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Abstract

Advances in deep generative modeling applied to irregular structures, such as
graphs, have led to exciting advances specifically in the generation of graph struc-
tured data. This has been of particular importance to drug discovery as it directly
applies to the problem of finding new molecular compounds. Many previous
approaches to molecule generation have represented molecules using the SMILE
(Simplified Molecular Input Line Entry System) strings format [1] rather than
representing molecules directly as a graphs. Graph Neural Networks (GNNs) have
shown state-of-the-art performance on many graph related tasks such as graph
classification [2] and link prediction [3]. In this work we introduce DiPol-GAN, a
generative adversarial network (GAN) approach to implicitly learning to generate
molecular graphs. Using Differentiable Pooling, DiPol-GAN learns hierarchical
representations of molecular graphs leading to more robust discriminator perfor-
mance [4]. This work also proposes an extension of DIFFPOOL allowing it to
handle graphs with multiple relation types such as different bond types that occur
between atoms. To enhance the utility of this method we also constrain the learned
latent representation with a reinforcement learning objective to shift the genera-
tion towards a targeted chemical property. Furthermore, we benchmark against
other comparable models with similar claims. Preliminary results indicate that
the proposed approach is competitive and for specific properties better than the
benchmark.

1 Introduction

The extension of deep learning to graph data structures has become a popular research topic with
compelling applications to the field of chemistry [5]. Of particular interest is the impact of deep
generative models to de novo drug discovery. Drug discovery describes the process by which new
candidate medications are found with the goal of identifying a new target molecule with specific
desired properties. The key challenge presented is the vast size of the chemical space and the
discrete nature of molecular structures [6]. The drug discovery process is expensive as even de novo
approaches rely on some semblance of brute force. Improvements in methods to discover new drugs
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with desired properties would have great impact. Our work presents a method to generate previously
undiscovered molecular graphs with specific desired properties.

Generative models have been making astounding progress in the field of computer vision and natural
language processing showing significant improvements in the quality of generated samples. Prominent
approaches to generative modeling are autoregressive models [7], variational autoencoders (VAEs)
[8], and generative adversarial networks (GANS) [9], each excelling in solving very specific types of
problems. For the task of image synthesis autoregressive models generate high quality images but
can be slow to evaluate and do not have a latent representation. VAEs train via maximum likelihood
estimation making them more numerically stable; however, they can produce lower quality results
[10]. GANs implicitly learn model parameters without having to specify a likelihood [11] and are
known to produce higher quality results but are susceptible to generating lower diversity samples
(a.k.a. mode collapse), and are prone to numerical instability making them difficult to train even with
recent advances in adversarial training theory [12, 13, 14, 15].

Generative models have started to make their way into the domain of graphs with works such as
[11, 16, 17, 18, 19, 20]; however, learning to generate graphs presents problems for gradient based
learning due to the discrete nature of graphs because of their arbitrary connectivity [20]. Likelihood-
based models for graph generation are known to be stable but require expensive approximate graph
matching procedures as seen in GraphVAE [20] or require some fixed ordered representations of the
graph as seen in Junction Tree VAE (JT-VAE) [18], which often is not feasible. Autoregressive models
suchs as presented in GraphRNN [19] offer an interesting approach building a graph by conditionally
modeling sequences of nodes where the sequence generators are jointly aware of each other; however,
they lack a latent representation that would allow us to optimize for a desired chemical property.

GANs seem to present a clear advantage for the task of graph generation because they allow us
to implicitly learn the data generation distribution without having to formalize a likelihood that
necessitates a graph matching strategy as in the likelihood-based models (e.g. VAEs) while also
allowing for the optimization of the learned distribution towards a desired chemical property.

In this work we present DiPol-GAN, summarized in Figure 1, which is a GAN-based approach
to generating complete graph structures that are resistant to graph isomorphisms by learning to
predict discrete connections. Through the use of a reinforcement learning objective DiPol-GAN’s
learned generation distribution is encouraged towards a desired chemical property. DiPol-GAN
implements Differentiable Pooling (DIFFPOOL) [4] in its discriminator, which learns to aggregate
nodes on the molecular graph in a hierarchical way improving classification accuracy and the quality
of learned graph embeddings. We believe that through improving the discriminator’s architecture it
will encourage the generator to learn higher quality graph representations.

2 Related Work

Much existing work in small molecule drug discovery represent molecules using a SMILE string
text representation derived from the molecule’s actual graph [21, 22, 23, 24]. The work presented
in this paper takes a different approach and deals directly with the molecular graph as it offers a
richer representation, has greater flexibility, and asserts fewer prior assumptions. Models using
this representation are essentially learning SMILE string syntax and hoping to learn something in
which they could decode into a valid molecule. SMILES do not capture structural similarity between
molecules and one molecule can have multiple smile representations. In the next paragraphs we
review similar methodologies exposing where they fall short motivating us to make improvements.

