
Comparative Study of Single-Stage vs. Two-Stage
Detectors for ASL Gesture Recognition

Xiang Fang and Pablo Rivas

Department of Computer Science, Baylor University, Texas, USA
{Xiang_Fang1,Pablo_Rivas}@Baylor.edu

Abstract. American Sign Language (ASL) enables vital communica-
tion for deaf and hard-of-hearing individuals, yet automated recognition
of its gestures remains challenging. Here, we assess three leading object
detection frameworks, YOLOv11, Faster R-CNN and RT-DETR, on a
moderately sized, extensively augmented ASL dataset. By comparing
average precision across a range of overlap thresholds (mAP 50–95), as
well as measuring inference latency and computational cost, we show that
YOLOv11-l strikes the best compromise between speed and accuracy for
real-time use. In contrast, RT-DETR-x attains the highest overall pre-
cision but demands substantially greater resources. Our results clarify
how each model’s trade-offs affect performance and lay the groundwork
for refining ASL gesture detection. This work brings us closer to prac-
tical, responsive systems that can seamlessly interpret sign language in
everyday settings.
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· Faster R-CNN · ASL Recognition

1 Introduction

Object detection has emerged as a pivotal area in computer vision, facilitating
a wide range of applications from autonomous vehicles to security surveillance
systems. Unlike traditional classification tasks that label an image as a whole,
object detection not only identifies objects but also delineates their positions
using bounding boxes. This dual capability makes it invaluable in scenarios such
as medical imaging, robotics, and real-time monitoring. Early methods relied on
handcrafted features, but recent advances involve sophisticated deep learning ar-
chitectures that leverage convolutional neural networks (CNNs) for enhanced ac-
curacy and efficiency [14,20,16]. Notable frameworks like YOLO (You Only Look
Once), Faster R-CNN, and DETR (DEtection TRansformer) have demonstrated
remarkable performance across various datasets and real-world conditions [15,3].

Among the many specialized object detection applications is the recognition
of ASL gestures, which involves identifying specific hand signs corresponding
to letters or words. ASL is a visual language relying on precise hand shapes,
orientations, and movements; this complexity poses unique challenges for de-
tection algorithms. For instance, the variability in hand configurations and the
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influence of lighting or cluttered backgrounds can significantly impact detec-
tion performance. Moreover, some ASL gestures are visually similar, leading
to potential misclassifications, while real-time requirements demand low-latency
solutions [6,9]. Although frameworks such as Faster R-CNN incorporate region
proposals to enhance speed and accuracy, they may still struggle with rapid
or subtle hand movements [15,8]. YOLO, known for real-time processing, can
find it difficult to differentiate between visually similar gestures if the bound-
ing box predictions do not capture nuanced differences [7]. DETR employs a
transformer-based detection approach that shows promise for complex scenes
but may require adaptations to handle the temporal aspects inherent to ASL
signs [3].

Despite notable progress in general object detection methods [11,4,2,18,17],
there is a significant gap in their application to the dynamic and subtle task
of ASL gesture recognition. Current literature has explored CNN-based strate-
gies for hand gesture detection, but comprehensive evaluations comparing mul-
tiple cutting-edge models specifically tailored for ASL remain scarce [6,9]. In
this paper, we focus on systematically assessing state-of-the-art object detection
frameworks, including YOLO, Faster R-CNN, and DETR variants, to improve
the accuracy and robustness of ASL detection. By leveraging datasets specif-
ically curated for ASL and examining how these models handle variability in
gestures and environmental factors, we aim to shed light on effective approaches
that bridge the gap between general detection capabilities and the nuances of
ASL.

The paper makes the following key contributions:

– A comprehensive comparison of modern object detection models (e.g., YOLO,
Faster R-CNN, DETR) for ASL gesture recognition.

– An investigation into how these methods address challenges such as gesture
similarity, background complexity, and real-time requirements.

– Practical insights into model adaptations and configurations that can en-
hance accuracy and robustness in ASL detection tasks.

