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Abstract. Neural Radiance Fields (NeRF) have become a popular 3D
reconstruction approach in recent years. While they produce high-quality
results, they also demand lengthy training times, often spanning days.
This paper studies neural pruning as a strategy to address these con-
cerns. We compare pruning approaches, including uniform sampling,
importance-based methods, and coreset-based techniques, to reduce the
model size and speed up training. Our findings show that coreset-driven
pruning can achieve a 50% reduction in model size and a 35% speedup
in training, with only a slight decrease in accuracy. These results suggest
that pruning can be an effective method for improving the efficiency of
NeRF models in resource-limited settings.
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struction · Efficiency

1 Introduction

Neural Radiance Fields (NeRF) have become an influential approach for synthe-
sizing 3D scenes from 2D images while preserving detailed visual quality. Despite
their effectiveness, they often demand extensive computational resources, re-
quiring long training times that can extend over multiple days [20]. Researchers
have explored strategies to address these concerns, primarily by compressing
the model or pruning less important parameters. Such methods seek to reduce
computational overhead without severely affecting the ability to represent scene
details. Existing work underscores the importance of this endeavor: long-running
NeRF processes may impede real-world tasks like cultural heritage documenta-
tion and architectural modeling, where rapid generation of 3D content is vi-
tal [13,19].

One compression strategy uses uniform sampling. By evenly distributing sam-
ple points, this method decreases computational load in a straightforward man-
ner. However, uniform sampling may cause a loss of detail in regions where small
⋆ These authors contributed equally to this work.

https://orcid.org/0009-0002-9025-0849
https://orcid.org/0009-0001-2935-0288
https://orcid.org/0000-0002-8690-0987
https://orcid.org/0000-0002-8585-1087


2 T. Ding, D. Xiang, P. Rivas, and L. Dong

features matter [3,1], and it may not suffice for applications that require precise
rendering of scene intricacies [21]. Another approach is importance-based sam-
pling, which allocates more resources to parts of the input space that have a
larger impact on the final image. In doing so, it can enhance training efficiency
and preserve fine-grained features [3].

A further extension involves coreset methods, in which smaller, represen-
tative subsets of the data are selected to approximate the full dataset. This
approach aligns with the ultimate goal of model compression by retaining es-
sential information while discarding details that have negligible influence on
output quality. Studies on coreset-driven pruning have shown promising effi-
ciency improvements, suggesting that such techniques can maintain high-fidelity
novel views while using fewer samples [3,27,17]. Compression ideas, including
voxel-based representations, have also surfaced in other works such as TinyN-
eRF, which achieved significant size reductions [27]. While these methods vary
in details, they share a common objective of conserving computational resources
without undermining visual realism.

As additional pruning and compression methods gain traction in 3D recon-
struction, evaluations reveal key trade-offs. Some strategies greatly shorten train-
ing cycles but may sacrifice the ability to represent subtle visual information [7,3].
Balancing compression and performance is crucial in domains that require both
rapid 3D synthesis and detailed rendering. Although there have been efforts to in-
tegrate features of importance-based sampling with coreset ideas, there remains
a pressing need for principled evaluations of these hybrid solutions [8,10].

This paper aims to systematically investigate pruning-based compression
methods for NeRF. By comparing uniform, importance-based, and coreset ap-
proaches, we highlight how each one affects both efficiency and reconstruction
fidelity. Our results indicate that it is possible to compress NeRF models sub-
stantially while preserving most of their scene representation capabilities. We
believe that this study not only advances the understanding of pruning in NeRF
but also informs broader research on compressing 3D reconstruction architec-
tures [4,9]. The contributions of this paper are summarized as follows:

– Demonstrate the feasibility of neural pruning techniques on 3D Reconstruc-
tion networks.

– Achieve decent performance on compressing model size and accelerating com-
putation speed.

The rest of the paper is organized as follows. Section 2 reviews related work on
pruning-based strategies in NeRF and related 3D reconstruction models. Section
3 introduces the methodology and experimental setup. Section 4 discusses our
results in detail, including analysis of accuracy and speed gains. Finally, Section
5 presents conclusions and future research directions.
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2 Related work

2.1 Neural Network Pruning

Neural network pruning seeks to cut down unnecessary parameters—either con-
nections or neurons—in a trained model, with the goal of reducing computational
demands and memory usage while keeping acceptable performance. Common
pruning approaches fall into two categories: unstructured and structured.

Unstructured Pruning Unstructured pruning eliminates individual weights in
the network, typically those whose magnitudes are below a chosen threshold.
Although this can dramatically reduce the parameter count, it also creates ir-
regular memory patterns, which can hinder efficient implementation on hardware
designed for dense operations. Our initial experimentation with “Edge Pruning,”
where the smallest-magnitude connections are removed, belongs to this category.

