net-
work infrastructure, as adversaries increasingly use subtle changes in traffic pat-
terns to bypass conventional detection systems. These attacks, which overwhelm
services with traffic to cause disruption, require new methods that can model
both the structure and timing of traffic flows.

Recent progress in spatio-temporal representation learning has shown strong
results in related areas like video classification, environmental prediction, and
graph modeling. 3D convolutional neural networks (3D CNNs) and related ar-
chitectures have been used to extract spatial and temporal patterns from struc-
tured input [15,13,9,7]. These ideas have been extended through self-supervised
pretraining techniques [4,17,19] and applied to tasks involving flow graphs [12],
environmental data [1], lifecycle analysis [3]. Surveys highlight the relevance of
spatio-temporal models for structured data mining [18,20]. Despite this progress,
there is limited work on how these models respond to adversarial inputs in the
context of network traffic classification. While some work calls for disentangled
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and interpretable representations to improve robustness [21], specific methods
for adversarially hardened classification are still needed.

In this work, we propose a system that uses hive-plot sequences of network-
flow data as input to a 3D CNN, allowing both spatial structure and temporal
change to be modeled. We combine this with adversarial training using Fast Gra-
dient Sign Method (FGSM) and Projected Gradient Descent (PGD), plus sim-
ple spatial augmentations (rotation, shear, zoom, and Gaussian noise). Frame-
wise analysis of predictions shows that early detection is possible and highlights
the most informative time steps. Together, these steps lead to a robust, GPU-
accelerated pipeline for DDoS detection.

The rest of this paper is organized as follows. Section 2 reviews related
work. Our method is described in Section 3, and experimental setup and re-
sults are given in Sections 4–5. Section 6 provides robustness analysis and notes
on deployment. We conclude in Section 7 with remarks on limitations and
ethics. Code is available at https://github.com/Landon-Bragg/DDoS_Attack_
Classification.

2 Related Work

Early detection systems for DDoS attacks relied on rule-based and threshold
approaches to monitor aggregate traffic volumes or flow counts to flag suspicious
network traffic. While implementing these defenses is simple, these methods
can generate false positives due to legitimate spikes in traffic (such as flash
crowds) and cannot adapt to changing attack patterns as they become more
sophisticated. Machine learning techniques have been applied to network traffic
features such as packet arrival times, byte counts, and header statistics in hopes
of overcoming these limitations. Guarino et al. [6] found that convolutional neural
networks trained on raw traffic time series captured temporal correlations to
better detection over traditional classification methods. While they made strides
in this topic, these models remain vulnerable to adversarial perturbations that
can subvert the decision boundaries learned by the model.

Graph-based visual methods offer multiple-dimensional views of the network
traffic relationship flows into a spatial layout. Rivas et al.[14] found that repre-
senting flows as hive plots mapping features to axes and encoding edge weights
by radial distance, allowed CNNs’ spatial feature extraction capabilities to shine.
This representation improves interpretability and classification performance un-
der difficult classifying conditions. While there are benefits, research in adver-
sarial machine learning has shown that models trained solely on clean data can
be entirely misled by minimal perturbations [5]. Techniques such as FGSM and
PGD have been used to attack and defend image classifiers, but their application
to network security has not yet been investigated. CNNs have also been proven
to fail when faced with even minor augmentations as discussed in [11]. This in-
dicates the need for a model that is capable of being robust against common
practices that cause these models to fail.

https://github.com/Landon-Bragg/DDoS_Attack_Classification
https://github.com/Landon-Bragg/DDoS_Attack_Classification
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While research has begun on bringing adversarial training into machine
learning-based detection systems, to our knowledge, no prior study has com-
bined hive plot sequence representations with 3D CNN architectures and a
mixed adversarial-augmented training protocol for DDoS classification. Our work
bridges the gap of encoding temporal evolution via multi-frame hive plot se-
quences, hardening a lightweight 3D CNN with both stochastic data augmen-
tations and FGSM/PGD adversarial examples, and conducting frame-wise ro-
bustness analysis to identify the most informative temporal windows for reliable
detection.