2 Background and Related Work

Over the years, object detection has progressed from rudimentary classification
tasks to more sophisticated frameworks that integrate segmentation and multi-
modal strategies. Central to these advances is the distinction between anchor-
based and anchor-free approaches. Anchor-based methods, exemplified by Faster
R-CNN and YOLOv3/v4 [14], rely on a predefined set of bounding boxes (or
anchors) distributed at multiple scales and aspect ratios across an image. The
model then refines these anchors by comparing them against ground truth ob-
jects using the Intersection over Union (IoU) metric, adjusting coordinates to
more precisely capture each target. Although such strategies handle varying ob-
ject sizes effectively, they can be computationally demanding due to the volume
of anchors that must be evaluated.
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In contrast, anchor-free approaches, including YOLOv8 and DETR [16], by-
pass predefined anchors by predicting object centers or key points directly. This
mechanism reduces computational overhead and often proves beneficial for ob-
jects that exhibit extreme aspect ratios or appear in crowded scenes. Moreover,
models in this category typically focus on a more streamlined detection pipeline,
allowing them to maintain robust accuracy without the burden of extensive an-
chor generation.

Beyond the anchor-based and anchor-free dichotomy, object detection frame-
works are frequently classified by the number of inference stages. Single-stage
detectors, such as YOLO and RetinaNet, merge region proposal and classification
within a unified pipeline, favoring real-time performance and simpler deployment
scenarios. However, these systems may encounter limitations when detecting
small or overlapping objects compared to more elaborate architectures. Two-
stage detectors, including Faster R-CNN and Mask R-CNN [20], separate region
proposal from subsequent refinement, with the first stage identifying candidate
bounding boxes and the second stage focusing on classification and bounding box
adjustment. While this paradigm often achieves higher accuracy, it introduces
additional computational demands.

Among the prominent models in the literature, YOLO partitions an image
into grids to simultaneously learn bounding box predictions and class probabili-
ties, using non-maximum suppression to consolidate overlapping detections [14].
Faster R-CNN adopts a two-stage structure: it employs a Region Proposal Net-
work (RPN) to identify likely object regions, followed by classification and
bounding box fine-tuning through ROI pooling and fully connected layers [20].
DETR [16] applies a transformer-based encoder-decoder mechanism that identi-
fies objects in a single feed-forward pass, dispensing with anchors entirely and re-
lying on learned queries to capture and refine target locations. Collectively, these
methods underscore the diverse strategies for object detection, each tailored to
address specific challenges related to speed, accuracy, and the complexities of
real-world imagery.

3 Dataset and Preprocessing

Preparing high-quality training data is essential for achieving robust and ac-
curate detection. In this section, we describe the dataset composition, as well
as the preprocessing and augmentation strategies used to diversify the training
samples and improve model generalization.

3.1 Dataset Details

The dataset employed in this study consists of 1,728 original images, split into
1,512 training images, 144 validation images, and 72 test images [5]. Each image
was uniformly resized to 384 × 384 pixels, a step that ensures consistent input
dimensions across different models and simplifies image scaling considerations
during training.
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3.2 Data Augmentation

To augment the dataset and mitigate overfitting, over 20 augmentation tech-
niques were applied, expanding the training set to 15,110 images and the valida-
tion set to 2,801. These techniques included rotations and flips, thereby exposing
the models to varied orientations. Adjustments to the RGB channels and hue-
saturation shifts were introduced to emulate different lighting and color condi-
tions, while coarse dropout simulated occlusions by randomly masking out small
regions of the image. Additionally, random cropping resized subregions back to
384× 384, enhancing the models’ ability to detect objects in diverse spatial con-
texts. Examples of the original and augmented images are illustrated in Fig. 1,
highlighting the visual transformations achieved through these strategies.

4 Experiment Settings

This section describes the chosen detection architectures, their training proto-
cols, the metrics used to evaluate performance, and the loss functions that guide
model optimization. It concludes with a brief presentation of training curves,
offering insights into convergence behavior and validation outcomes.

4.1 Models Used

Three primary detection frameworks, YOLOv11, Faster R-CNN, and RT-DETR,
were examined in this study. YOLOv11, implemented through the Ultralytics
package, provides three variants (n, l, x) that differ in size and computational
demand [1,10]. This design integrates spatial attention mechanisms and multi-
scale detection layers to handle densely cluttered scenes more effectively. The
YOLO architecture is known for its inference-time efficiency. Faster R-CNN
adopts a two-stage strategy by leveraging an RPN to generate candidate object
regions, followed by classification and bounding box refinement in a subsequent
phase [16,19]. This approach utilizes well-known backbones such as ResNet or
VGG. Meanwhile, RT-DETR employs an encoder-decoder structure with hybrid
feature extraction and attention-driven intra-scale as well as cross-scale fusion
[20,10]. All models used in the experiments are pretrained on the COCO dataset
to enable a fair comparison [12].