Structured Pruning Structured pruning, by contrast, removes entire neurons,
filters, or even layers. This approach focuses on pruning higher-level architectural
components, resulting in networks that maintain more regular structures suitable
for hardware acceleration. However, removing significant blocks of the network
can lead to greater performance drops if done too aggressively. In our later
experiments, structured pruning became the main approach for boosting NeRF’s
training speed because it more naturally reduces the size of the fully connected
layers.

2.2 Pruning Methods

Uniform Sampling Uniform sampling selects neurons from a given layer at equal
probability, thereby reducing network size in a straightforward manner. This
random strategy offers computational simplicity since it does not require addi-
tional metrics or calculations to determine which neurons to remove. However,
because it does not account for the contribution that individual neurons make
to network performance, its outcomes can be suboptimal. In practice, uniform
sampling often removes valuable neurons alongside those that are genuinely re-
dundant, leading to potential decreases in overall accuracy.

Importance Pruning Importance pruning targets neurons or connections deemed
least critical to the network’s inference. This entails evaluating metrics such as
weight magnitudes or estimated contributions to the network’s output, allowing
for the selective removal of parameters while striving to maintain predictive
capability. By eliminating less impactful elements, the model can become more
efficient without a large decrease in quality. Importance pruning has proven
effective under various settings, particularly when datasets are evenly distributed
or when memory resources are restricted. For instance, [5] demonstrates how this
technique can streamline network architectures while preserving performance
across different data domains.
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Coreset Coreset-based pruning constructs a smaller yet representative subset of
points to approximate the original layer or dataset. Under this method, each can-
didate neuron is assigned a weight, and sampling probabilities are determined in
proportion to these weights. As a result, the chosen subset reflects the most infor-
mative components of the network, reducing computational costs while retaining
critical features. Section 3.6 will provide an algorithm that further illustrates the
implementation details.

In the work of [15], neurons were viewed as coreset elements, with the method-
ology selectively removing those deemed redundant in a bottom-up manner,
thus preserving accuracy while recalibrating remaining connections. Similarly, [2]
introduced a coreset-focused scheme for compressing convolutional neural net-
works, exploiting internal redundancies to reduce storage footprints and expedite
inference, all without additional retraining steps.

2.3 Neural Radiance Fields (NeRF)

Neural Radiance Fields (NeRF), first introduced by [14], have been widely adopted
for producing high-fidelity 3D scene reconstructions from 2D image sets. At its
core, NeRF relies on a multilayer perceptron (MLP) to map each 3D coordinate
(x, y, z) and viewing direction (θ, ϕ) to a density value σ and a correspond-
ing RGB color. By accumulating these densities and colors along any desired
viewing ray, NeRF renders photorealistic images from novel perspectives. Fig. 1
illustrates the MLP architecture used in NeRF.

Fig. 1: A visualization of the MLP architecture from [14]. The network accepts
γ(x), a positional encoding of the 3D coordinates, along with γ(d), an encoding
of the viewing direction. It then outputs the density σ and RGB color of the
point (x, y, z).

Model compression on NeRF Efforts to compress or prune NeRF have been rel-
atively limited. For instance, [6] explores edge-level pruning to highlight sparsity
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in the network’s weights, whereas [18] leverages singular value decomposition
(SVD) to yield lower-rank approximations of the NeRF representation. Addi-
tionally, [22] proposes pruning hash tables for 3D mesh-based reconstructions
in Instant-NGP. Despite these advancements, the application of neuron-level
pruning and coreset-based methods to NeRF remains underexplored, offering a
potential avenue for more efficient 3D reconstructions without sacrificing realism.

In addition to prior studies on pruning and efficient NeRF representations,
recent developments in parameter-efficient learning provide complementary in-
sights. For example, VMT-Adapter [23] and MmAP [24] introduce efficient trans-
fer learning methods for multi-task vision, which share structural similarities
with importance-based pruning in our framework. Moreover, V-PETL [25] and
the survey on parameter-efficient fine-tuning [26] highlight practical strategies
to maintain model performance with fewer parameters, echoing the goals of
our pruning techniques. These ideas inspire how pruning can be embedded into
broader visual systems while retaining generalization. Additionally, reinforce-
ment learning-based recognition of unordered robotic targets [12] demonstrates
the importance of selecting representative visual features under constrained re-
sources, which aligns with our coreset sampling approach.

