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Abstract— We present a distributed localization algorithm for
wireless sensor networks. Each sensor estimates its position by
iteratively solving a set of local spatially-constrained programs.
The constraints allow sensors to update their positions simulta-
neously and collaboratively using range and position estimates to
those neighbors within their communications range. Moreover,
the algorithm is designed for implementation with resource-
limited devices. Since the exchange of information among sensors
is a key component for this method, we introduce a stopping
criterion to monitor the wireless transmissions for the whole
network in order to significantly reduce energy consumption with
minimal impact on localization accuracy. Experimental results
show that we can determine the best tradeoff between wireless
transmissions and accuracy. The performance of the proposed
scheme is very competitive when compared with similar and
more computationally demanding schemes.

Index Terms— Distributed-localization, wireless sensor
networks.
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ACRONYMS AND SYMBOLS

Acronym Description
AoA Angle of Arrival
BIL Bilateration
dB Decibels
DSCL Distributed Spatially Constrained

Localization-Local
dwMDs Distributed Weighted Multidimensional

Scaling
GOF Global Optimization Function
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GPS Global Positioning System
LM Levenberg–Marquardt
LS Least Squares
ML Maximum Likelihood

NLLS Non Linear Least Squares
PPE Push-Pull Estimator
QP Quadratic Programming
RF Radio Frequency

RMSE Root Mean Square Error
RSS Receive Signal Strength
RSSI Receive Signal Strength Indicator
SD Standard Deviation

SDP Semidefinite Programming
SQP Sequential Quadratic Programming

TDoA Time Difference of Arrival
ToA Time of Arrival
ToF Time of Flight

WLS Weighted Least Squares
WSN Wireless Sensor Network
WSNs Wireless Sensor Networks

SYMBOLS

Symbol Description
S Set of sensors
N Number of sensors in the network
Si Set of neighboring sensors of the sensor si

Ni Number of elements on set Si

pi Position estimate for the sensor si

zi True location for the sensor si

A Set of M anchors
M Number of anchors in the network
Ai Set of neighboring anchors of the sensor si

qi True location for the anchor ai

Rik Range estimate between the anchor ak and
the sensor si

dik True distance between the anchor ak and
the sensor si

rij Range estimate between two sensors si and sj

L Set of position estimates
p0

i Initial estimates of the sensor si

p�
i Position estimate of the sensor si at

the iteration �
α�

ij Range error between the sensor si and
the sensor sj at the iteration �
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β�
ik Range error between the sensor si and

the anchor ak at the iteration �
Ωi Constrained search region centered at

the location p�
i

ηp Path-loss exponent
δi Parameter used to constraint the search region
P ij Expected power measurement received by the

sensor si from the sensor sj

P ij Measured power between a sensor si and a sensor
sj

C(·) Global cost function
‖·‖ Norm 2
min Minimize
σSH Noise in decibels
ε Threshold for the stopping criterion

∥
∥p�

i − p�+1
i

∥
∥

I. INTRODUCTION

W IRELESS sensor networks (WSNs) are making inroads
into the most varied applications. They offer the ability

to acquire information at spatial and time scales which were
difficult, expensive, or impossible to achieve previously. The
low cost of the sensors and the savings on infrastructure
allows deployments of tens, hundreds, or even more devices
equipped for specific applications. WSNs are a technological
breakthrough that is changing the social landscape as they are
integrated into different aspects of our lives like health care,
homeland security, infrastructure monitoring, and transporta-
tion to name a few.

On a wireless sensor network (WSN), it is a common
assumption to deploy sensors over a region with limited to
non-existent control on their position in space. This situation
has given rise to a significant amount of work on self-
localization schemes for WSNs [1]–[4]. The problem of WSN
localization is preceded by work on statistics and target-source
localization for military and communication applications
[5]–[7]. Localization has been an active area of research in
WSNs from the beginning. Knowledge of the sensor positions
is crucial to establish the network topology, track objects,
monitor an event, determine the quality of coverage, move data
through the network, and to determine spatial/geographical
relationships for data mining and signal analysis [8].

The simplest way to determine location on WSNs consists
of integrating a global positioning system (GPS) in each sen-
sor. This option has the advantage of geographical precision,
but increases the cost, energy-consumption, and the size of
a sensor (three parameters that always should be minimized
in a WSN). Also, GPS requires line-of-sight between the
sensor and the satellites [9] which is not possible on indoor
environments. A more efficient scheme from the cost-energy-
precision point of view consists of equipping only a small
fraction of the sensors with GPS capabilities. These sensors
serve as anchors or reference sensors which can be used by the
remaining sensors to estimate their own positions using range
estimates (i.e., distances) to them. Methods to estimate the
range among sensors include the time of arrival (ToA), time
difference of arrival (TDoA), received signal strength (RSS),
or angle of arrival (AoA) [10]–[14].