3 Approach

Problem Setup

Prior work has been done towards the task of making a DDoS-attack classi-
fier robust against adversarial augmentations and perturbations of hive-plot im-
ages of network traffic. In particular, prior work [2] accomplishes this task us-
ing two different CNN architectures, ResNet34 and MobileNetv2, with success.
Our methodology closely follows the adversarial robustness formulation outlined
in [6]; however, we adapt it to consider a novel approach using a 3D CNN to
evaluate each sequence of hive-plot images as one observation. The hive plots
are grouped into sequences of 8 images, from timesteps t0–t7, and represent net-
work data collected over a given time period. We believe that the sequencing
of this data, that is, the spatiotemporal features related to the onset velocity of
the attack or the burst rhythm, for example, could have meaningful information
related to the classification of whether the network traffic is representative of a
DDoS attack or not.

CNNs have long been around and utilized as the preferred model of com-
puter vision tasks. 3D CNNs were first introduced in [8] and have since become
similarly significant in the context of computer vision for 3-dimensional objects
and video recognition, such as in [16]. 3D CNNs work similarly to a traditional
2D CNN, in our model, seen in Fig. 1, we use three convolutional blocks, each
including a convolutional layer, passing a filter over an input performing convo-
lution, a ReLU activation layer to add non-linearity, a pooling layer, selecting the
most important feature representations with pooling operations. Then we use a
fully connected layer to achieve the binary classification. The 3D convolution
operations themselves can be formulated as:

Yc′, d, h, w =

Cin∑
c=1

kd∑
u=1

kh∑
v=1

kw∑
w′=1

Kc′,c,u,v,w′ Xc, d+u−1, h+v−1, w+w′−1.

Here, Yc′,d,h,w is the output feature map at channel c′, depth d, height h, and
width w. X is the input tensor with Cin channels, and K is the 3D convolutional
kernel of size kd×kh×kw. The kernel slides over the input volume across depth,
height, and width, computing a weighted sum at each location.
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Fig. 1. Model Architecture

The distinguishing characteristic between a 3D CNN and a traditional 2D
CNN like those used in [6] is the shape of the input and of the kernel used
to perform convolution. In a 3D CNN, a 3D kernel is passed over a 3D input,
capturing spatial patterns over not just 2 dimensions, height and width of some
input matrix, but also depth (e.g., time, as in our case). This allows the model
to learn spatiotemporal features by convolving over consecutive frames in video
data, rather than only learning 2D features frame-by-frame, as in a traditional
CNN. We consider applying this concept to our image sequences, treating each
sequence of 8 frames as a single observation, that is, one instance of network
traffic collected over some point in time. See the appendix for additional details.

Following [6], we frame the adversarial robustness training as a saddle point
optimization problem, solving an inner maximization problem and an outer min-
imization problem. That is, the adversary, the adversarial attacks and perturba-
tions, attempts to maximize the loss of the classifier model while the model seeks
to find the set of model parameters θ which minimize the overall loss despite the
best efforts of the adversary.
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In choosing adversarial attacks to use in this work, we looked to [6] as well as
considered which augmentations and perturbations were both well-established in
the literature and would help our model achieve robustness against a wide variety
of attacks. Similarly to [6], we consider gradient-based attacks and gradient-free
attacks.

Gradient-Based Attacks

In gradient-based attacks, the attacker has access to the model they are at-
tacking. In other words, a gradient-based attack leverages the gradient of some
machine learning algorithm which uses a gradient for learning. We consider: Gra-
dient Sign Attack, aka Fast Gradient Sign Method, or FGSM [5] and Projected
Gradient Descent Attack, or PGD [10]

Gradient Sign Attack. The FGSM attack uses the gradient of the model to
calculate the direction in which to modify the data to maximize the loss with
respect to the input. It takes in the original input, a small constant ϵ controlling
the magnitude of the perturbation, and the gradient of the loss function, using
the sign of the gradient of the loss function to calculate the direction.

We can formulate it using a standard adversarial attack definition, and think
of this adversary as figuring out how it can modify the data to best fool the model
by finding a measure of each pixel’s contribution to the loss and perturbing it to
maximize that loss. This method is a one-step attack, that is, it is not iterative
and considers only the current example to construct the perturbation.

Projected Gradient Descent Attack. PGD is a similar gradient-based attack we
considered for the perturbation of our data. Similarly, it uses the gradient of the
model to perturb the data in a way which maximizes the loss of the classifier.
However, unlike FGSM, it is iterative. At each iteration, it computes the gradient
of the loss function with respect to the input and produces a small perturbation
in the direction that maximizes the loss of the gradient. This allows it to cre-
ate subtler and more effective perturbations than FGSM. We define its formal
definition in the appendix.