4.2 Training Setup

To accommodate varying memory requirements, models were trained on different
GPU configurations using the AdamW optimizer [13] for 15 epochs. In particu-
lar, YOLOv11-n, YOLOv11-l, Faster R-CNN, and RT-DETR-l were trained on
an RTX-4060 GPU equipped with 8GB of memory, whereas YOLOv11-x and
RT-DETR-x required the higher-capacity RTX-6000 GPU (48GB) for efficient
training. These hardware allocations ensured that each model variant could be
optimized without encountering memory limitations, thereby facilitating a bal-
anced evaluation of performance and resource utilization.
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Fig. 1: Original and Augmented Images.

4.3 Evaluation Metrics

Model accuracy and detection capabilities were assessed using standard metrics
in object detection. Average Precision (AP) measures precision across varying
recall levels, while Mean Average Precision (mAP) reflects the average of AP
values over all classes:

AP =

∫ 1

0

P (r) dr, mAP =
1

N

N∑
c=1

APc. (1)



6 X. Fang and P. Rivas

Intersection over Union (IoU) quantifies the overlap between predicted and
ground truth bounding boxes:

IoU =
Area of Overlap
Area of Union

. (2)

In addition, mAP at a 50% IoU threshold (mAP 50) and the more stringent
range-based metric (mAP 50–95) were employed. The latter captures perfor-
mance under multiple IoU thresholds (from 0.50 to 0.95 in increments of 0.05),
yielding a comprehensive overview of detection robustness across a variety of
object sizes and spatial overlaps.

4.4 Loss Functions

Each model employs a specific loss function to reconcile predicted bounding
boxes and class scores with ground truth annotations. Faster R-CNN optimizes
a sum of losses from the RPN and the subsequent detection head:

LFaster R-CNN = LRPN + LDetection, (3)

where the RPN combines classification and Smooth L1 regression terms, and the
detection branch refines bounding boxes identified by the RPN. YOLO focuses
on bounding box regression, objectness prediction, and class probabilities using
a combined loss:

LYOLO = λboxLbox + λobjLobj + λclsLcls, (4)

where bounding box regression leverages a Complete IoU (CIoU) formulation
that incorporates overlap, center distance, and aspect ratio. RT-DETR applies a
multi-component loss composed of classification, L1 regression, and Generalized
IoU (GIoU) terms:

LRT-DETR = λclsLcls + λL1LL1 + λGIoULGIoU, (5)

and penalizes non-overlapping regions by factoring in the smallest enclosing box
that captures both the predicted and ground truth bounding boxes.

4.5 Training and Validation Plot

Model convergence was monitored by comparing training loss and validation
mAP 50–95 over the course of training. As illustrated in Fig. 2, tracking these
curves helps to identify underfitting or overfitting trends and informs decisions
about hyperparameter tuning or early stopping, ultimately guiding model selec-
tion for the final evaluation.
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Fig. 2: Training loss and validation mAP50-95 performance.
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Table 1: Performance comparison of object detection models. Bold values repre-
sent the best result in each column.

Model Latency (ms) mAP 50-95 Params (M) Training Time (s)

YOLOv11-n 3.32 0.692 2.50 160
YOLOv11-l 7.49 0.777 25.3 170
YOLOv11-x 13.85 0.778 56.9 140
RT-DETR-l 9.50 0.753 32.9 400
RT-DETR-x 14.40 0.793 67.4 215
Faster R-CNN 20.69 0.555 32.3 440

5 Results and Discussion

This section analyzes the empirical outcomes for each model, examining both
quantitative performance metrics and qualitative aspects such as misclassifica-
tions. Table 1 summarizes the trade-offs between latency, accuracy, and com-
putational complexity, while Fig. 3 illustrates model-specific confusion patterns.
An in-depth look at common error cases is presented next.

