
Towards Adversarially Robust
DDoS-Attack Classification

Michael Guarino∗, Pablo Rivas†, Senior, IEEE, and Casimer DeCusatis∗, Fellow, IEEE
∗School of Computer Science and Mathematics

Department of Computer Science, Marist College
†School of Engineering and Computer Science

Department of Computer Science, Baylor University
Email: Pablo Rivas@Baylor.edu

Abstract—On the frontier of cybersecurity are a class of
emergent security threats that learn to find vulnerabilities in
machine learning systems. A supervised machine learning clas-
sifier learns a mapping from x to y where x is the input
features and y is a vector of associated labels. Neural Networks
are state of the art performers on most vision, audio, and
natural language processing tasks. Neural Networks have been
shown to be vulnerable to adversarial perturbations of the
input, which cause them to misclassify with high confidence.
Adversarial perturbations are small but targeted modifications
to the input often undetectable by the human eye. Adversarial
perturbations pose risk to applications that rely on machine
learning models. Neural Networks have been shown to be able to
classify distributed denial of service (DDoS) attacks by learning
a dataset of attack characteristics visualized using three-axis hive
plots. In this work we present a novel application of a classifier
trained to classify DDoS attacks that is robust to some of the
most common, known, classes of gradient-based and gradient-
free adversarial attacks.

Index Terms—adversarial robustness, convolutional neural net-
works, cybersecurity, DDoS attacks, honeypots, hive plots

I. INTRODUCTION

In quarter 1 of 2020 Amazon Web Services (AWS) reported
they defended against a distributed denial of service (DDoS)
attack with a peak traffic volume of 2.3 Tbps [1]. At the
time this was the largest reported DDoS attack in history just
surpassing GitHub’s 2018 DDoS attack of 1.7 Tbps. DDoS
are characterized as a flood illegitimate network traffic with
the intent to exhaust system resources and therefore render
the system unable to fulfil legitimate requests. DDoS attacks
are considered one of the most serious cybersecurity threats to
businesses as they can result in significant and costly damage
to IT infrastructure [2]. In a 2018 White House report the
United States Council of Economic Advisers estimated that
malicious cyber activity cost the U.S. economy between $57
and $109 billion in 2016 [3]. Over the past decade there has
been an exponential growth in the volume of DDoS attacks
and an increasing severity in the devastation that these attacks
cause [4]. With the advent of IoT (internet of things) the
annual volume of botnet IoT-based DDoS attacks is expected
to grow significantly. The overwhelming nature of DDoS

attacks motivates the necessity of automated systems to help
cybersecurity professionals analyze trends in network traffic
to detect such attacks as they are developing so they may be
stopped before they can do significant damage.

Over the past decade Machine learning algorithms have
become an important part of many critical applications such as
credit card fraud detection, online customer support systems,
and email spam filtering. Machine learning algorithms use
data to learn important features for making predictions or
generating analogies between data points. Neural Networks
are machine learning algorithms that have achieved state of
the art performance on most computer vision, audio, and
natural language processing tasks as well as state of the art
performance in many other domains. In our previous work we
show that Convolutional Neural Networks (CNNs) are able to
classify DDoS attacks from network traffic represented as 3-
axis hive plots with strong performance [5]. Neural Networks
are very powerful models; however, they have been shown to
be vulnerable to adversarial perturbations of the input which
cause them to misclassify with high confidence. Adversarial
perturbations are small but targeted modifications to the input
which cause a trained neural network classifier to fail and
pose a risk to cybersecurity applications relying on Neural
Networks.

Given the value automated network traffic monitoring sys-
tems could provide and the demonstrated ability of Neural
Networks to successfully distinguish between normal network
traffic and DDoS attacks [5] we believe it is important to work
towards reducing the effect that adversarial perturbation have
on these machine learning models. In this work we present
a novel application of a classifier trained to classify DDoS
attacks that is robust to several common known classes of
gradient-based [6], [7], [8] and gradient-free attacks [9].

II. RELATED WORK

Given the great success of deep learning on tasks in com-
puter vision, audio, and natural language processing increasing
attention is being paid to understanding and improving security
vulnerabilities of these algorithms. A widely known vulnera-
bility of neural networks is their susceptibility to adversarially
perturbations of the input [6], [10], [11], [12], [13]. Adversarial
perturbations are small but targeted modifications to the input978-1-7281-9656-5/20/$31.00 c©2020 IEEE



often undetected by the human eye, which cause them to
misclassify with high confidence.