Centralized schemes [1], [8] solve the localization problem
in a base station or processing center, where all pair-wise
distances between sensors are gathered via wireless transmis-
sions. Thus, energy-conservation and robustness of centralized
schemes are affected by the network size, topology, and sensor
range. On the other hand, if the mathematical model for the
WSN localization problem is solved in a distributed form
(i.e., each sensor being able to estimate its own position), the
amount of wireless communications among sensors could be
greatly reduced. Moreover, the whole WSN can be tolerant to
node failures [15].

Recently, many distributed algorithms have been proposed
coming from different perspectives. In [16], a novel distributed
weighted multidimensional scaling (dwMDS) that corresponds
to the weighted least squares (WLS) approach is proposed.
This algorithm is a variation of classical centralized MDS [17].
In a similar way, [18] using the non-linear least Squares
(NLLS) approach divides a global optimization function, sub-
ject to non linear geometrical constraints, into local optimiza-
tion functions that are solved in a distributed way through
the Gauss-Newton method. Other localization algorithms have
formulated the WSN localization problem like a semidefinite
programming (SDP) problem where interior point methods are
successfully applied [19]–[21]. Using a different approach,
a push-pull physical model is applied in [22] to design a
distributed localization algorithm, where force vectors are used
to iteratively re-estimate the positions of each unknown sensor
until convergence is achieved. Also a grid search non-iterative
method can be used as shown in [23]. For each point in the
grid a function is calculated and the correct extreme is found.

In this paper, we consider modeling the WSN localization
problem as a non-convex problem with non-linear constraints
where a non-linear optimization algorithm should be used
to obtain a solution [24]. We propose a distributed iterative
localization algorithm which aims to achieve good accuracy
within few iterations. At the end of each iteration all sensors
update and broadcast their positions to neighboring nodes.
During the update phase, each sensor solves a spatially-
constrained program using range and position information
from local neighbors. We introduce a local objective function
where a sensor attempts to minimize the mean absolute range
error with all its neighbors. The algorithm is characterized
by a spatial constraint that limits the solution space to a
region around the current position estimate. We note that
the proposed approach has computational characteristics that
allow its deployment on real sensor hardware. We performed
an extensive evaluation of the trade-off between localization
accuracy and wireless transmissions. This is a key metric for
an iterative scheme as wireless transmissions are the most
energy consuming operations for a sensor [25]. We show that
for large-scale network scenarios, it is possible to determine
a good trade-off point between localization accuracy and the
amount of required wireless transmissions.

This paper is organized as follows. Section II presents a
review of well known ranging techniques which are used in
our localization algorithm. In Section III we formulate the
range-based localization problem within the context of non-
linear programming. In Section IV we introduce a distrib-
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uted localization algorithm with spatial constraints that allow
collaboration among sensors during the localization process.
Section V evaluates and compares the accuracy performance
and wireless transmissions of our proposed algorithm with two
well-known iterative schemes. Finally, we discuss conclusions
in Section VI.

II. RANGE ESTIMATION TECHNIQUES

Range-based techniques estimate the true distance between
two sensors using time-of-flight (ToF), power, and/or angle
measurements. ToF measures the time that it takes for a signal
(e.g., acoustic, radio frequency (RF), or other) to travel from
a sensor si to a sensor sj , and it basically presents two
modalities: the ToA and TDoA schemes [13], [14]. These
techniques require additional sensor hardware to detect signals
and make accurate timing measurements. Knowing the ToF
from a sensor si to a sensor sj and the velocity-propagation
of the signal vp, the distance between the two sensors can
be primarily formulated as dij = vp · ToF . However, this
first approximation does not take into account environmental
factors like additive noise, shadowing, multi-path signals, and
internal time delays (τD) on the sensors, so more sophisticated
models which take into account more specific information
must be developed as shown in [26]–[29]. In synchronous
sensor networks the τD problem can be easily solved, but
in asynchronous sensor networks two-way ToA measurements
are commonly used in practice [30].

The RSS method is based on the measurement of the
signal power. This technique is popular since RSS hardware
is commonplace in wireless devices and can be used to
estimate the distance between two sensors [31]. As a first
approximation, considering the free space path loss model, the
distance dij between two sensors si and sj can be estimated
by assuming that the power signal decreases in a way that is
inversely proportional to the square of the distance (1/d2

ij).
However, in real environments the signal power is affected by
a factor (1/d

ηp

ij ). The path-loss factor ηp is closely related
to geometrical and environmental factors (e.g., shadowing,
reflection, diffraction, scattering, and fading), and it varies
from 2 to 4 for practical situations [28].

