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Abstract. This study investigates ImageBind’s ability to generate mean-
ingful fused multimodal embeddings for online auto parts listings. We
propose a simplistic embedding fusion workflow that aims to capture
the overlapping information of image/text pairs, ultimately combining
the semantics of a post into a joint embedding. After storing such fused
embeddings in a vector database, we experiment with dimensionality re-
duction and provide empirical evidence to convey the semantic quality
of the joint embeddings by clustering and examining the posts nearest
to each cluster centroid. Additionally, our initial findings with Image-
Bind’s emergent zero-shot cross-modal retrieval suggest that pure audio
embeddings can correlate with semantically similar marketplace listings,
indicating potential avenues for future research.

Keywords: Multimodal machine learning · secure and trustworthy cy-
berspace · multimodal embeddings.

1 Introduction

The growth of online marketplaces has yielded a massive dataset of image/text
pairs that loosely describe the same item but often contain noise (e.g. contact
information, payment preference, URLs), as shown in Fig. 1. Concurrently, the
introduction of the transformer architecture [32] has led to significant advance-
ments [5,12,13,26,28] in deep learning feature representation. More specifically,
models trained on large corpora have proven [5, 15, 20] to capture semantics by
encoding inputs into embedding vectors (embeddings).

Research of such models has shifted toward multimodality [1, 17, 21, 27, 31,
33], encoding several modalities into the same embedding space, often using a
contrastive loss function. Studies on these models [12,17] have demonstrated that
robust embedding spaces preserve addition and subtraction, and average word
embeddings (AWEs) have been widely adopted [7, 30] to represent the general
semantics of a sentence, particularly when weighted [2,3,11,14]. Exploration and
discussion of averaging cross-modal embeddings, however, remains limited in the
literature, even within sections of embedding arithmetic [17].

Our research focuses on leveraging ImageBind [17] to fuse image/text em-
beddings into a joint representation to capture overlapping information between
the modalities. The main contribution of this research is empirical evidence that
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averaging cross-modal embeddings is an effective, straightforward mechanism
for multimodal feature representation. Finally, we complement existing liter-
ature [19, 30] regarding averaging embeddings and embedding arithmetic and
provide insights into the types of auto parts listings dominating the market-
place.

In an effort to make this paper self-contained, our discussion begins in Section
2 with an overview of ImageBind and its overall architecture. We then introduce
our dataset and workflow for utilizing ImageBind in Section 3, including embed-
ding fusion, storage, and clustering. In Section 4, the resulting embeddings and
clusters are analyzed, visualized, and defined, with empirical evidence provided
to convey their significance. Section 4 also includes a brief experiment that shows
promising results regarding ImageBind’s cross-modal retrieval. We conclude in
Section 5 with a discussion about how this workflow can be adopted in practice
and its implications for our future research.

Fig. 1. Example of a vehicle posted for sale online. It has a textual description and an
image out of many.
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2 ImageBind Overview

This section summarizes ImageBind’s architecture as developed by its authors,
aiming to briefly capture the essence of their design and contextualize its utility
in our research.

2.1 Modalities

ImageBind combines six different data types: text, image/video, thermal, depth,
audio, and IMU into a unified embedding space. With images as an anchor,
this space allows for representing semantic meaning across different modalities,
even those that are not typically paired together in datasets. We utilize the
text, image, and audio modalities in our study. While we acknowledge that our
results could potentially be replicated with a simpler model (e.g. [18]), we chose
ImageBind to maintain as much flexibility as possible in future research.

2.2 Encoders

ImageBind uses separate encoders for all six modalities. The Vision Transformer
(ViT) is used for images and video. Audio, depth, and thermal data are also
processed with ViT, where audio is first converted into spectrograms, and depth
and thermal data are treated as single-channel images. Finally, they follow the
text encoder design from CLIP [27]. A linear projection head is added to each
encoder, yielding a fixed size d -dimensional embedding across all modalities.