2.1 Likelihood-based approaches

Simonovsky proposes GraphVAE [20], a likelihood based approach that outputs a probabilistic
fully-connected graph, which then uses approximate graph matching to align the the generated graph
with the ground truth in order to formulate its likelihood. The molecular graph is embedded into
a latent space via a stochastic graph encoder and is then decoded by a graph decoder into a fully
probabilistic graph. The expensive graphing matching algorithm, which is required for GraphVAE to
forumlate a likelihood, prevents it from scaling to generate large graph structures. JT-VAE addresses
the generation of a molecular graph by formulating a VAE and decomposing the molecular graph
into junction trees where each substructures on the molecular graph is then encoded into latent
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Figure 1: Proposed model architecture. Jψ is a policy network, Gθ is the generator, and Dφ is the
discriminator in a graph-based generative adversarial network. The generator is a graph G = (A,X)
where A is the adjacency matrix, and X is the features matrix. The model implements a reinforcement
learning reward mechanism.

space while the original molecular graph is also encoded into its respective molecular graph [18].
These encodings of the molecular graph are then decoded from the latent space into a learned graph.
This approach is intriguing because of its exploitation of the molecule’s substructure to allow for
hierarchical encoding of the molecular graph. This approach does not provide a clear way to optimize
for molecular properties in the latent space and is therefore not ideal for generating molecular graphs
with specific properties.

2.2 Implicit (Adversarial) approaches

The major adversarial approaches to molecular graph generation are MolGAN [11] and Graph
Convolutional Policy Networks (GCPNs) [17]. The formulation of MolGAN is most similar to the
method proposed in this work. MolGAN implicitly learns to generate complete fixed size molecular
graphs by inferring model parameters without having to specify a likelihood. This learned generative
distribution is then further optimized towards specific chemical properties by way of a deterministic
policy gradient algorithm. MolGAN implements the WGAN objective [13]; however, still suffers
from mode collapse which impacts the diversity of generated samples [12]. GCPN has a dramatically
different as it tackles molecular graph generation by formalizing the iterative construction of bonds
and molecular scaffolds by a reinforcement learning agent using a policy network to predict the next
action taken on the graph from a distribution of actions to maximize an overall reward, which is to
generate a molecular graphs with a desired property. GCPN uses a generative adversarial network
to formalize an adversarial reward that is used to ensure that the learned generative distribution
resembles the data generations distribution.

3



3 Methods

3.1 Background

3.1.1 Generative adversarial network

GANs consist of two networks, a generator Gθ and a discriminator Dφ. The discriminator that learns
to identify whether an example is from the model distribution or the data distribution while the
generator learns to map from a prior distribution to a distribution resembling the data distribution [9].
In this way the generator and discriminator have competing objectives and thus can be seen as the
following minimax objective:

min
θ

max
φ

Ex∼pdata(x) [logDφ(x)] + Ez∼pz(z) [log (1−Dφ (Gθ(z))] , (1)

where x is a multi-dimensional one-hot encoded vector representing the type of atom, and z is a
sampled vector from an estimated prior distribution. The end result is a generator that implicitly
learns to model the data distribution in order to improve its performance against the discriminator.

3.1.2 Molecular Graphs

We represent molecules as undirected graphs G containing a set of vertices V and edges E, the
atoms and bonds on the graph, respectively; therefore G = (V,E). Each vertex on the graph vi ∈ V
contains an atom type d. Atoms on the graph relate to each other with atomic bonds as (vi, vj) ∈ E.
These bond types are represented with r ∈ {1, . . . ,R}. In this project we represent a molecular graph
with two tensors A and X. A is an adjacency matrix that describes which nodes are related to each
other and the type of relation. A ∈ Rn×n×r where n is a node on the graph. The feature tensor X
contains node feature representations of size X ∈ Rn×d. Both atom and bond information is one hot
encoded.

3.2 Generator

Molecular graphs require more careful consideration of the relationships between nodes. Atoms can
only form certain types of bonds with each other under specific conditions therefore our generator
must have the capacity to appropriately model these relations. In order to model molecular graphs
our generator samples from a latent space z, uniformly initialized between (0,1), then outputs Ã

and X̃ after being sent through a several affine transformations resulting in a continuous dense
tensors. In obtain to obtain a molecular representation from Ã and X̃ we must be obtain a discrete
representations of each atom type d and bond type r. An elegant way to obtain discrete representations,
as suggested in [11, 20], is to use Gumbel-Softmax as it is also differentiable [25]. In order to ensure
that we are modeling molecular bonding information we use Relational-GCN (RGCN) [26], a graph
convolutional network that supports multiple relation types ensuring that edge information contributes
to the learned graph embedding. The message passing function can be defined as follows:

h
′(`+1)
i = f (`)s (h

(`)
i ,xi) +

N∑
j=1

Y∑
y=1

Ãijy

|Ni|
f (`)y (h

(`)
j ,xi), (2)

h
(`+1)
i = tanh(h′(`+1)

i ) (3)

where h(`)
i is the signal from the center node i in neighborhood Ni at layer l in the network, f (`)y is a

linear transformation between layers of the network, f (`)s is an affine function, and 1/ |Ni| is used to
normalize the contribution of each neighborhood in case neighborhood size is not uniform which
could affect the scale of the corresponding activations.