In this paper, we use the log-distance path loss model
denoted as

P ij = P0(d0)− 10ηp log 10

(
dij

d0

)

+ σSH = P
ij

+ Xσ (1)

where P ij is the power path loss (measured in dB) between
the two sensors, P0(d0) represents the measured power at the
reference distance d0 from the transmitter (typically d0 = 1
meter), and Xσ is a zero-mean Gaussian random variable with
standard deviation σSH for the case of shadowing. Hence, the
noisy power measurements follow the distribution

P ij
∼ N (P

ij
, σSH) (2)

in decibels which correspond to a log-normal distribution of
the power loss in Watts. From (1) and (2) the distance estimate
rij between a sensor si and a sensor sj can be obtained as
follows:

rij = d0 · 10
P0(d0)−P ij

10·ηp . (3)

III. PROBLEM DESCRIPTION

Consider a set of N sensors S = {s1, s2, . . . , sN}, ran-
domly deployed over a region. For a two-dimensional scenario
(i.e., 2-D) denote the true position for sensor si as zi =
[zxi , zyi]T which zi is unknown and its estimated position as
pi = [pxi , pyi ]T . Furthermore, assume the random deployment
of M anchors A = {a1, a2, . . . , aM} which are equipped with
GPS or any other scheme to self-localize. The location of an
anchor ak is represented by qk = [qxk

, qyk
]T . Also, in practice

it is common to have M � N with M > 2.
In a range-based localization scheme it is assumed that each

sensor can estimate the distance to other sensors using ToA
or RSS. Thus, the range estimate between si and sj can be
denoted as

rij = rji = dij + eij (4)

where dij = ‖zi − zj‖, ‖·‖ is the Euclidean distance, and eij

represents the range error introduced by environmental noise,
propagation distortion, and the ranging technique. In a similar
way, the range estimate between a sensor si and an anchor ak

can be defined as

Rik = Rki = dik + eik (5)

where dik = ‖zi − qk‖. Moreover, assume that all sensors
have a limited number of neighboring sensors constrained by
the range of coverage γ in the vicinity of a sensor. Thus

Si = {j| ‖zi − zj‖ < γ} (6)

defines the known pair-wise distances between a sensor si and
sensors sj . Similarly,

Ai = {k| ‖zi − qk‖ < ρ} (7)

defines the set of known pair-wise distances between a sensor
si and anchors ak also limited by the range of coverage ρ.

Then the problem in WSN localization consists of estimat-
ing the position pi for each sensor si such that the norms of
these positions minimize the residuals with the corresponding
ranges rij and Rik. The solution to this problem is one
of the most challenging problems in WSNs. The problem
can be mathematically formulated as the following global
optimization function (GOF) [32], [33].

min
L

∑

i∈S

(
∑

j∈Si

|‖pi−pj‖ − rij |+
∑

k∈Ai

|‖pi − qk‖−Rik|
)

(8)

where L = {p1,p2, . . . ,pN} represents the set of positions to
be minimized. Equation (8) describes a nonconvex nonlinear
problem which is NP-hard to find a global minimum [18],
[24], [32]–[37]. The requirement to have a complete set
of range measurements exacerbates the complexity of the
problem given the limited energy resources available to each
sensor. In the following section we develop an algorithm that
circumvents these mathematical and engineering limitations.
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IV. DISTRIBUTED LOCALIZATION SCHEME BASED ON THE

SOLUTIONS OF SPATIALLY-CONSTRAINED LOCAL

PROBLEMS

In this section we present a method derived from (8) that
accounts for the constrains found in WSNs, communication
and computational resources and exploits the WSN tenet of
collaborative in-network processing. The proposed algorithm
is iterative, distributed, and computationally simple. The use of
optimization or iterative methods to find a solution to problems
like (8) has been extensively studied in the literature [21]. The
challenge consists of solving the WSN localization problem
with a distributed iterative method that can provide accurate
position estimates within only a few iterations. Since cen-
tralized processing would be a resource intensive operation,
it is also crucial to establish an approach to distribute the
computational and communications load across the WSN.
Hence, given a position estimate p�

i , we require for each sensor
si to produce a position update p�+1

i using only the positions
and range estimates from its neighboring sensors (Si) and
anchors (Ai), respectively. Let us define

α�
ij(p

�
i) =

∣
∣rij −

∥
∥p�

i − p�
j

∥
∥
∣
∣ (9)

as the range error between the sensor si and the sensor sj for
iteration �, and

β�
ik(p�

i) =
∣
∣Rik −

∥
∥p�

i − qk

∥
∥
∣
∣ (10)

as the range error between the sensor si and the anchor ak for
iteration �. Thus, it is easy to see that we can write the global
cost function as follows:

C
(

p�
1, . . . ,p

�
N

)

=
∑

i∈S

F (p�
i) (11)

where
F (p�

i) =
∑

j∈Si

α�
ij(p

�
i) +

∑

k∈Ai

β�
ik(p�

i) (12)

represents the total range error between the sensor si and its
Si neighboring sensors and its Ai anchors. Trying to find the
set L� that globally minimizes the unconstrained problem (11)
is a difficult and sometimes intractable problem. On the other
hand, we could separate (12) into a series of local problems
where each sensor determines locally a position update p�+1

i

inside of a constrained-search region Ω�. Thus, we can define
a local spatially-constrained non-linear programming problem
as shown the next equation

min
p�+1

i ∈Ω�

⎛

⎝
∑

j∈Si

α�
ij(p

�+1
i ) +

∑

k∈Ai

β�
ik(p�+1

i )

⎞

⎠ . (13)

The idea is to constrain problem (12) such that at each
iteration �, the updated position of a sensor si, p�+1

i , has
constrained movements along the correct direction. This would
allow all sensors to move “collaboratively” across iterations
so that each sensor si can progressively adapt to the position
updates from the other sensors to gradually reduce the margin
of error given by α�

ij and β�
ik .

To illustrate the concept Fig. 1 presents a simple case
which describes position estimates and range measurements

Fig. 1. Sensor si updating its position p�
i using distance measurements and

known locations of three anchors (aj , ak , a�) and one neighbor sensor sh.

graphically. In this example, there are three anchors named
aj , ak, and al and two sensors si and sj where the sensor
si needs to update its position. The range estimate Rij is
larger than the Euclidean distance

∥
∥p�

i − qj

∥
∥, Rik is shorter

than
∥
∥p�

i − qk

∥
∥, Ril is shorter than

∥
∥p�

i − ql

∥
∥, and the range

estimate rih is shorter than
∥
∥p�

i − p�
h

∥
∥. Hence, the sensor si

must move its current position p�
i to a new position p�+1

i that
minimizes the difference between the measured distances and
the Euclidean distances to its neighboring sensors and anchors.

Dividing the global function into a set of local minimization
problems meets our requirement for an algorithm that is
distributed and uses local information from neighbors. Based
on (13), we define the constrained search region Ω� as follows:

p�
xi
− δ�

i ≤ p�+1
xi
≤ p�

xi
+ δ�

i

p�
yi
− δ�

i ≤ p�+1
yi
≤ p�

yi
+ δ�

i . (14)

Here p�
xi

and p�
yi

denote the cartesian components of p�
i ,

and δ�
i is a heuristic value defined as

δ�
i =

F(p�
i)

Ni
(15)

where Ni is the number of elements on set Si. The constraints
p�

xi
and p�

yi
are geometrical in the sense that they delimit

the solution to a 2-D search region. We identify the search
region Ω�

i as a 2δ�
i × 2δ�

i box centered at p�
i as depicted

in Fig. 2(a). We opted to use a square search region (as
opposed to circular or some other shape) to achieve lower
computational complexity on the actual implementation of the
algorithm as discussed next.

The constrained non-linear programming problem described
in (13) could be solved with an interior point method [21].
However, the implementation of such methods may be pro-
hibitive for a sensor given the computational and storage
limitations of the hardware. We propose the discretization
of each Ω�

i over a 5 × 5 grid as shown on Fig. 2(b). Only
a set of 25 candidate solutions P�

c for (−12 ≤ c ≤ 12) is
considered. The value at c = 0 corresponds to p�

i . The
resolution of 25 candidates of the search region was a trade-
off between accuracy and time-computation. Using a lower
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(b)

(a)

Fig. 2. Constrained continuous-search and discrete-search areas used
iteratively by a sensor si to update its actual position p�

i .

resolution grid (e.g., 4 × 4 candidates) in the search region
reduced computation requirements of a sensor at the expense
of increasing the error on position estimates. On the other
hand, increasing the resolution of the search region (e.g.,
7×7 candidates) provided better position estimates. However,
extensive simulations indicated that the accuracy improve-
ments obtained with 49 candidates were marginal. Hence,
using 25 candidates provided the best computation-accuracy
trade-off in this work.

The position update p�+1
i can be easily obtained by mini-

mizing (13) over the candidate set using direct substitution. To
avoid oscillation in the position estimates, an averaging filter

p�+1
i =

p�+1
i + p�

i

2
(16)

is applied using the two most recent position updates.

Algorithm 1 Sensor si Refining its Current Position p�
i Using

the DSCL Approach
Require: p0

i ,ε, Rik where k ∈ Ai, rij where j ∈ Si.
Ensure: � ≤ 100 or

∥
∥p�

i − p�+1
i

∥
∥ < ε.