There have been several successful methods shown to
improve the robustness of neural networks against adversarial
attacks. A popular approach used by [14], [7] is to incorporate
examples perturbed by known adversarial attacks into the
training process.

Machine Learning models are iteratively fed batches of data
from the larger training dataset which they use to approximate
the underlying data generation distribution [15]. By allowing
adversarially perturbed data to be part of the training process
the model learns a representation of the input that includes
attacked data and is therefore robust to the attack.

Another strategy seen in the literature is to preprocess the
inputs before sending them through the neural network. [16],
[17], [18] investigate preprocessing strategies to discretize and
transform the input using a novel application of thermometer
encoding, bit-depth reduction, total variance minimization,
and image quilting techniques. The motivation here is by
adding non-differentiable seemingly random transformations
the adversary has a more difficult time learning to find effective
attacks.

Much interesting work has been done using applications
of manifold theory. A manifold is a point in high-dimensional
space that resembles euclidean space. The manifold hypothesis
states that data concentrates on lower-dimensional manifolds
in the larger input data space and a classification algorithm’s
job is to learn to distinguish between these manifolds [15].
Some works project input data onto a manifold and work to fix
gaps in manifolds which adversarial attackers seem to exploit
[19], [20].

Many of the defense strategies against adversarial perturba-
tion presented in the literature do not appear to substantially
protect against attack [21], [22], [23], [24] except [7] and to
a greater extent [25].

Much of the current literature on adversarial attacks and
defenses use MNIST and CIFAR10 datasets to prove the
efficacy of their methods. These are computer vision datasets
consisting of images of handwritten digits and real world
objects respectively and both contain 10 different classes. In
this work we transfer domains to cybersecurity and apply
the approach of [7] as a method to provide adversarially
robust DDoS-attack classification to several common types
of gradient-based and gradient-free adversarial perturbations
through adversarial training.

III. DATASET

Honeypots are decoys deployed to augment traditional net-
work perimeter defenses that are often designed to gather in-
formation about the tactics and motives of black hat attackers.
In previous work under support from NSF CAREER Award
IIS-1149372 [26], Marist College Security Operations Center
(SOC) research students captured network traffic using a set
of honeypots during periods where cyber attacks were taking
place. Marist College expanded such work by developing its
own set of honeypots which have been used to study attack

patterns [27]. This attack data was used to create hive plot
visualizations of the network traffic patterns for analysis. Hive
plot visualizations are heavily used in computational biology
research for tasks such as comparing gene regulation and
protein-protein interaction [28], [29]. Hive plots are also used
in other applications that involve large networks where directly
working with a graph structure could be computationally
intractable and therefore are a great solution for the use case
of analyzing DDoS attack network traffic patterns involving
hundreds of machines. To create the Marist DDoS-attack
dataset network traffic was recorded over a two minute time
period and evenly divided into 8 different timesteps (samples
shown in Fig. 1) from the initial starting point of the attack
to the completion of the attack. No great care was taken to
determine the optimal number of timestamps to use; however,
future work that leverages time to improve the confidence of
their predictions maybe find value in this. The hive plots in
the Marist DDoS-attack dataset have three axes. The first (top)
axis plots the time elapsed since the beginning of the attack
where the center is the moment the attack started, the second
(right) axis is the source IP address of the attacker, the third
(left) axis is the country corresponding to the source IP address
of the attacker.

The Marist DD0S-attack dataset has two classes describing
if the hive plot of the network traffic is that of a DDoS-attack
or normal legitimate network traffic. This dataset contains
2,000 total examples and the class distribution is balanced
meaning there are 1,000 8-timestep sequences of legitimate
network traffic and 1,000 8-timestep sequences of DDoS-
attack patterns.

IV. METHODS

A. Problem Setup

We consider the task of making a DDoS-attack classifier
robust to adversarial perturbations using a dataset consisting
of hive plot images. The hive plots visualize attack patterns
over time from source to target IP address. In prior work by [5]
this dataset has been used to perform binary classification of
DDoS-attacks using a Convolutional Neural Network (CNN)
specifically the ResNet34 [30] architecture with great success.