2.3 Training

ImageBind was trained to create a joint embedding space using pairs of modal-
ities, specifically images I and another modality M , leveraging large-scale web
datasets covering a broad semantic spectrum. It also incorporates self-supervised
pairings of images with other modalities including audio, depth, thermal, and
Inertial Measurement Unit (IMU) data.

For each image Ii and its corresponding observation in another modality
Mi, ImageBind generates normalized embeddings qi = f(Ii) and ki = g(Mi),
respectively, where f and g are deep networks. The encoders are then optimized
via the InfoNCE [24] loss function:

LI,M = − log

(
eq

⊺
i ki/τ

eq
⊺
i ki/τ +

∑
j ̸=i e

q ⊺
i kj/τ

)
,

where τ is a scalar affecting the softmax distribution, and j refers to an unre-
lated observation. InfoNCE aims to maximize the similarity between the related
embeddings (positives) qi and ki and minimize the similarity between qi and a
set of unrelated observations (negatives).

ImageBind demonstrates emergent behavior where it aligns embeddings of
two different non-image modalities M1,M2 that were not directly paired during
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training but were both paired with images I. Using the language of the authors,
I is said to bind modalities M1,M2 in the embedding space, allowing for cross-
modal retrieval between them. Since ImageBind was not explicitly trained for
such retrieval across M1,M2, this is said to be emergent cross-modal retrieval.

3 Methodology

Our dataset comprises text and image data extracted from online C2C auto parts
listings featuring textual descriptions and at least one corresponding image of
the item(s) for sale. In cases where listings contain multiple images, we assume
that each image is equally relevant to the listing. Additionally, we consider the
images and text to hold equal weight in representing the post. We processed
a total of 50k posts with a total of 220k images. Since the dataset contains
personally identifiable information, it will remain closed to ensure privacy.

3.1 Embedding Fusion

Denote e
(i)
image as the embedding vector of the i-th image of a post, with i ranging

from 1-n, and n being the number of images within the post. The text content
of the post is represented by the embedding vector etext. Taking advantage of
ImageBind’s embedding arithmetic, we average embeddings to preserve general
semantic similarities [4, 9]. We calculate a mean image embedding as the arith-
metic mean of the individual image embeddings, i.e., eavg_image =

1
n

∑n
i=1 e

(i)
image.

To ensure a balanced contribution of the text embedding and mean image
embedding in the fused result, the combined embedding is scaled by a factor of
0.5 [17]. Thus, the fused multimodal embedding is formally expressed as:

emultimodal =
1

2

(
1

n

n∑
i=1

e
(i)
image + etext

)
.

This workflow is depicted in Fig. 2 for a single post. The process is applied to
each listing and the resulting fused embeddings are stored in a vector database.

Fig. 2. A "frustratingly" [8] simple workflow for creating joint, multimodal embeddings.
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3.2 Clustering

After storing the fused embeddings in a vector database, we apply Principal
Component Analysis (PCA) to reduce their dimensionality, accelerating the pro-
cesses of clustering and retrieval. We explore dimensionality reductions to 8, 16,
32, 64, and 128 dimensions, running k-means clustering on each reduced set
of embeddings. The resulting centroids are evaluated against the original high-
dimensional embeddings using the Silhouette score [29], Calinski-Harabasz in-
dex [6], and Davies-Bouldin index [10]. As shown in Table 1, our results indicate
that reducing to 32 dimensions is marginally optimal for this dataset, assuming
equal weight of the metrics.

Table 1. Reduced embedding dimensions and their corresponding index scores.
Calinski-Harabasz and Davies-Bouldin are abbreviated as C-H and D-B, respectively.