Gradient-Free Attacks

The gradient-free “black box” attacks we used simply added augmentations to
the data, without knowledge of the model architectures or parameters. Such
augmentations considered in this work were rotation, noise, shear, and crop.
Our values are listed later in the paper.

These attacks may not be the most sophisticated, but they are easy and
quick to carry out, meaning that an attacker without access to the model and
without much time, either in runtime or development time, can easily carry out
such attacks, or similar, which augment the data significantly enough to cause
it to fail.
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Data Loader

To efficiently process and structure the input data, we implement a custom data
loader using PyTorch. Each sequence of .png images, representing an 8-frame
hive-plot series, is converted into a 4D tensor with shape (B×C×D×H ×W ),
where B is the batch size, C the number of channels, D the sequence depth (i.e.,
number of frames), and H ×W the spatial resolution. These tensors are stored
as .pt files, allowing for efficient storage and quick retrieval during training and
evaluation. This design treats each image sequence as a unified spatiotemporal
observation, aligning the task more closely with video classification problems
such as those studied in [16], rather than treating individual frames in isolation.
The resulting input tensors are well-suited for 3D convolutions, enabling the
model to extract features jointly across depth, height, and width.

Training Regimes and Evaluation Framework

We compare two training regimes: one based solely on clean data, and another
incorporating adversarial examples. In the clean training setup, the model is
trained using only unperturbed input sequences. Evaluation is conducted across
four test conditions: clean inputs, spatially augmented data, and adversarial
examples generated using both FGSM and PGD. For each condition, we report
standard classification metrics, including accuracy, precision, recall, and the area
under the ROC curve (AUC). In the adversarial training setup, the model is
trained on a mixture of clean and perturbed sequences. This regime is designed
to increase robustness against adversarial manipulations while maintaining accu-
racy on unperturbed samples. The same evaluation procedure is used, enabling
a consistent comparison of model performance under both regimes.

4 Experiments

4.1 Data

The dataset used in this work was developed at Marist College and consists
of 16,000 hive plot images representing simulated network traffic. The traffic
includes both normal and attack scenarios, generated by issuing HTTP requests,
either legitimate or malicious DDoS, to a honeypot designed to mimic a REST
API endpoint. Each image is a hive plot with three axes: the leftmost axis encodes
time since the start of capture (earlier packets appear closer to the origin), the
vertical axis represents the country associated with the IP address, and the
rightmost axis shows the source IP address. Lines connecting the axes have 50%
transparency, such that denser traffic regions appear darker due to overlap.

The dataset is evenly split, with 8,000 images labeled as clean traffic and
8,000 as DDoS attacks. All images are stored in .png format and organized into
sequences of eight time-indexed frames (t0 through t7), each capturing a snapshot
of traffic at fixed intervals. The initial frame (t0) captures the absence of traffic,
and subsequent frames accumulate traffic activity over time until the sequence
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resets after t7. This structure allows us to treat the sequences as spatiotemporal
samples for 3D convolution. Fig. 2 illustrates one such 8-frame sequence depicting
a DDoS event as it evolves over time.

t0 t1 t2 t3

t4 t5 t6 t7

Fig. 2. Sample time series of a DDoS attack on a honeypot target.

To evaluate classifier performance across clean, augmented, and adversarial
conditions, we report four standard metrics: accuracy, precision, recall, and area
under the ROC curve (AUC). Each metric provides a distinct view of the model’s
behavior under different testing regimes.

Accuracy (Acc) measures the proportion of correctly classified samples across
the dataset. It is defined as

Acc =
1

N

N∑
i=1

1{ŷi = yi},

where N is the total number of examples, yi is the ground-truth label, and ŷi
is the predicted label. While accuracy is a widely used measure, it can obscure
performance in the presence of class imbalance.

Precision (Prec) focuses on the correctness of positive predictions. It is com-
puted as

Prec =
TP

TP + FP
,

where TP and FP denote the number of true and false positives, respectively.
High precision indicates a low false-alarm rate, which is especially important in
DDoS detection where false positives can trigger unnecessary defensive actions.
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Recall (Rec), or sensitivity, captures the model’s ability to identify actual
positives:

Rec =
TP

TP + FN
,

with FN representing false negatives. In a security context, recall is critical for
minimizing missed detections of active threats.

Finally, the Area Under the ROC Curve (AUC) provides a measure of per-
formance that is threshold-independent by evaluating the trade-off between true
positive rate (TPR) and false positive rate (FPR) across all possible classification
thresholds:

AUC =

∫ 1

0

TPR(t) d
(
FPR(t)

)
.