1: Initialize: �← 0
2: repeat
3: Wireless receptions: p�

j ← j ∈ Si

4: δ�
i ← F(p�

i)
Ni

5: min
p�+1

i

⎛

⎝
∑

j∈Si

α�
ij(p

�+1
i ) +

∑

k∈Ai

β�
ik(p�+1

i )

⎞

⎠

6: subject to :
7: p�

xi
− δ�

i ≤ p�+1
xi
≤ p�

xi
+ δ�

i

8: p�
yi
− δ�

i ≤ p�+1
yi
≤ p�

yi
+ δ�

i

9: p�+1
i = p�+1

i +p�
i

2

10: Broadcast: p�+1
i

11: �← � + 1
12: until � ≤ 100 or

∥
∥p�

i − p�+1
i

∥
∥ < ε

Finally, as part of the collaborative process, all sensors
broadcast their position updates in order to start a new itera-
tion. In order to limit the amount of iterations (i.e., wireless
transmissions), our algorithm uses

‖p�+1
i − p�

i‖ ≤ ε (17)

as a simple stopping condition. If the position updates of
sensor si satisfy the stopping criterion (17) after Ji iterations,
the sensor will transmit its final estimate pJi

i with a “stopping
flag” indicating that it will no longer transmit position updates.
Hence, neighboring sensors should use pJi

i on further position
updates. In this way, all sensors will gradually stop the process
of updating/broadcasting their positions. Clearly, larger values
of ε will require a lower number of iterations and at the cost
of larger localization errors.

Algorithm 1 summarizes the proposed distributed spatially-
constrained and localized (DSCL) algorithm for WSN local-
ization. It is distributed in the sense that each sensor computes
its own location updates, and localized since each sensor relies
only on information from other sensors within a local neigh-
borhood (i.e., those that have single-hop connectivity). The
spatial constrain represents a collaboration strategy that allows
all sensors to iteratively update their positions. As with any
iterative scheme, set of initial locations, p0

i , is required. Each
sensor can compute an initial position using an anchor-based
localization scheme similar to the ones reported in [38]. Also,
we assumed that each sensor si knows positions and range
measurements to at least three non-collinear anchors [39] and
the range estimates rij to its neighboring sensors (sj ∈ Si).
At the end of each iteration, each sensor transmits its position
update p�+1

i to its neighbors. It is also assumed that sensors are
equipped with the communication protocols needed to share
position updates among each other [40].

V. ASSESSING PERFORMANCE OF DSCL ALGORITHM

In WSNs, two parameters are commonly used to eval-
uate the efficiency of iterative localization algorithms: the
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accuracy performance and the number of iterations to reach
final position estimates [41]. Both parameters are related to
factors like the number and location of anchors, accuracy in
range estimations, coverage range in sensors, initial positions
and the iterative algorithm by itself. Next, we evaluate our
proposed algorithm under different WSN scenarios consider-
ing the effects of these factors.

A. Localization With a Real Indoor WSN Benchmark

In this subsection, we evaluate the localization capabilities
of DSCL using the set of real network measurements reported
in [42]. This data set has been used in other works [16], [43],
making it a good comparison reference. The data set presents
a fully connected network of 44 sensors randomly deployed
in an office environment within a 14 by 13 area. The data set
consists of ToA and RSS measurements. ToA measurement
errors are Gaussian with a standard deviation around 1.84 m.
For RSS, a log-normal model was assumed with an estimated
standard deviation of 3.92 dB. Also, this WSN scenario uses
four anchors located intentionally in the corners with the goal
of increasing their quality [44] and avoiding the collinear
anchor problem (see [28], [43]).

For comparison, we include localization results using the
push-pull estimator (PPE) [22] and a distributed algorithm
using the Levenberg-Marquardt (LM) algorithm [38], [45] to
solve (11). The three algorithms were tested using similar
procedures as in [16], [43]. A set of initial positions L0 was
produced using the bilateration scheme reported in [38]. Each
algorithm was ran for 100 iterations, and the accuracy of
the localization process was assessed using root mean square
error (RMSE)

RMSE =

√
√
√
√ 1

N

N∑

i=1

∥
∥p�

i − zi

∥
∥

2
(18)

where p�
i represents the final position estimate (with � = 100

iterations) for a sensor si. The evolution of the RMSE at
each iteration is shown in Fig. 3(a) and (b) for ToA and RSS
measurements respectively. In the case of RSS measurements,
bias errors were removed as described in [16].