An RGCN serves a strategic purpose in the generator, since very unstable GAN training is often cor-
related with imbalances in the representational capacity between the generator and the discriminator.

3.3 Discriminator

The discriminator implements DIFFPOOL which allows information to be aggregated accross the
graph in a hierarchical way by learning differentiable soft cluster assignments for nodes at a given
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layer and maps them a set of clusters that are taken as input to the next layer GNN [4]. This method
claims to improve graph classification accuracy by up to 10%. DIFFPOOL can be implemented
using any GNN that adheres to the MPNN framework. DIFFPOOL expects graphs G as (A,F)
with A ∈ {0, 1}n×n as its adjacency matrix and F ∈ Rn×d as its feature matrix where n and d are
nodes and features, respectively. The binary adjacency matrix, A, purposed by DIFFPOOL must be
extended in order to be appropriate for molecular graphs where bonds are inherently multinomial
variables. We accomplish this by using RGCN modules as the first layer to DIFFPOOL. This allows
for node and edge information to be considered. After the first layer of DIFFPOOL, adjacency
is modeled as Bernouli variables which is appropriate because the molecular graph is no longer a
molecular graph but rather a embedded representation.

The following equation shows a general “message passing” GNN architecture formalized by MPNN
[5]:

H(k) =M(A,H(k−1);θ(k)) (4)

where H(k) ∈ Rn×d are the node embeddings computed after k steps of message passing; θ(k) is a
learned parameter; H(k−1) are the node embeddings computed in the previous step; M is the message
passing function

The following equation aggregates node embeddings Z(l) and aggregates them according to the
learned cluster assignment matrix S(l) producing node embeddings for layer nl+1:

X(l+1) = S(l)TZ(l) ∈ Rnl+1×d (5)

The next equation shows the generated coarsened adjacency matrix A(l) which models connectivity
among pairs of nodes in the clusters at layer l + 1:

A(l+1) = S(l)TA(l)S(l) ∈ Rnl+1×nl+1 (6)

Then, the following equation takes as input the adjacency matrix from Eq. (6) and generates a new
embedding matrix for clusters at layer l:

Z(l) = GNNl,embed(A(l),X(l)) (7)

The next equation shows the learned cluster assignment matrix S(l) ∈ Rnl×πl+1 that map nodes from
layer l to node clusters at layer l + 1 by using the softmax activation function to classify connection
between nodes at layer l and clusters at layer l + 1:

S(l) = softmax
(
GNNl,pool(A(l),X(l))

)
(8)

The auxiliary link prediction objective that is minimized at each layer and works to encourage
neighboring nodes to pool together can be formally denoted as:

LLP = ||A(l),S(l)S(l)T ||F , (9)

where || · ||F is the Frobenius norm.

To regularize the entropy of the cluster assignment we minimize the following loss:

LE =
1

n

n∑
i=1

H(Si), (10)

where H denotes the entropy function, and Si is the i-th row of S.

We use (7) and (8), i.e., the base case layer 0, to accept an input adjacency A and feature F
matrices obtain an embedding Zl and and learned cluster assignment Sl that is used to aggregate
node embeddings and relations with (5) and (6) respectively. DIFFPOOL also ensures permutation
invariance as long as the GNN module used in (4) is also permutation invariant [5].
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3.4 Policy Network

DiPol-GAN introduces a third network for the purpose of directing the generator’s learned distribution
towards a desired property. This network’s architecture is identical to the original discriminator’s
that implements DIFFPOOL. The policy network samples over a distribution of policies in order
to maximize performance on the reward function. Policies are represented as a parametric function
θ, πθ(a|s) to maximize performance on the reward (objective) function. Our reward function is
formalized as a the mean squared error between the calculated desired chemical property of our
generated graph and the desired property. Gradients are then propagated back to the generator
encouraging it to learn the a distribution that maximizes this reward.

4 Evaluation

4.1 QM9 Dataset

The QM9 dataset [27] contains about 134,000 stable small organic molecules consisting of Carbon,
Hydrogen, Oxygen, Nitrogen, and Flourine. Therefore QM9 consists of 4 distinct atomic numbers, 4
bond types, and each molecules is up to 9 heavy atoms. QM9 is a popular benchmark for machine
learning in the chemistry community [27]. We reserve 10 percent of the data for test, another 10
percent for validation, and the remain 80 percent of the data is used for training.