5.1 Quantitative Evaluation

As shown in Table 1, YOLOv11-n achieves the quickest inference times but
at the expense of diminished accuracy, highlighting its suitability for scenarios
that prioritize speed over precision. By contrast, YOLOv11-x exhibits notably
higher mAP, yet demands more extensive computational resources during both
training and inference. Notably, YOLOv11-l balances these factors, providing a
strong compromise between speed and accuracy.

RT-DETR-l and RT-DETR-x also illustrate different performance trade-offs.
RT-DETR-l offers moderate inference latency while attaining mAP scores com-
petitive with YOLOv11-l, thereby serving as a plausible middle ground for real-
time tasks. RT-DETR-x improves further on accuracy, delivering the highest
mAP among all tested models, but requires substantially more computational
overhead. Faster R-CNN, while achieving acceptable detection quality, shows
the lowest mAP and the highest latency among the compared methods, which
is largely attributable to its two-stage detection scheme. Additionally, the train-
ing time for Faster R-CNN is among the longest, aligning with expectations for
two-stage detectors that generate and refine region proposals.

5.2 Qualitative Insights and Error Analysis

To gain deeper insights into model behavior, we examined both confusion matri-
ces and individual misclassified samples. Fig. 3 depicts the confusion matrix for
YOLOv11-l on the test set, revealing that most gestures are correctly identified
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Fig. 3: Confusion matrix of YOLOv11-l on the test dataset.

with high confidence. However, certain categories display recurring confusion,
underscoring the need for more training examples that capture visual nuances
such as hand orientation or lighting conditions.

A closer look at specific errors is shown in Fig. 4, where the left grid indicates
the ground truth and the right grid illustrates the predicted outputs. In one in-
stance, the letter “I” is classified incorrectly as “D,” likely due to the camera angle
emphasizing the overall shape rather than the key differentiating feature (the po-
sition of the finger). The predicted confidence of 0.6 suggests model uncertainty.
This issue hints that greater emphasis on subtle features (e.g., the front ver-
sus back of the hand) might be necessary. Accordingly, augmenting the dataset
with more varied samples of visually similar letters or incorporating pose esti-
mation components could help alleviate such misclassifications. More broadly,
these observations imply that refined attention mechanisms and targeted data
enrichment may enhance the model’s sensitivity to fine-grained gesture differ-
ences.
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(a) Ground Truth.

(b) Predicted Output.

Fig. 4: Comparison of ground truth (a) and predicted output (b).
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Overall, the findings demonstrate that while high-accuracy models generally
demand more computation, practical deployment may necessitate compromises
among speed, resource constraints, and detection fidelity. Future work could
explore specialized architectures or hybrid strategies that build on the strengths
of each approach, potentially improving upon both real-time responsiveness and
discriminative power in ASL gesture detection.

6 Conclusion and Future Work

This study has demonstrated the utility of advanced object detection architec-
tures for recognizing ASL gestures. Our empirical results highlight the trade-offs
between speed, accuracy, and resource consumption that define each model’s
suitability for specific deployment scenarios. Among the evaluated approaches,
YOLOv11-l emerged as a strong candidate when balancing accuracy with low
latency and parameter efficiency, making it well-suited for real-time applications
on limited hardware. Meanwhile, RT-DETR-x attained the highest mAP 50–95
and thereby underscored the benefits of encoder-decoder structures coupled with
attention mechanisms, albeit at a higher computational cost.

Moving forward, further investigation into multimodal strategies and more
complex datasets could enhance model robustness and extend detection beyond
isolated hand signs. Integrating techniques such as hand tracking, multi-object
detection for overlapping gestures, and context-aware predictions may signifi-
cantly improve generalization and resilience to challenging environments. More-
over, refining real-time performance, particularly for high-capacity models like
RT-DETR-x, remains an essential objective in practical system deployments.

Finally, addressing continuous gesture representations, such as letters j and z
that involve motion sequences, requires broader techniques that capture spatio-
temporal dynamics. Future work could explore the capabilities of frameworks
such as Spatio-Temporal Action Localization (e.g., YOWO) to detect and in-
terpret gestures over multiple frames. These advances hold promise for a more
comprehensive understanding of ASL gestures, paving the way for richer com-
munication tools and enhanced accessibility for diverse user groups.
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