Fig. 3 shows all approaches converging to a minimum
localization error at different rates. The RMSE curve for the
PPE scheme has a smooth decay with convergence around
30 iterations for both ranging techniques. The LM and DSCL
schemes present a fast decay towards a minimum point within
5 iterations. In the case of ToA, PPE reaches the lowest
RMSE value followed by LM and DSCL. In our case, DSCL
performance can be improved by increasing the resolution of
the search region (e.g., 7×7 candidates) with a corresponding
increase in computation. On the other hand, DSCL provides
the best localization with the RSS measurements as depicted
in Fig. 3(b).

A comparison of RMSE values after 100 iterations is shown
in Table I. We include the RMSE for other well known
localization schemes that have been tested with the same
data set. As can be seen, DSCL localization performance is
very competitive. In particular, it provides the second best
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Fig. 3. Evolution of RMSE for ToA and RSS measurements as a function
of the number of iterations for DSCL, LM, and PPE approaches. The three
localization algorithms used the same set of initial location estimates.

TABLE I

RMSE AFTER 100 ITERATIONS OBTAINED WITH DIFFERENT

LOCALIZATION ALGORITHMS

Classical MDS MLE dwMDS LM PPE DSCL

RSS 4.26 m 2.18 m 2.48 m 2.39 m 2.39 m 2.31 m

ToA 1.85 m 1.23 m 1.12 m 1.18 m 1.05 m 1.31 m

RMSE for RSS measurements only outscored by the maximum
likelihood estimation (MLE) scheme proposed in [43]. The
latter is a centralized method requiring a priori knowledge
of the distribution of range errors. Also, we should note that
the dwMDS results reported in [16] were obtained by running
dwMDS twice with a range threshold of six meters.

B. Localization Performance for Large WSN Deployments

In this subsection, we use network simulation to evaluate
and compare the performance of DSCL for large sensor
deployments. In our case, the localization process is comprised
of two stages. First, a set of initial locations needs to be
estimated using only the location information provided by
GPS-enabled anchors. We assume that there are four anchors
deployed randomly over the 2-D region. We can use single-
hop schemes where anchors can connect to communicate
their location directly to all sensors. The bilateration method
proposed in [38] can be used for this purpose, provided that
anchors have a large enough radio range. Another possibility
is to use multihop schemes [46], [47] at the expense of a
larger exchange of messages between nodes. On the second
stage, DSCL iteratively computes position updates until some
stopping condition is satisfied. Achieving good localization
performance with a small number of iterations is crucial,
since they are directly related to wireless transmissions and
receptions. We assume a deployment of 100 sensors over a
2-D 100 by 100 m area. Given the distributed nature of DSCL,
the size of the WSN is only limited by the availability of
anchors for initialization.
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TABLE II

MEAN RMSE AND STANDARD DEVIATION FOR

INITIAL ESTIMATES OF 20 NETWORKS

Initialization Mean and SD over 20 WSNs

Algorithm Mean RMSE SD

LS Multilateration 22.7 m 2.22 m

Bilateration 12.96 m 0.84 m

LM 12.54 m 0.69 m

In order to reduce the number of wireless transmissions,
we decided to use a single-hop initialization algorithm. Hence,
our WSN model assumes that anchors can communicate to all
sensors inside a 100 by 100 area. On the other hand, sensors
are assumed to have a short radio range γ; a value of 30 meters
has been used extensively. To ameliorate the uncertainty on the
range estimates rij , each sensor si adjust this value according
to

rij = γ if rij > γ. (19)

A similar geometrical relation has been reported in [16]. Also,
in our experiments, we assume that γ ideally remains constant
along all directions.

This simulation framework was devised after considering
advances in hardware and wireless technologies at the time
of this writing. For instance, in the case of a ZigBee-based
network [48], [49], the nominal range of existing devices is
100 meters (or lower) with a power consumption of 1 mW.
This technology has been typically considered as the baseline
for sensors. Since anchors are required to self-localize and to
have a large radio range, they have a higher power require-
ment. In practice, this could be achieved by equipping anchors
with a ZigBee-PRO transceiver [50], [51]. The ZigBee-PRO
standard is interoperable with regular ZigBee radios with a
range upwards of 1.5 Km and a transmission power of 60mW
in outdoor scenarios.

The remaining work in this paper focuses on RSS measure-
ments. Although reliable RSS measurements are difficult to
obtain [52], [53], RSS is an inexpensive ranging technology
which has become widely available in wireless devices. We
simulate RSS measurements using the propagation model
described in (1). The free space path-loss formula [16], [54]

PR(d) =
PT GT GRλ2

L(4πd)2
(20)

is used to obtain P0(d0) at a reference distance of d0 = 1
meter. In our model we set L = GT = GR = 1 and the
carrier frequency to 2.4 GHz (corresponding to Zigbee radios).
Based on Zigbee and Zigbee-PRO specifications, we assume
transmission powers of PT = 60 mW (+18 dBm) and PT =
1 mw (0 dBm) for anchors and nodes respectively. Thus, we
use P0(d0) = −40 dBm for sensors and P0(d0) = −22.2 dBm
for anchors. Also, we use a representative path-loss factor
ηp = 2.6 and σSH = 6dB for outdoor scenarios [11]. Finally,
noisy pair-wise simulated ranges rij and Rik are obtained by
averaging 10 range measurements as reported in [28].