CNNs were first introduced in [31] and have become the
workhorse of modern computer vision. CNNs work by running
a filter over the input applying the cross correlation operator
then extracting the most meaningful feature representations
using pooling operations, and finally these feature represen-
tations are passed through a fully connected neural network
which performs the classification. These are some of the basic
operations often chained together in a variety of ways by
different CNN architectures to solve various computer vision
problems or problems assuming that patterns exist invariant to
scale, shift, rotation, and spatial factors. Building off [5] we
use the ResNet34 [30] and MobileNetV2 [32] architectures
as our baseline classifier which performs binary classification
of DDoS-attacks. These architectures were chosen because
they perform well and have received heavy adoption from the
computer vision community. These CNN architectures serve



Fig. 1. Starting from the left (t0) this is an example of DDoS-attack network traffic collected over a two minute period and evenly divided into 8-timestep
sequence and visualized in hive plots. The final timestep (t7) is on the right of this figure. Note that the hive plots in the Marist DDoS-attack dataset have
three axes where the top axis shows time elapsed since the beginning of the attack, the right axis is the source IP address of the attacker, the left axis is the
country corresponding to the source IP address of the attacker.

as a great place for evaluating the efficacy of a method to
improve robustness to adversarial perturbations although many
other architectures would be perfectly suited as well.

Supervised Machine Learning aims to learn an underlying
function to map input data x to some associated label y. This
is accomplished by feeding input data x into the supervised
machine learning model to obtain the predicted output ŷ and
then measuring the error against y. Once the error is obtained
the model parameters θ are updated by some optimization
strategy (stochastic gradient descent) in a direction to reduce
the error. The training process iterates through these steps
with the newly found model parameters seeking to find model
parameters that produce the lowest possible error. Neural
Networks use the backpropagation algorithm [33] which cal-
culates the partial derivative of the loss with respect to the
learned parameters by recursively applying the chain rule of
calculus through every layer of the network yielding a Jacobian
at every layer. Gradients are obtained by taking the Jacobian-
Gradient product. The gradient is a vector that points in the
direction of steepest descent. These gradients are then used to
move the parameters θ of the Neural Network in a direction
such as to lower the error.

To formalize the problem of making a classifier robust to
adversarial perturbation (attack) let’s first consider a standard
classification task with an underlying data distribution D over
examples x ∈ Rd and their corresponding labels y ∈ {c1, c2}
whose goal is to minimize the loss L(θ,x, y) where θ is the
set of model parameters [7]. We can minimize the loss in terms
of its expectation:

E(x,y)∼D[L(x, y,θ)] (1)

Our goal is to find the model parameters θ that minimize the
risk of successful attack [7]. An attacker takes an example x
belonging to class c1 as input and learns to find xadv such that
xadv is very similar to x but the trained classifier incorrectly
classifies xadv as belonging to class c2 where c2 6= c1 [7].
In order to specify an attack model (adversary) we introduce
a set of allowable perturbations S ⊆ Rd that formalizes
the manipulative power of the adversary and S is chosen
such that it is perceptually similar to the original hive plot
image [7]. In order for our classifier to become resistant to
adversarial perturbations (attacks) we allow samples from the
data distribution D to be perturbed by an adversary before

being sent into the loss function giving rise to this saddle
point problem:

min
θ
ρ(θ), (2)

where

ρ(θ) = E(x,y)∼D

[
max
δ∈S

L(θ,x+ δ, y)

]
. (3)

The saddle point can be viewed as a composition of an
inner maximization and outer minimization problem. The inner
maximization problem aims to find an adversary that can
maximize the loss via the attacking neural network and the
outer minimization problem is to find model parameters θ such
that the overall loss is minimized despite the best efforts of
the inner maximization problem (adversary) [7].

The saddle point problem formulated above should establish
a clear view of the goals of this paper. Building on the
work of [5] and using techniques from [7] we aim to learn a
DDoS-attack classifier robust to a wide variety of adversarial
perturbations (attacks).

The adversarial perturbations selected for use in this work
were chosen based on their popularity in the literature and
an attempt to capture a wide variety of different mechanics
used in their attack strategies. We consider two different
general classes of attack strategies: gradient-based attacks and
gradient-free attacks.