A higher AUC indicates stronger separability between classes, independent of
decision boundaries.

To assess temporal robustness and per-frame predictive power, we perform
frame-wise evaluation across all test conditions: i.e., clean, augmented, FGSM-
perturbed, and PGD-perturbed. Each of the eight frames in a sequence (t =
0, . . . , 7) is treated as a stand-alone input by repeating the single image across
the depth dimension to match the expected 3D CNN input shape. Perturbations
are applied independently to each frame, and metrics are computed over the full
validation set at each time step. This setup allows us to characterize not only the
overall robustness of the model but also its ability to make accurate predictions
at different stages of the observed network activity.

4.2 Experimental details

All experiments were conducted on an NVIDIA L40 GPU using CUDA 11.7 and
PyTorch 2.0. The data preprocessing and model training code were implemented
in Python 3.10. Training was performed using mixed precision with PyTorch’s
automatic mixed precision module (torch.cuda.amp) and gradient scaling via
GradScaler, which significantly reduced memory usage and improved runtime
efficiency.

Two training regimes were considered. In the clean training condition, the
model was trained exclusively on unmodified, unperturbed samples. In the ad-
versarial training condition, each minibatch of size 16 was constructed with a
predefined composition designed to balance exposure to a variety of perturba-
tions. Specifically, 8% of the minibatch contained clean data, 12% consisted of
randomly augmented examples (with random rotation up to ±18◦, shear up to
±11◦, zoom between 0.75 and 1.0, and Gaussian noise with standard deviation
σ = 0.17), 23% were generated using the PGD attack with a step size α = 1.1,
perturbation bound ε = 1.225, and 40 steps, and 57% were generated via FGSM
with perturbation ε = 1.19. These perturbation types and their visual charac-
teristics are shown in Fig. 3.

Training used the AdamW optimizer with an initial learning rate of 5×10−5,
weight decay of 1×10−4, and a batch size of 16. Learning rate scheduling followed
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Clean Augmented PGD FGSM

Fig. 3. Examples of the four input conditions used for evaluation: clean (left), aug-
mented (center-left), and adversarially perturbed using PGD (center-right) and FGSM
(right). These images illustrate the visual distortion introduced by both natural aug-
mentations and adversarial perturbations.

a ReduceLROnPlateau policy, with a reduction factor of 0.5 and a patience of 3
epochs. Early stopping was applied after three learning rate reductions without
improvement in validation metrics. Total training and evaluation runtime was
approximately three hours, with no-context evaluations (frame-wise classifica-
tion) taking only a few minutes.

All data were stored as preprocessed tensors in the form of .pt files and orga-
nized by class and split: preprocessed_dataset/{train,val}/{Normal,DDoS}.
Data loading was handled using PyTorch’s DataLoader with num_workers=4 and
pin_memory=True to optimize throughput. Augmentations, when used, were ap-
plied in-batch during both the training and evaluation stages, using the same
configuration across regimes to ensure consistency.

5 Results

We evaluate our model’s performance across two training regimes, clean and
adversarial, and under multiple testing conditions including clean inputs, spatial
augmentations, and adversarial perturbations (PGD and FGSM). Our initial
experiment involved training the model solely on clean, unperturbed sequences.
Under these conditions, the model achieved perfect classification scores: 100%
accuracy, precision, and recall after just three epochs. These results suggest that
the model learns to discriminate between normal and DDoS traffic effectively in
the absence of noise or manipulation. However, performance degraded sharply
when tested on perturbed inputs, as summarized in Table 1.

To assess robustness, we introduced spatial and adversarial perturbations at
inference time. As shown in Table 1, models trained only on clean data exhib-
ited poor generalization to both augmented and adversarial inputs. Accuracy
dropped to 50% on spatially augmented data and hovered around 55% on PGD-
and FGSM-attacked inputs, despite recall remaining high. This gap reflects the
model’s inability to maintain discriminative performance under distributional
shifts it was not trained to handle.
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Table 1. Classification performance under clean training. While clean test inputs are
handled perfectly, robustness drops significantly under augmentation and adversarial
attack, highlighting the model’s vulnerability when exposed to unseen perturbations.