For the simulations that follow, we consider 20 different
WSNs where each one is composed of N = 96 sensors and
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Fig. 4. (a) Least squares multilateration (LS), bilateration (BIL), and
Levenberg–Marquardt (LM) algorithms providing initial estimates to iterative
localization algorithms. (b) Accuracy versus stopping criteria of the DSCL
iterative algorithm at different initial estimates.

M = 4 non-collinear anchors. Anchors and sensors are ran-
domly distributed over a 100 by 100 m area. For each network,
we generate a set of noisy ranges according to the Gaussian
model in (3). Since the initial point for an iterative algorithm is
closely related with its robustness and convergence, we also
evaluate the impact of initialization schemes on the overall
localization performance. Specifically, we evaluate the least-
squares multilateration (LS), Levenberg-Marquardt (LM), and
bilateration algorithms discussed in [38]. We should remark
that the LM algorithm is being used for both initialization
and iterative localization. The RMSEs of initial estimates over
the 20 WSNs are summarized in Table II. For instance, the
bilateration algorithm provides an average localization error
(RMSE) of 12.96 meters with a standard deviation (SD) of
0.84 meters. Thus, given a set of initial estimates shown in
Fig. 4(a) and a fixed threshold ε, each sensor si refines its
position p�

i using an iterative algorithm until either (17) is
satisfied or the maximum number of iterations (bounded to
100) is completed.

We simulated the DSCL localization process for each one
of the 20 networks over different values of ε ∈ [0, 0.5]. The
particular case of ε = 0 refers to the situation where each
sensor si will perform 100 iterations (i.e., 100 broadcasts of
position updates). Fig. 4(b) presents the average RMSE versus.
ε over the 20 WSNs. There are three combinations in the figure
and their corresponding initial estimates, “�” presents RMSE
values using the closed-form LS algorithm for initialization,
“•” presents the bilateration results, and the “�” curve presents
the LM initialization algorithm.

As it was expected and confirmed in Fig. 4(b), incrementing
the value of ε leads to slightly higher RMSEs since sensors
stop their iterative process earlier. We observe that better
position estimates are obtained using the LM initialization.
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Fig. 5. Accuracy versus stopping criteria of (a) PPE and (b) LM iterative
algorithms at different initial estimates provided by the least squares multi-
lateration (LS), the bilateration (BIL), and the Levenberg–Marquardt (LM)
schemes of Fig. 4(a).

Also, we observe that the performance slightly decreases when
initial positions are generated with the LS multilateration or
the bilateration algortihms.

Considering the same set of initial estimates, Fig. 5(a) shows
results for the PPE algorithm. PPE shows higher RMSEs
with respect to DSCL for all ε. For example, using the LM
initialization algorithm with ε = 0.5 m and ε = 0 the DSCL
approach achieved RMSE 3.78m and 3.45m respectively while
the PPE provided 6.32 m and 3.89 m. In Fig. 5(b) we show the
localization error performance of the iterative LM algorithm.
Similar to DSCL, the localization error shows robustness with
poor initial estimates and good performance for all values of ε.
For example, while the LM/DSCL combination presents an
error of 3.45 m for ε = 0, the LM/LM scheme presents an
error of 3.62 m. Then, for ε = 0.5 m the LM/LM combination
obtains an error of 3.79 m very close to the LM/DSCL
scheme of 3.78 m. This indicates that our DSCL is very
competitive when compared with LM, which is an improved
gradient descent algorithm with a much higher computational
complexity.

We summarize the results of this section in Fig. 6 where
we plot the RMSE values versus ε for the three localization
algorithms when the initial positions are estimated with the
LM algorithm. The average localization error for LS increases
by approximately 2.5 m (70%) for ε = 0.5 m. On the other
hand, the RMSE for both DSCL and LM increases by less
than .25 m for the same threshold. Moreover, their curves
are almost flat for the full range of ε values. This behavior
indicates that both algorithms achieve their final estimates
within a few iterations implying a fast rate of convergence.
The differentiating factor between the DSCL and LM
algorithms is their computational complexity. DSCL
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Fig. 6. Accuracy versus stopping criteria of three iterative algorithms
considering LM initial position estimates.

solves local spatially-constrained local problems using
a simple search over a set of candidate solutions.
On the other hand, the LM algorithm has a very
high computational cost (e.g., requires computation of
gradients, Jacobians, and Hessians) within each iteration
[38], [55]. In conclusion, DSCL is a suitable localization
scheme that can be implemented and deployed on resource-
constrained WSNs.