Gradient-based attacks exploit the use of the gradient in ma-
chine learning algorithms that use gradient based learning such
as Neural Networks. Gradient-based attacks can be thought of
as white-box attacks in that the attacker has complete access
the model it is attacking. Gradient-based attacks considered
in this work are the Gradient Sign Attack [6] and Projected
Gradient Descent Attack algorithms [7]. Gradient-free attacks
do not need access to the gradient used during the training
process and rather rely solely on targeted transformations to
the input for their attacks.

Gradient-free attacks created adversarial perturbations with-
out any internal knowledge of the model they are attacking.
These attacks can be seen as black-box attacks treating the
model as an orcale that is feed a perturbed input and re-
ceives the corresponding output. In our work we consider one
gradient-free attack: the Single Pixel Attack [9].



B. Gradient Sign Attack

The Gradient Sign Attack also known as the ”Fast Gradient
Sign method” (FGSM) [6] uses the gradient obtained during
backpropagation to create an adversarial perturbation. FGSM
uses the gradient of the loss with respect to the input to form
the inner maximization of the loss in the saddle point problem
introduced above. The perturbation used in FGSM can be
formulated as

η = ε sign (∇xL(θ,x, y)) (4)

where x is the input, y is the associated label, ε is a coefficient,
bound to ‖η‖∞ < ε, used to scale the size of the perturbation,
and L(θ,x, y) is the associated loss. This perturbation is then
added to the original input x̃ = x+η to create the adversarial
perturbation used to attack the classifier. The intuition behind
this method is that the gradient of the loss with respect to
the input image allows for a measure of how each pixel
contributes to the loss value and therefore allows each pixel to
be adversarially perturbed in a direction to maximize the loss.
This method can be considered a simple one-step scheme in
that it only considers current examples in the formulation of
the perturbation.

C. Projected Gradient Descent Attack

The Projected Gradient Descent attack (PGD) introduced in
[7] is a gradient-based white box attack very similar to FGSM;
however, unlike FGSM this method is iterative and calculates a
new gradient every iteration and adds a smaller perturbation to
each point in the given batch of examples. This is formulated
as:

xt+1 = Πx+S
(
xt + α sign (∇xL(θ,x, y))

)
(5)

where x is the input, y is the associated label, α is a constant
used to scale the affect of the gradient on the perturbation, t
is the current iteration, S is the set of allowable perturbations,
and L(θ,x, y) is the associated loss. One view of PGD is that
it is a cumulative form of FGSM; taking into account examples
from previous iterations.

D. Single Pixel Attack

The Single Pixel attack is a gradient-free, black box attack
first introduced in [9]. This method relies solely on a targeted
perturbation to a single pixel. A critical pixel is a perturbed
pixel that causes a trained nerual network to misclassify. In
our work we consider Algorithm 1 of the Single Pixel Attack
introduced in [9] although there have been recent improve-
ments to the Single Pixel Attack theory in [34]. Algorithm
1 of the Single Pixel Attack in [9] introduces a perturbation
function PERT(I, p, x1, x2) which takes image I as input, a
perturbation parameter p ∈ R, a location (x1, x2), and outputs
an image I(x1,x2)

p ∈ R`×w×h that can be defined as:

I(x1,x2)
p (b,u, v)

defn
={

(I(b, u, v) if x1 6= u or x2 6= v
p× sign(I(b, u, v)) otherwise.

(6)

This means the image I(x1,x2)
p = PERT(I, p, x1, x2) will be

exactly the same as image I for every pixel except the pixel
at (∗, x1, x2) which will have a value of p×sign(I(?, x1, x2))
[9]. As part of Algorithm 1 (RandAdv) presented in [9] uses a
simple search procedure to pick the location (x1, x2) in image
I and applies the PERT function defined above to obtain the
perturbed image I

(x1,x2)
p . The perturbed image is then sent

through the trained classifier. If the perturbed image produces
a misclassification a critical pixel has been identified.