3 Methods and Experiments

3.1 Sparcity in NeRF MLP

Before trying to compress the MLP in NeRF, we need to prove that there is
indeed sparsity in NeRF model. Therefore we first did the research on the neural
representation of NeRF.

We have extracted the edge weights in the above MLP model. We first drew a
frequency distribution Fig. 2. And we found that a large amount of edge weights
are indeed very small (less than 0.05). This indicates that the MLP in NeRF is
indeed sparse, and there is potential space for compression.

3.2 Pruning the edges

Based on the discovery of the sparsity, we then tried to prune some low-weight
edges: we discard the edges that have a low weight. When threshold is 0.05, only
40% edges will be kept and 60 % will be discarded. The edge pruning result is
shown on Table 1:

The trends of increasing the remaining percentage and corresponding power-
to-signal noise ratio (PSNR) indicate that eliminating redundant edges has min-
imal impact on the outcome. Hence, we will shift our focus from edge pruning
to neuron pruning. The PSNR is defined as:

PSNR = 10 log10

(
MAX2

I

MSE

)
, (1)
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Fig. 2: Frequency Histogram of edge weights in NeRF. A large percent of edge
weights fall into the range [0, 0.05].

Table 1: Edge pruning comparison. PSNR denotes the peak signal-to-noise ratio,
where higher values indicate closer similarity to ground truth.

Threshold = 0 Threshold = 0.05 Threshold = 0.1

Remaining Percentage 100% 40% 20%
PSNR (Test Set) 21.5 21.3 20.8

where MAXI is the maximum possible pixel value of the image, and Mean
Squared Error (MSE) is defined as:

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2, (2)

where I(i, j) is the original image, K(i, j) is the reconstructed image, and m×n
are the dimensions of the images.

3.3 Problem of Unstructured Edge Pruning

While pruning edges can remove many low-magnitude connections, it does not
reduce the overall size of the layer weights. Consequently, the training time
remains largely unaffected, because the weight matrices between layers still have
the same dimensions. To address this, we explored pruning at the neuron level.
In particular, the original model utilizes seven fully connected layers, each sized
256× 256, with one additional layer for incorporating the viewing direction. By
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compressing these to 64× 64, the network’s parameter count could theoretically
be reduced to one-sixteenth of its initial size.

3.4 Uniform Sampling

A straightforward way to prune neurons is to select them at random. In this
approach, each neuron has an equal probability of being retained, and the model
is subsequently retrained. Table 2 illustrates the impact of uniform sampling,
where we reduce each layer from 256 × 256 neurons to 64 × 64. Although this
technique does shrink the parameter count, it markedly degrades the peak signal-
to-noise ratio (PSNR), indicating that random pruning can remove many crucial
neurons.

Table 2: Performance with uniform sampling. We randomly select 64 neurons
(out of 256) in each layer, then retrain the model.

Baseline Uniform Sampling

Connection Layer Size 256× 256 64× 64
PSNR 21.5 16.5
Model Size 2.38 MB 0.7 MB

The substantial drop in performance highlights two points: (i) random selec-
tion of neurons is ineffective at preserving important features, and (ii) a more
informed pruning criterion is necessary to maintain quality while reducing model
size.

3.5 Importance Pruning

The results in Table 2 show that randomly discarding neurons degrades perfor-
mance, underscoring the need for a more selective pruning strategy. To address
this, we compute an importance score for each neuron and then discard those
with the lowest scores.

A neuron’s importance can be derived from its incoming and outgoing edge
weights. Let the neuron i belong to layer Lk, with its preceding and subsequent
layers denoted by Lk−1 and Lk+1, respectively. We define:

win(i) =

∑
j∈Lk−1

|eji|
|Lk−1|

, (3)

wout(i) =

∑
r∈Lk+1

|eir|
|Lk+1|

, (4)

where eji and eir represent the connection weights from neuron j to i, and from i
to r, respectively. Fig. 3 illustrates this concept, showing incoming and outgoing
connections for a target neuron in layer i.
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ein
(j,

i) eout(i, k)
neuron j

layer i− 1

neuron i

layer i

neuron k

layer i+ 1

Fig. 3: An illustration of the importance weight calculation. Red arrows represent
incoming edges for neurons in layer i, whereas green arrows indicate outgoing
edges.

Using these definitions, we prune the neurons with the lowest importance
scores and then retrain the resulting network. Table 3 presents the outcomes
when using win, wout, or their product as the importance criterion.

Table 3: Results of different importance metrics. We compare pruning by win,
wout, and their product, followed by retraining.