Dim. Silhouette C-H D-B
8 .3726 672.1 4.945

16 .3799 696.5 4.353
32 .3819 709.1 4.043
64 .3810 709.3 4.091

128 .3816 710.2 4.134

Once reduced, we cluster the fused embeddings with k-means [22] [25], chosen
for its simplicity and broad application. We follow [16] in choosing k (ranging
from 2 to 20 for visualization purposes) by conducting ten k-means iterations
with different random states for each k and selecting the k with the highest
average Silhouette score among all iterations. This process revealed that k = 20
provided the best visual∗ structuring for our data.

4 Results and Discussion

We apply Uniform Manifold Approximation and Projection (UMAP) [23] to the
original high-dimensional embeddings to reduce them to 2D for visualization,
using the labels from the 32-dimensional clusters for colorization. This visual
representation aids in the subsequent analysis of the clusters, where we explore
the patterns that define the structure of our data.

4.1 Cluster Analysis

The clusters revealed from our analysis showcase distinct patterns and group
characteristics within the dataset. Most notably, cluster 0, depicted in the upper-
left corner of Fig. 3, is outlying.

∗Following this process ranging from 2 to 250, i.e., with no color limitations, revealed
k = 37 to be optimal.
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Fig. 3. UMAP visualization of the high-dimensional embeddings, with clusters col-
orized based on 32-dimensional k-means results.

To understand each k-means cluster’s characteristics, we identified the ten
nearest posts by Euclidean distance to each cluster’s centroid. The close align-
ment of these nearest neighbors with their respective cluster centers, such as
those shown in Fig. 4, affirmed the validity of the clustering outcome, suggesting
that the clusters capture distinct, meaningful groupings within the data.

Fig. 4. Images of posts near their respective k-means centroid, grouped by cluster.
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Furthermore, we found that the most representative posts from Cluster 0,
identified as the outlying cluster, were instances of ’parting out.’ In these cases,
users list a myriad of parts for sale, accompanied by textual descriptions and
images of the corresponding parts. These listings are distinct from others in that
there is typically little alignment between the text and images; each sentence may
describe one of many images, and each image may only correspond to a subset
of the entire textual description. Notably, more than 30% of all embeddings were
grouped in this cluster, suggesting that such listings are highly prevalent in the
online auto parts marketplace.

Clusters 1-19 correspond to a specific auto part category, highlighting the
effectiveness of ImageBind’s embedding space and our simplistic fusion work-
flow. We identified clusters for components such as ’intakes, manifolds, engines’
(Cluster 1) and ’panels, bumpers, door parts’ (Cluster 3), as well as vehicle
types and unique fittings like ’sedans’ (Clusters 5 and 6), ’truck beds and bed
shells’ (Cluster 8), and ’tires/wheels’ (Cluster 13). More specific items, including
’trailer hitches’ (Cluster 14) and ’lights’ (Cluster 15), demonstrate ImageBind’s
robust embedding space and efficacy in classifying C2C auto parts listings.

4.2 Cross-Modal Retrieval

Further exploring ImageBind’s set of modalities, we generate pure audio em-
beddings for sounds related to auto parts, e.g. car doors closing, car collisions,
or engines revving. We then applied k-NN to map these audio embeddings to
their nearest counterparts in our database of fused listing embeddings. Image-
Bind successfully aligned a wide range of such sounds with their corresponding
image/text counterparts, as shown Fig. 5, demonstrating the model’s ability to
create meaningful cross-modal associations and potentially have applications in
audio or video based recommendation.

Fig. 5. Retrieval of fused listing embeddings via semantically similar audio embeddings.
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5 Conclusions

Our analysis demonstrates that ImageBind is a powerful tool for interpreting
online C2C auto parts listings. By examining clusters and the corresponding k-
NN posts for each k-means centroid, we found that meaningful fused image/text
embeddings could be created through simple averaging of the corresponding
text/image embeddings for each listing. This research not only proves the quality
of ImageBind’s embedding space and the efficacy of its embedding arithmetic but
also indicates potential for applications in filtering and recommendation systems
within C2C marketplaces. Our exploration of audio embeddings further proves
ImageBind’s cross-modal capabilities, presenting a promising avenue for future
research.
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