C. Tradeoff Between Wireless Transmissions and Accuracy
Performance

Iterative algorithms like the ones discussed in this paper
require broadcasting their position updates at the end of each
iteration. Wireless transmissions (and receptions) constitute
the most energy expensive operations in a WSN. Hence, an
important requirement is to design distributed algorithms that
require a minimum exchange of messages between sensors.
Next, we analyze the relationship between the number of
wireless transmissions (i.e., iterations) and localization accu-
racy considering different threshold values in the stopping
condition (17). We assume that all sensors use the same
threshold value ε for a given simulation run. Let us define Ψε

ij

as the total number of wireless transmissions use by sensor si

on the jth network to reach its final position estimate pn
i .

Then, we define the total number of wireless transmissions
needed by network j as

ςε
j =

N∑

i=1

Ψε
ij (21)

where N = 96, j = 1, . . . , 20, and ε can be varied between 0
and 0.5 m. Next, we define

ξε =
1
20

20∑

j=1

ςε
j (22)

as the average number of transmissions required by a WSN
to complete the localization process for a given ε.
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In Fig. 7, we plot ξε for different threshold values.
As expected, increasing ε decreases the number of wireless
transmissions. The figure shows that small values of ε lead to
a significant reduction of transmissions which leads to energy
savings. Also, we note that for DSCL and LM, the number of
transmissions remains flat as we increase ε.

As mentioned before, clearly, our approach is more effi-
cient that the PPE scheme since it requires less number of
transmissions to reach a certain RMSE value. On the other
hand, similar to our algorithm the LM approach uses a small
number of transmissions to reach good accuracy performance.
Thus, LM and DSCL schemes will present similar results.
For example, the LM/DSCL combination requires 330 wireless
transmissions (on average) to reach a RMSE value of 3.78 m
while the LM/LM combination requires around 384 wireless
transmissions to reach the same RMSE value.

Fig. 8 summarizes the relationship between RMSE and
wireless transmissions for the three iterative algorithms.

We can see that small values of ε significantly reduce the
number of transmissions while maintaining acceptable local-
ization performance. We note that at ε = 0, the DSCL scheme
achieves the lowest RMSE value with 9600 transmissions
(96 sensors broadcasting their position updates 100 times).
However, what is more relevant about Fig. 8 is the effect of
the threshold over localization performance. For example, for
ε = 0, 05 m, the number of radio transmissions is reduced
to less than 700 for the DSCL approach while maintaining
practically the same RMSE values, implying that the proposed
algorithm has a fast rate of convergence. On a similar way,
the LM approach (almost overlapped with the DSCL scheme)
has a fast rate of convergence providing an excellent accuracy
performance at lower values in ε.

Finally, we should remark that even though wireless trans-
missions consume more energy than any other process in a
sensor, other sources of energy consumption (i.e., wireless
receptions, leakage energy, and CPU cycles [56]) must be
considered for modeling the power consumption of sensor
components. This analysis is beyond the scope of this paper.
Detailed analysis regarding power consumption for wireless
sensor networks can be found in [55], [57]. In particular, [55]
presents a detailed model and power consumption analysis for
localization algorithms.

VI. CONCLUSION

In this research, we have presented a distributed algorithm
for range-based localization on wireless sensor networks. The
method is an iterative and collaborative scheme where each
sensor solves a series of local minimization problems. The
resulting positions are broadcasted among neighbor sensors
in order to repeat the next location update over the whole
network. The algorithm performance has been tested using
ToA and RSS measurements. The extensive evaluations over
RSS measurements presented in this paper indicate that our
algorithm is accurate and robust when compared with two
well-known localization schemes. Also, the iterative algorithm
shown to require a few iterations to reach accurate posi-
tion estimates, implying savings on wireless transmissions
in distributed localization schemes for WSNs. Besides, our
algorithm has the property of being computationally efficient,
and it can be implemented with the basic resources provided
by the sensor.

We are interested on evaluating our distributed algorithm in
combination with range-free [58]–[60] and multi-hop [1], [9],
[18], [46], [61]–[63] algorithms in order to reduce the power
requirement of anchors which have an impact on system cost.
Finally, as part of our future efforts we plan to evaluate the
performance of our algorithm under more realistic conditions
including: signal fading, channel asymmetry, network latency,
message routing, and sensor failure. Ultimately we aim at
implementation, deployment, and testing of the proposed algo-
rithm on a real wireless sensor network.
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