Method PSNR

No Pruning Baseline 21.5

Importance Pruning
Select Neurons with win 19.5
Select Neurons with wout 20.0
Select Neurons with win × wout 20.0

Notably, pruning based on wout yields slightly higher PSNR values compared
to using win. This finding suggests that focusing on how each neuron influences
subsequent layers can be more effective in preserving overall model performance.

3.6 Coreset

Encouraged by the performance of importance pruning, we evaluated a coreset-
based approach [16] to select a representative subset of neurons in each layer.
This technique assigns a sampling probability to each neuron, then draws a
smaller set of neurons that collectively preserve most of the model’s representa-
tional capacity. In practice, we follow a procedure similar to that of [16], using
the product of win(i) and the average outcoming weight wout(i) to guide neuron
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selection. For simplicity, we replace the maximum outcoming edge weight with
its average counterpart. The general pseudocode is shown in Algorithm 1.

Algorithm 1 Coreset
Input:

win(i) and wout(i) for all the neurons in the layer k with i ∈ {1, . . . , |Lk|}
where |Lk| is the total number of neurons in layer k, 256, in our case.

An integer (sample size) m ≥ 1, 64, in our case.
An (activation) function φ : R → [0,∞), ReLU(), in our case.
An upper bound controller β > 0, 3, in our case.

Output:
A weighted set (C, u) which corresponding to the coreset of the layer;

1: for all i ∈ {1, . . . , |Lk|} do

2: pr(i) :=
win(i)φ(β ∗ wout(i))∑

j∈Lk
win(j)φ(β ∗ wout(j))

3: u(i) := 0
4: end for
5: for m iterations do
6: Sample a point q from Lk with probability pr(q).
7: C := C ∪ {q}
8: for all i ∈ [Lk] do

9: ui(q) := ui(q) +
wout(q)

m · pr(q)
10: end for
11: end for
12: return (C, u1, . . . , uk)

After selecting neurons based on these coreset probabilities, we retrain the
compressed network. Table 4 summarizes the outcomes of pruning each 256×256
fully connected layer down to either 128× 128 or 64× 64.

Table 4: Performance comparison using coreset sampling. Compressing from
256 × 256 to 128 × 128 preserves the highest PSNR while noticeably reduc-
ing both training time and model size.

Connection Layer Size 256× 256 128× 128 64× 64

Model Parameters 595K 288K 177K
Model Size 2.38MB 1.14MB 0.7 MB
PSNR 21.5 21.3 20.1
Training Time (min / 100k iterations) 78.75 51.25 46.25

Notably, reducing the layer dimensions from 256× 256 to 128× 128 cuts the
training time by roughly 35% and halves the model size, while maintaining a
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PSNR of 21.3. This highlights the viability and effectiveness of neuron pruning
in NeRF, particularly via coreset-based sampling.

(a) Baseline: 256× 256, PSNR: 21.5 (b) Coreset: 128× 128, PSNR: 21.3

(c) Coreset: 64× 64, PSNR: 20.1

Fig. 4: Performance comparison visualization for different compression scales.

To visualize how pruning affects output quality, Fig. 4 illustrates sample
renderings at different compression scales. As shown in the figure, the perceptual
differences among the various compression scales are not dramatic, even though
the numerical metrics do shift. The baseline model (256 × 256) produces the
highest PSNR of 21.5, but compressing the layers to 128 × 128 only slightly
degrades performance (PSNR of 21.3), while providing substantial reductions in
both training time and model size. By contrast, the more aggressive pruning to
64 × 64 retains most of the scene’s overall structure yet reveals small losses of
detail (PSNR of 20.1). These visual comparisons corroborate our quantitative
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findings and highlight that coreset pruning can achieve a good balance between
efficiency and scene fidelity.

4 Conclusion

In this paper, we compared multiple neural pruning strategies, including uni-
form sampling, importance pruning, and coreset-based methods, for compress-
ing NeRF’s MLP layers. Our experiments showed that random approaches often
degrade quality significantly, while importance-based pruning produces better
results by targeting less influential neurons. Among the tested techniques, core-
set pruning provides a balanced outcome, achieving a significant reduction in
both model size and training time, with only a slight performance loss in terms
of peak signal-to-noise ratio.

These findings highlight that neuron-level pruning is an effective way to ac-
celerate NeRF training, taking advantage of latent sparsity within the network.
Future research may also draw from parameter-efficient transfer learning bench-
marks such as V-PETL [25] or causal representation learning like CausalSR [11],
to integrate pruning with causal inference or visual generalization strategies.
These directions may enable NeRF acceleration not only in synthetic bench-
marks but also in more dynamic or interactive 3D environments. We expect
that insights from this research will inform new developments in network com-
pression for a broad range of 3D reconstruction and rendering applications.
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