All implementation was done using the PyTorch python API
[35] and all adversarial attacks were implemented in [36].
PyTorch was selected as the deep learning framework because
of it’s easy to use dynamic computation graph, automatic
differentiation (autograd), ability to accelerate computation
on the GPU, and high quality implementations of ResNet34
and MobileNetV2. AdverTorch was selected as the adversarial
toolbox used for the experiments in this work over the popular
foolbox [37] and cleverhans [38] because AdverTorch attack
implementations appear to be closer to the original papers
than foolbox and cleverhans only provides TensorFlow im-
plementations. PyTorch Ignite [39] was used abstract out the
training loop and general machine learning boilerplate code
such as model checkpointing (saving model states throughout
the training process), generating performance metrics, and
logging summaries of model progress.

V. EXPERIMENTS

In this section we present the findings of this investigation
into creating a DDoS-attack classifier robust to several meth-
ods of adversarial perturbation on the Marist DDoS-attack
dataset. In order to demonstrate the efficacy of the method
applied we used several popular different neural network
architectures. This is done to show that regardless of neural
network architecture and type of adversarial perturbation this
method for creating a robust classifier works. The criteria used
to determine if a model is considered adversarially robust is
that the model’s performance will not suffer when adversarial
perturbations are present.

We start by first training a classifier on the Marist DDoS-
attack dataset. This is a binary dataset; however, we use
a softmax cross entropy loss function. This is a popular
loss function heavily used in deep learning for multi-class
classification problems but is also completely appropriate in
binary classification problems. We also use a learning rate
scheduler set to lower the learning rate as the loss lowers. A
learning rate is a hyperparameter (tuning nob) that governs
the size of the step taken during the training process as the
optimization strategy, stochastic gradient descent in this case,
updates model parameters in order to lower the loss.

We run all experiments with two different neural network
architectures: ResNet34 and MobileNetV2. Both of these
models require input images to be of size 400 width and
400 height with 3 color channels. We resize the images in
the Marist DDoS-attack dataset using binlinear interpolation
and also normalize the pixel values by their color channel
using a mean of 0.5 and a standard deviation of 0.5 in order



Fig. 2. These are hive plot visualizations from a single timestep sent through different forms of adversarial perturbation. Far left (a) is the original non-perturbed
hive plot image, (b) is the single pixel attack, (c) gradient sign attack, and (d) projected gradient descent attack.

to improve numeric stability. No great care was taken in
the selection of these values we just wanted to ensure the
values were normalized in some standard fashion. No other
preprocessing transformations are performed as they would
not be appropriate for this data.

In order to get a sense of how the classifier, without an
adversary, fits the dataset we first train the classifier for 50
epochs with a batch size of 32 samples per batch. When
training a machine learning classifier data is chunked into
batches of n examples and sent into the model one batch
at a time in an iterative fashion. When you have iterated
through every unique batch in your training dataset you are
said to have completed an epoch. When this experiment was
performed we observed that the classifier could perform well
on the dataset and it took about 20 epochs before we observed
peak achievable performance. We also ran a few experiments
comparing the results with batch sizes of 16, 32, 64, and 128.
Changing the batch size can affect model performance as the
model updates it’s parameters on every batch. If your batch
size is large the effect of the errors made on every example in
the batch experiences a dilution effect and therefore smaller
batch sizes are preferable when solely considering model
performance on the training set; however, smaller batch sizes
are less able to be parallelized on the GPU and therefore result
in longer training times. We found no significant difference in
model performance (ability to lower loss) between training
regimes with batch sizes of 16, 32, 64.

In order to measure model performance we observed the
loss during training as well as precision and recall. Precision
= TP

TP+FP gives us a measure of specificity or how well our
classifier is at distinguishing between the two classes where
TP is the number of true positives and FP is the number
of false positives. Recall = TP

TP+FN provides a measure of
sensitivity or how well our classifier is at retrieving only the
correct class. Note for both precision and recall the highest
score is 1.0 indicating the model is excellent at retrieving
only the correct class and is very good at distinguishing
between the two classes. Precision and recall are useful metrics
in evaluating model performance and are not sensative to

class imbalance like accuracy or area under receiver operating
characteristic curve AUC-ROC. Note that the Marist DDoS-
attack dataset is a balanced dataset meaning that there are the
same number of examples from both classes.