4.2 Quality Metrics

The criteria we are using to determine the performance of our generative model requires us to define
V all valid molecules generated from G while C is the list of all chemically valid molecules. The
V alidity of generated molecules is measured by its adherence to known constraints of chemical
structures and is formally defined as V alid = |V | /n where n is the sample size for a given batch.
Uniqueness is the fraction of unique valid graphs formalized as Unique = |set (C))| / |(C)|.
Novel is the novel out of the entire dataset Novel = 1 − |set (C)) ∩QM9| / |set (C))| [20]. We
are also using a reinforcement learning objective in order to optimize the generation toward a specific
desired property and therefore also consider that part of the performance criteria of the model. We
are specifically interested in logP solubility and a drug candidate score.

5 Experiments

GANs are susceptible is several undesirable properties that are unfavorable for the domain of property
specific molecular graph generation. Numerical instability which is marked by severe oscillation
of model parameters preventing convergence, mode collapse, significant imbalance between the
generator and discriminator. Of most concern is mode collapse, which occurs when the generator gets
stuck in a local minimum and generates low variety samples. As GAN training theory is evolving we
try several proposed methods in order achieve favorable results for molecular graph generation.

We start by investigating methods used in MolGAN. First using the improved WGAN [28] loss
function using the Wasserstein distance, and the Earth Mover distance since it has been shown to
improve GAN training performance because even in low dimensional manifolds the Wasserstein
disantance still maintains a smooth shape and therefore improves numerical stability using gradient
based training methods. The Wasserstein distance, DW , is given by:

DW [p||q] = 1

K
sup

||f ||L<K
Ex∼p(x)[f(x)]− Ex∼q(x)[f(x)]. (11)

We also experimented with the gradient penalty alternative introduced by [13] which has improved
on the practice of gradient clipping. The following gradient penalty is only used when training the
discriminator:

L(x(i), Gθ(z
(i));φ) = −Dφ(x

(i)) +Dφ(Gθ(z
(i)))︸ ︷︷ ︸

WGAN loss

+α
(
|| 5x̂(i) Dφ(x̂

(i))|| − 1
)2︸ ︷︷ ︸

gradient penalty

(12)

where α is a hyperparameter, x̂(i) is sampled linear combination between x(i) ∼ pdata(x), Gθ(z(i)),
z(i) ∼ pz(z), and x̂(i) = εx(i) + (1− ε)Gθ(z(i)) with ε ∼ U(0, 1).
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Figure 2: Visualized 2D representation of small molecules generated by DiPol-GAN while training
on QM9. List z space and architecture specs.

The key intuition is that we stack L GNN modules and learn to assign nodes to clusters at layer l in
an end-to-end fashion, using embeddings generated from a GNN at layer l − 1. Thus, we are using
GNNs to both extract node embeddings that are useful for graph classification, as well to extract node
embeddings that are useful for hierarchical pooling. The above method achieved good results but we
were still experiencing the problem of mode collapse reported with MolGAN.

5.1 Results

Table 1: Comparisons with related molecular graph generation work, presented are test results.

Algorithm Valid (%) Uniqueness Diversity Druglikeliness Time (s)

MolGAN 77.5 ±42.0 0.0977 ±0.157 0.877 ±0.214 0.513 ±0.221 16473 ±651
DiPo (WGAN) 100 ± 0.0 0.883 ± 0.013 0.9987 ± 0.45 0.648 ± 0.213 19484 ± 134

Using the QM9 dataset for the task of goal directed molecular graph generation can be problematic
in that there are 134k molecular graph structures lacking software to calculate chemical properties
on a GPU in a timely manner. Nearly all related work report lengthy training times with GraphVAE
reporting > 5 hours to complete one training epoch. It is for this reason that DiPolGAN presents
qualitative metrics on the validation data set for this submission. In our work, training on an NVIDIA
2080Ti DiPOLGAN took 19484± 134 seconds per training step on the QM9 dataset. The validation
metric reported was achieved after 10 training epochs.

6 Conclusion

DiPOLGAN presents a method for generating molecular graphs with specific chemical properties
via hierarchical differentiable pooling to improve discriminator performance while also optimizing
towards a a reinforcement learning objective via the policy network. Through learning hierarchical
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graph representations it is our intuition from representation learning that our discriminator and policy
networks are learning to hierarchically filter learned representation towards information present
to improve each specific network’s objective and therefore implicitly encourage the generation of
realistic molecular graphs.

References
[1] David Weininger. Smiles, a chemical language and information system. 1. introduction to

methodology and encoding rules. Journal of chemical information and computer sciences,
28(1):31–36, 1988.

[2] Zhang Xinyi and Lihui Chen. Capsule graph neural network. In International Conference on
Learning Representations, 2019.
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