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Abstract: Modern chess engines achieve superhuman performance through deep tree search and 1

regressive evaluation, while human players rely on intuition to select candidate moves followed 2

by a shallow search to validate them. To model this intuition-driven planning process, we train a 3

transformer encoder using supervised contrastive learning to embed board states into a latent space 4

structured by positional evaluation. In this space, distance reflects evaluative similarity, and visualized 5

trajectories display interpretable transitions between game states. We demonstrate that move selection 6

can occur entirely within this embedding space by advancing toward favorable regions, without 7

relying on deep search. Despite using only a 6-ply beam search, our model achieves an estimated Elo 8

rating of 2593. Performance improves with both model size and embedding dimensionality, suggesting 9

that latent planning may offer a viable alternative to traditional search. Although we focus on chess, 10

the proposed embedding-based planning method can be generalized to other perfect-information 11

games where state evaluations are learnable. 12

Keywords: Contrastive Learning; Representation Learning; Chess AI; Latent Planning; Transformer 13

Models; Evaluation-Based Search 14

1. Introduction 15

The ability to plan and reason through complex decisions is a defining characteristic of intelligence. 16

Chess has long served as a landmark of both human and artificial intelligence, as mastery of the game 17

requires a combination of memory, strategic planning, and calculation. Its strict rules and combinatorial 18

complexity make it an ideal domain for studying structured decision making in an environment where 19

exhaustive search is impractical. State-of-the-art chess engines such as AlphaZero [1] and Stockfish [2] 20

achieve superhuman performance by pairing neural network regressors with powerful tree search. 21

Their mastery, broadly speaking, arises from the capacity to search deeply and efficiently through vast 22

branches of possible continuations. 23

In contrast, expert human players seldom depend on deep search [3]. Instead, they identify strong 24

moves via intuition developed over years of analysis and validate their choices with shallow lookahead. 25

As a result, while engines are invaluable for tasks such as opening preparation and post-game analysis, 26

they fail to replicate the reasoning patterns of elite players [3–5]. This mismatch limits their utility 27

as training tools and has prompted growing interest in engines that better reflect human opponents. 28

Models such as Maia and Maia2 [4,5] pursue this goal by framing human alignment as a classification 29

task, selecting moves that humans are most likely to play. Rather than emulating human decisions, we 30

seek to explore whether a learned latent space can support a more efficient, human-like search process 31

that reflects the selectivity of human intuition. 32

To this end, we introduce a chess engine built on a transformer encoder that replaces regression 33

and deep search with a directional planning process. We train our model using supervised contrastive 34

learning to embed board positions into a continuous latent space aligned with state-of-the-art engine 35

evaluations. Within this space, distance reflects evaluative similarity, and linear interpolation enables 36
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interpretable trajectories between game states. Crucially, move selection occurs entirely within the 37

embedding space by selecting actions that advance toward known favorable regions. 38

Despite using only a shallow search of six half-moves, our model achieves an estimated Elo rating 39

of 2593. We show that performance scales with model size and embedding dimensionality, and that 40

the learned space supports meaningful embedding arithmetic. These results suggest that contrastive 41

training may offer a viable path toward structured representations that support efficient planning, 42

without the need for deep search. 43

Although our experiments focus on chess, the underlying approach of learning evaluation-aligned 44

embeddings and selecting actions by advancing through latent space is more general. It extends to 45

other zero-sum, perfect-information games such as Go and Shogi. In these settings, where position 46

evaluations are available or are learnable, directional planning provides an efficient alternative to deep 47

search. 48

2. Background 49

2.1. Chess Programming 50

In 1928, von Neumann [6] introduced game theory to chess, describing it as a two-player, zero-sum, 51

perfect information game to which his proposed fixed-depth minimax algorithm could apply. Several 52

decades later, Shannon [7] adapted the minimax algorithm for chess, guided by static evaluation 53

functions of game states. In parallel, Turing [8] introduced his chess-playing “Machine,” the most 54

advanced engine of its time, though too complex for the hardware available to him. 55

In 1997, IBM successfully scaled chess computing with their Deep Blue engine to defeat the 56

reigning world chess champion, Garry Kasparov, in a head-to-head match. Notably, it is estimated that 57

Deep Blue evaluated roughly 200 million positions per second [9,10], compared to Kasparov’s 5 [3]. 58

Early versions of Stockfish [2] followed a similar approach to Deep Blue: handcrafted evaluation 59

functions paired with deep alpha-beta tree search. The methodology was compelling and achieved 60

superhuman performance, though it became clear that the limiting factor was the combined chess 61

mastery of those designing the static evaluation function. 62

The rating bottlenecks associated with static evaluation inspired a vein of research independent 63

of human guidance. AlphaZero [1] and its open-source counterpart Leela Chess Zero [11] made a 64

significant leap to engines that learned to evaluate positions entirely through self-play reinforcement 65

learning, with no prior knowledge beyond the rules of chess. Similarly, modern versions of Stockfish 66

adopted an efficiently updatable neural network evaluation module (NNUE) [12] to accelerate position 67

evaluation while maintaining traditional alpha-beta search. 68

While these advances have produced engines that far surpass human players in strength, the 69

underlying search algorithms remain largely unchanged. They still follow principles first proposed 70

by von Neumann and Shannon and later integrated into Deep Blue, relying on deep alpha-beta 71

search through millions of states [3]. Yet it remains remarkable that human players, searching only 72

a few continuations per second, display an understanding that engines achieve only by evaluating 73

millions [3]. In this work, we explore whether contrastive learning can enable a more efficient search 74

process by treating planning as traversal through an embedding space. 75

2.2. Contrastive Learning 76

Contrastive learning of representations encourages a model to embed similar inputs closer 77

together and dissimilar inputs farther apart in a latent space [13]. More concretely, given a batch I 78

containing an anchor input xi, an encoder f (·) maps the anchor to a normalized embedding zi = f (xi). 79