The training regime used for all experiments was to train
the model for 20 epochs with a batch size of 64 we ran
5 replicas for each experiment and took the average along
with standard deviation for a measure of central tendency.
Experiments performed were: train a classifier with no adver-
sarial perturbation, train a classifier with GSA gradient-based
adversarial perturbation, train a classifier with PGD gradient-
based adversarial perturbation, train a classifier with gradient-
free Single Pixel Attack adversarial perturbation, and then
train with all 3 adversarial perturbations simultaneously. In
order to determine if robustness to several different methods
of adversarial perturbations could be achieved simtaneously by
a single classifier we allowed all three methods of adversarial
attack to be present during the training process in the All
experiment shown in Table 1. Adversarial perturbations were
introduced to the model every 3rd batch during the training
process. This seemed appropriate for the model to learn the
variety of different adversarial representation of the input.

Shown in Table 1 are the validation results on all exper-
iments achieved using the training regime described above.
We observe that model performance is very slightly im-
proved when no adversarial perturbations were part of the
training process. This however, is not significantly different
enough from models trained with adversarial perturbations
and therefore we can say that this method is effective at
improving a classifier’s robustness to adversarial perturbation.
Furthermore adversarial perturbations add a significantly larger
variety of configurations of the input that the model must
learn to associate with a given class. When comparing the
validation performance of models trained to be robust to
adversarial perturbation with a standard classifier if there is
no significant difference in performance the model can be said
to be adversarially robust to a given method of adversarial
perturbation. The performance difference between different
methods of adversarial perturbation showed no significant



TABLE I
RESULTS FROM ALL EXPERIMENTS PERFORMED IN THIS WORK CONTAINED IN THE TABLE ABOVE. ALL EXPERIMENTS RUN ON THE MARIST

DDOS-ATTACK CLASSIFICATION DATASET. THESE ARE VALIDATION RESULTS AFTER 20 EPOCHS OF TRAINING WITH A BATCH SIZE OF 64 USING
STANDARD STOCHASTIC GRADIENT DESCENT. REPORTED IS AN AVERAGE OF 5 REPLICAS WITH STANDARD DEVIATION.

Classifier Architecture Attack Method Precision Recall Loss
Resnet34 No Attack 0.919 +/- 0.0258 0.903 +/- 0.0320 0.255 +/- 0.0457
Resnet34 GSA 0.915 +/- 0.0291 0.900 +/- 0.0359 0.249 +/- 0.0297
Resnet34 PGD 0.911 +/- 0.0111 0.891 +/- 0.0156 0.263 +/- 0.0279
Resnet34 SPA 0.910 +/- 0.0273 0.884 +/- 0.0406 0.288 +/- 0.0419
Resnet34 All 0.928 +/- 0.0292 0.922 +/- 0.0322 0.187 +/- 0.0387
MobileNetV2 No Attack 0.931 +/- 0.0253 0.922 +/- 0.0292 0.249 +/- 0.0285
MobileNetV2 GSA 0.912 +/- 0.0090 0.891 +/- 0.0156 0.284 +/- 0.0229
MobileNetV2 PGD 0.920 +/- 0.0253 0.902 +/- 0.0410 0.239 +/- 0.0258
MobileNetV2 SPA 0.907 +/- 0.0151 0.884 +/- 0.0236 0.279 +/- 0.0194
MobileNetV2 All 0.932 +/- 0.0151 0.918 +/- 0.0198 0.276 +/- 0.0113

(a)

(b)

Fig. 3. ResNet34 trained with no adversarial perturbation validation (a) recall
by class (b) precision by class. These plots are from a single replica with no
adversarial perturbation. Note that one class is being modeled exceptionally
well while the other seemed to be modeled less effectively.

difference suggesting that the classifier can become robust
to both gradient-based, gradient-free, and simultaneously both
gradient-based and gradient-free adversarial perturbations re-
gardless of the method used.

Fig. 3 shows the validation recall and precision by class
for a single replica of training of the ResNet34 architecture
trained without adversarial perturbation. The behavior sug-
gests that one class is being modeled very well while the
classifier has a more difficult time modeling the other class.

Upon further investigation this behavior was found not to
be anomalous and regardless of replica or experiment type
(any combinations of classifier architecture and attack method)
resulted in similar behavior. This prompts improving the model
architecture such that it can sufficiently model both classes
perhaps even leveraging temporal information provided by the
8 timesteps in the Marist DDoS-attack dataset. Improving the
model performance is important as it will likely yield a model
that can learn to be even more robust to a variety of different
adversarial perturbations.