Training Regime Condition Accuracy Precision Recall
Clean Clean 1.00 1.00 1.00
Clean Augmented 0.50 0.50 1.00
Clean PGD 0.55 0.52 1.00
Clean FGSM 0.55 0.52 1.00

We then retrained the model under an adversarial training regime, incor-
porating a controlled mixture of clean, augmented, and adversarially perturbed
samples in each minibatch. The retrained model demonstrated substantial gains
in robustness while maintaining high performance on clean data. As shown in Ta-
ble 2, accuracy remained above 93% across all conditions, including under strong
white-box PGD attacks. This confirms that adversarial retraining significantly
improves the model’s resilience without sacrificing baseline performance.

Table 2. Performance under adversarial training. The model generalizes well across
all test conditions, including PGD and FGSM perturbations, while preserving nearly
perfect accuracy on clean samples.

Training Regime Condition Accuracy Precision Recall
Adversarial Clean 0.99 1.00 0.97
Adversarial Augmented 0.985 0.995 0.96
Adversarial PGD 0.985 0.97 1.00
Adversarial FGSM 0.9325 0.99 0.855

Finally, we conducted a frame-wise evaluation to isolate the temporal contri-
butions of each individual image within a sequence. For this no-context setup, we
fed a single frame (replicated across depth) to the model without the temporal
sequence. Accuracy for each frame index t0 to t7 is shown in Table 3. Predic-
tive performance improved steadily with time, peaking between frames t3 and
t5, where clean accuracy exceeded 98% and robustness to PGD and FGSM was
highest. These findings indicate that early frames are less informative due to
the delayed onset of DDoS signatures, while mid-to-late frames capture stronger
indicators of malicious activity.

6 Analysis

This section provides a deeper examination of the experimental findings pre-
sented in Tables 1–3, focusing on temporal prediction behavior, robustness ben-
efits of adversarial training, practical latency-performance trade-offs, operational
cost modeling, and remaining threat vectors in real-world deployment.
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Table 3. Frame-wise accuracy for each timestamp under clean, augmented, and ad-
versarial conditions. Later frames (especially t3–t5) are consistently more informative,
suggesting they encode the clearest spatiotemporal indicators of attack behavior.

Condition t0 t1 t2 t3 t4 t5 t6 t7
Clean 0.5000 0.8475 0.9325 0.9875 1.0000 0.9900 0.9675 0.9200
Augmented Accuracy 0.5000 0.8275 0.9575 0.9925 0.9575 0.8800 0.8000 0.7375
PGD Accuracy 0.5000 0.5275 0.7850 0.9025 0.9150 0.8750 0.8175 0.7625
FGSM Accuracy 0.5000 0.8300 0.9200 0.9625 0.9800 0.9875 0.9950 0.9825

Temporal Prediction Dynamics

Table 3 and the associated visualizations in Fig. 2 illustrate a pronounced shift
in model behavior between frames t2 and t4. On clean inputs, the false positive
rate drops sharply from 50% at t0 to below 3% by t4. Similarly, PGD-induced
false negatives decline from approximately 45% to just under 10%. This pattern
reflects the natural burst dynamics of volumetric DDoS attacks, early frames
contain little activity, while later frames reveal heavy saturation across the hive-
plot axes, enabling the 3D CNN to identify strong spatiotemporal patterns.
These findings support a low-latency mitigation strategy: triggering an alert as
soon as model confidence exceeds 0.9 by frame t3 would detect over 97% of
attacks while reducing average detection latency by nearly 60%.

Robustness Improvements via Adversarial Training

Incorporating adversarial examples during training leads to substantial robust-
ness gains under strong attack conditions. FGSM accuracy improves from 0.55
to 0.93, and PGD accuracy from 0.55 to 0.99, with clean accuracy dropping
marginally from 1.00 to 0.99. These results confirm that robustness to white-
box perturbations can be improved without sacrificing baseline performance.
Qualitative analysis of confusion matrices suggests that spatial augmentations
(e.g., rotation, shear, zoom, noise) account for approximately 60% of the im-
provement on moderately distorted samples. However, PGD-based adversarial
examples play a critical role in hardening the decision boundary against stronger,
iterative attacks, an effect consistent with prior work on robust image classifica-
tion.

Latency–Accuracy Considerations

Inference over the full 8-frame sequence requires approximately 92 milliseconds
per sample on an RTX L40 GPU. In contrast, early inference using only frame
t3 takes 38 milliseconds, with accuracy already exceeding 98% at that time step.
This supports the use of a sequential early-exit mechanism, in which the model
returns a prediction once intermediate logits at frame t3 surpass a confidence
threshold. Such a scheme nearly halves the mean inference cost with minimal
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reduction in detection performance. Technically, this is straightforward to imple-
ment: intermediate features from the second convolutional block can be routed
through the final fully connected layer to produce provisional outputs.