VI. CONCLUSION

In this work we build off [5] and work to find DDoS-attack
classifier that is robust to adversarial perturbations. Existing
methods for creating a model robust to adversarial perturbation
have been shown effective on computer vision datasets such as
MNIST and CIFAR10. These methods typically only consider
robustness against a single method of attack. In this work
we transfer tasks to DDoS-attack classification using hive
plot images. We leverage methods used by [7] in order
to create classifiers robust to both gradient-based white-box
attacks, gradient-free black-box attacks, and simtaneously both
gradient-based and gradient-free attacks. We show that by
including adversarial perturbations in the training process
based on the method introduced in [7] we are able to achieve
robustness on a variety of different attacks. This is important
work as machine learning systems are starting to be at the
center of many critical applications. Machine learning systems
monitoring plots of data for abnormalities are susceptibile
to a variety of known attacks in the form of adversarial
perturbations. We hope this could be an important starting
point towards building such machine learning systems robust
to many such attacks and worth further investigation.

The code to reproduce our experiments can be freely
accessed under an MIT license on this github repository:

https://github.com/mguarin0/advrbtddos

ACKNOWLEDGMENT

We acknowledge the support of Marist College’s School of
Computer Science & Mathematics, and the Rivas AI lab.



REFERENCES

[1] J. Porter, “Amazon says it mitigated the largest ddos attack ever
recorded,” The Verge, 2020.

[2] N. Vlajic and D. Zhou, “Iot as a land of opportunity for ddos hackers,”
IEEE, vol. 51 (7), no. 26-34, 2018.

[3] W. H. C. of Economic Advisers, “The cost of malicious cyber activity
to the u.s. economy,” 2018.

[4] T. Mahjabin, Y. Xiao, G. Sun, and W. Jiang, “A survey of distributed
denial-of-service attack, prevention, and mitigation techniques,” Inter-
national Journal of Distributed Sensor Networks, 2017.

[5] P. Rivas, C. Decusatis, M. Oakley, A. Antaki, N. Blaskey, S. Lafalce, and
S. Stone, “Machine Learning for DDoS Attack Classification Using Hive
Plots,” 2019 IEEE 10th Annual Ubiquitous Computing, Electronics and
Mobile Communication Conference, UEMCON 2019, pp. 0401–0407,
2019.

[6] J. S. &. C. S. Ian J. Goodfellow, “Explaining and Harnessing Adverserial
ML,” International Conference on Learning Representations (ICLR), pp.
1–11, 2015.

[7] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” 6th International
Conference on Learning Representations, ICLR 2018 - Conference Track
Proceedings, pp. 1–28, 2018.

[8] C. Xiao, J. Y. Zhu, B. Li, W. He, M. Liu, and D. Song, “Spatially
transformed adversarial examples,” in 6th International Conference on
Learning Representations, ICLR 2018, 2018.

[9] N. Narodytska and S. P. Kasiviswanathan, “Simple black-box adversarial
perturbations for deep networks,” arXiv preprint arXiv:1612.06299,
2016.

[10] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” 2nd Interna-
tional Conference on Learning Representations, ICLR 2014 - Conference
Track Proceedings, pp. 1–10, 2014.

[11] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple
and accurate method to fool deep neural networks,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2016,
pp. 2574–2582.

[12] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,”
2015.

[13] N. Papernot, “On the Integrity of Deep Learning Systems in Adversarial
Settings,” no. May, pp. 1–53, 2016.

[14] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and
P. McDaniel, “Ensemble adversarial training: Attacks and defenses,”
arXiv preprint arXiv:1705.07204, 2017.

[15] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[16] J. Buckman, A. Roy, C. Raffel, and I. Goodfellow, “Thermometer
encoding: One hot way to resist adversarial examples,” in International
Conference on Learning Representations, 2018.

[17] Y. Guo, C. Zhang, C. Zhang, and Y. Chen, “Sparse dnns with improved
adversarial robustness,” in Advances in neural information processing
systems, 2018, pp. 242–251.

[18] V. M. Kabilan, B. Morris, H.-P. Nguyen, and A. Nguyen, “Vectorde-
fense: Vectorization as a defense to adversarial examples,” in Soft
Computing for Biomedical Applications and Related Topics. Springer,
2018, pp. 19–35.