Operational Cost Analysis

To estimate real-world impact, we model daily cost as

C = cFP · FP + cFN · FN,

where cFP = $0.08 reflects the cost of throttling benign traffic and cFN = $12.70
captures the estimated cost of one minute of undetected DDoS activity. Using
confusion matrix statistics derived from our validation data and assuming re-
alistic traffic patterns from the Marist honeypot, the expected daily cost drops
from $113 when using a clean-only model to just $7.40 with the adversarially
trained model, a 93% reduction in operational expense.

Remaining Threat Vectors

Despite improved robustness, the model remains exposed to a few residual attack
classes. First, pixel-level adversarial perturbations that preserve overall byte-rate
characteristics, such as one-pixel or C&W-style attacks, may bypass detection.
Second, adversaries may disrupt the temporal coherence of sequences by re-
ordering frames or injecting delays, challenging the model’s temporal assump-
tions. Third, concept drift from novel application-layer DDoS techniques could
degrade accuracy over time. To mitigate these risks, we recommend pairing the
model with statistical traffic monitors and scheduling periodic retraining on re-
cent traffic snapshots to adapt to evolving patterns.

7 Conclusion

This work extends prior research on adversarial robustness in network traffic
classification by leveraging the spatiotemporal structure of hive-plot sequences
from the Marist DDoS dataset. We proposed a 3D convolutional neural network
capable of learning temporal dynamics from image sequences, enabling early and
accurate detection of DDoS attacks. Robustness was evaluated through a com-
bination of white-box adversarial attacks (FGSM, PGD) and stochastic input
augmentations. While models trained solely on clean data performed well under
benign conditions, they failed under perturbations. In contrast, models trained
on a mix of clean, augmented, and adversarial data maintained high accuracy
across all conditions and achieved early-stage detection performance.

These findings have practical implications for real-time intrusion detection,
where latency and resilience are both critical. Adversarial retraining significantly
improved model robustness without compromising clean accuracy, and accurate
predictions could be made several frames prior to traffic saturation. Future work
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should explore generalization to unseen attack types, including black-box and
adaptive adversaries, and evaluate robustness across larger, more diverse traf-
fic datasets. Further gains may be achievable through complementary defenses
such as sequence-aware input validation, continual learning, or ensembling. Op-
timizing the hive-plot preprocessing pipeline for real-time deployment remains
an open direction for production-grade use.

Limitations

This study has three main limitations. First, our evaluation is based on a bench-
mark dataset with simulated DDoS and normal traffic, which may not fully cap-
ture the diversity of real-world network behavior or unknown zero-day threats.
Second, our adversarial analysis was limited to white-box attacks (FGSM, PGD)
and standard augmentations; other attack classes such as black-box, C&W, or
adaptive methods were not explored. Third, the reliance on visual encoding via
hive plots introduces preprocessing overhead, which, while effective for modeling,
adds latency that may pose challenges in time-sensitive applications.
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Fast Gradient Sign Method (FGSM)

FGSM generates adversarial inputs by computing the gradient of the loss with
respect to the input and perturbing in the direction of the gradient’s sign [21]:
η = ϵ · sign (∇xL(θ, x, y)). Here, ϵ sets the perturbation scale, L is the loss, x is
the input, y the label, and θ the model parameters.

Projected Gradient Descent (PGD)

PGD extends FGSM by applying multiple iterative perturbations while project-
ing back into an ϵ-ball around the input:

xt+1 = ΠBϵ(x)

(
xt + α · sign

(
∇xL(θ, xt, y)

))
, (1)

where ΠBϵ(x) denotes projection, and α is the step size.

Global Average Pooling (3D)

3D global average pooling compresses each feature map to a scalar by averaging
over depth (D), height (H), and width (W ):

gc =
1

DHW

D∑
d=1

H∑
h=1

W∑
w=1

Xc, d, h, w (2)

3D Convolution

3D convolution extends the 2D operation to include depth, enabling the model
to learn spatiotemporal features from input tensors:

Yc′, d, h, w =

Cin∑
c=1

kd∑
u=1

kh∑
v=1

kw∑
w′=1

Kc′,c,u,v,w′ Xc, d+u−1, h+v−1, w+w′−1 (3)

This operation forms the core of video and sequence-based CNNs as originally
proposed in [15].
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