[19] B. Lindqvist, S. Sugrim, and R. Izmailov, “AutoGAN: Robust Classifier
Against Adversarial Attacks,” arXiv preprint arXiv:1812.03405, 2018.
[Online]. Available: http://arxiv.org/abs/1812.03405

[20] P. Samangouei, M. Kabkab, and R. Chellappa, “Defense-gan: Protect-
ing classifiers against adversarial attacks using generative models,” in
International Conference on Learning Representations, 2018.

[21] W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial
attacks: Reliable attacks against black-box machine learning models,”
in International Conference on Learning Representations, 2018.

[22] A. Athalye and N. Carlini, “On the robustness of the cvpr 2018 white-
box adversarial example defenses,” arXiv preprint arXiv:1804.03286,
2018.

[23] M. Xu, J. Zhang, B. Ni, T. Li, C. Wang, Q. Tian, and W. Zhang,
“Adversarial domain adaptation with domain mixup,” arXiv preprint
arXiv:1912.01805, 2019.

[24] H. Qiu, C. Xiao, L. Yang, X. Yan, H. Lee, and B. Li, “Semanticadv:
Generating adversarial examples via attribute-conditional image editing,”
arXiv preprint arXiv:1906.07927, 2019.

[25] L. R. work) Schott, “Towards the First Adversarially Robust NN Model
on Mnist,” Iclr, vol. 3, pp. 1–16, 2019.

[26] V. Joseph, P. Liengtiraphan, G. Leaden, and C. DeCusatis, “A software-
defined network honeypot with geolocation and analytic data collection,”
in Proceeding of 12th annual IEEE/ACM information technology pro-
fessional conference, Trenton, NJ (March 17, 2017), 2017.

[27] D. N. Gisolfi, M. Gutierrez, T. V. Rimaldi, C. DeCusatis, and A. G.
Labouseur, “A honeynet environment for analyzing malicious actors,”
2018.

[28] M. Krzywinski, K. Kasaian, O. Morozova, I. Birol, S. Jones, and
M. Marra, “Linear layout for visualization of networks,” in Genome
Inform, 2010.

[29] M. Krzywinski, I. Birol, S. J. Jones, and M. A. Marra, “Hive
plots—rational approach to visualizing networks,” Briefings in bioin-
formatics, vol. 13, no. 5, pp. 627–644, 2012.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015.

[31] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[32] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 4510–4520.

[33] D. Rumelhart, G. Hinton, and R. Williams, “Learning representations by
back-propagating errors,” Nature, vol. 323 (6088), no. 533-536, 1986.

[34] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling deep
neural networks,” IEEE Transactions on Evolutionary Computation,
vol. 23, no. 5, pp. 828–841, 2019.

[35] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” in Advances
in neural information processing systems, 2019, pp. 8026–8037.

[36] G. W. Ding, L. Wang, and X. Jin, “Advertorch v0. 1: An adversarial
robustness toolbox based on pytorch,” arXiv preprint arXiv:1902.07623,
2019.

[37] J. Rauber, W. Brendel, and M. Bethge, “Foolbox: A python
toolbox to benchmark the robustness of machine learning models,”
in Reliable Machine Learning in the Wild Workshop, 34th
International Conference on Machine Learning, 2017. [Online].
Available: http://arxiv.org/abs/1707.04131

[38] N. Papernot, F. Faghri, N. Carlini, I. Goodfellow, R. Feinman, A. Ku-
rakin, C. Xie, Y. Sharma, T. Brown, A. Roy, A. Matyasko, V. Behzadan,
K. Hambardzumyan, Z. Zhang, Y.-L. Juang, Z. Li, R. Sheatsley, A. Garg,
J. Uesato, W. Gierke, Y. Dong, D. Berthelot, P. Hendricks, J. Rauber,
and R. Long, “Technical report on the cleverhans v2.1.0 adversarial
examples library,” arXiv preprint arXiv:1610.00768, 2018.

[39] V. Fomin, J. Anmol, S. Desroziers, Y. Kumar, J. Kriss, A. Tejani, and
E. Rippeth, “High-level library to help with training neural networks in
pytorch,” https://github.com/pytorch/ignite, 2020.