Positive pairs (zi, zj) correspond to semantically similar inputs, while all other pairs of samples in the 80

batch are considered negatives. 81

A common contrastive objective is InfoNCE [14], defined as: 82

ℓi,j = − log
exp(sim(zi, zj)/τ)

∑k∈A(i) exp(sim(zi, zk)/τ)
, (1)
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where A(i) = I \ {i} is the set of all samples in the batch excluding the anchor i, sim(·, ·) denotes 83

a similarity metric, and τ is a scalar temperature parameter. In the case of self-supervised contrastive 84

learning, the positive sample zj is an augmentation of the anchor zi, and labels are not required [13,15]. 85

When labels are available, the supervised contrastive loss (SupCon) [15] extends InfoNCE by 86

allowing multiple positives per anchor. The SupCon loss is defined as: 87

Lsup = ∑
i∈I

−1
|P(i)| ∑

p∈P(i)
log

exp(sim(zi, zp)/τ)

∑a∈A(i) exp(sim(zi, za)/τ)
, (2)

where P(i) denotes the set of positive examples corresponding to anchor i, and A(i) is defined as 88

above. Increasing the number of positives and negatives has been shown to improve representation 89

quality [15,16]. 90

3. Methods 91

We now describe the components of our approach, including tokenization, model architecture, 92

training procedure, and action selection during inference. 93

3.1. Input Representation and Tokenization 94

Each chess position is represented using its Forsyth-Edwards Notation (FEN) string, which 95

compactly encodes the piece placement, side to move, castling rights, en passant target, half-move 96

clock, and full-move counter. Following the tokenization scheme proposed in Ruoss et al. [17], we 97

tokenize each FEN into a fixed-length sequence of 77 tokens by expanding run-length encodings. 98

3.2. Encoder Architecture 99

Our encoder is a multi-layer transformer [18] adapted for tokenized chess positions. We denote 100

the number of transformer layers as L, the hidden dimension as H, the number of self-attention heads 101

as N, and the output embedding dimension as D. We summarize the model configurations used in 102

our experiments in Table 1. 103

Table 1. Transformer model configurations used in our experiments.

Model L H D N MLP Size Params
Small 6 512 512 16 512 8M
Base 6 1024 1024 16 1024 41M

Each input sequence is embedded into H-dimensional vectors through a learned token embedding 104

matrix. A special classification token (CLS) [19,20] is prepended to the embedded sequence to aggregate 105

information across the input. Because the input sequences are fixed length, we add a learned positional 106

encoding to each token embedding [17]. The resulting sequence is processed by L stacked transformer 107

encoder layers with GELU [21] activations and a dropout [22] rate of 0.1. The final hidden state 108

corresponding to the CLS token is extracted, passed through a linear projection, and ℓ2 normalized. 109

3.3. Supervised Contrastive Training 110

We train our encoder using 5 million randomly sampled positions from the ChessBench 111

dataset [17], each annotated with a Stockfish-evaluated win probability for the player to move. We 112

normalize all evaluations to represent White’s perspective, such that values near 1.0 indicate a decisive 113

advantage for White and values near 0.0 indicate an advantage for Black. 114

To define positive samples for training, we set δ = 0.05 as the evaluation margin for identifying 115

similar positions. For each anchor, we precompute all positions whose win probabilities differ by 116

less than δ and randomly sample five as positives during training. To build the batch-level mask, we 117

compare the win probabilities of all samples and mark pairs as positive if their evaluation difference is 118

below δ. 119
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We apply supervised contrastive learning (SupCon; see Section 2.2) using the constructed batch 120

masks to define positive and negative pairs. Cosine similarity is used to compute pairwise scores, 121

and we set τ = 0.07 [23,24] to control the sharpness of the softmax distribution. We train both models 122

using stochastic gradient descent with a momentum parameter of 0.9 [13,20,25] for 400,000 steps with 123

a batch size of 128. Training is conducted on four NVIDIA L40S GPUs (48 GB memory each) with data 124

parallelism [26]. 125

We visualize the learned representation space of our Base model in Figure 1 using UMAP [27] 126

for 2D projection. Each point represents an encoded chess position from a test dataset, colored by its 127

Stockfish-evaluated win probability (for White). The black dashed arrow indicates the advantage axis 128

a⃗, though its appearance in 2D does not reflect its true geometric trajectory. 129
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Figure 1. UMAP projection of the learned embedding space of our Base model, colored by win probability (red =
White favored, blue = Black favored). The dashed black arrow represents the advantage axis a⃗.

3.4. Embedding-Guided Beam Search 130

During inference, candidate moves are evaluated based on their alignment with an advantage 131

axis. We first compute element-wise mean embeddings µwhite and µblack over positions evaluated as 132

p = 1.0 (white has forced checkmate) and p = 0.0 (black has forced checkmate), respectively, and 133

define the advantage vector a⃗ = µwhite − µblack. 134

As illustrated in Figure 2, the search begins from a starting position (leftmost Starting board state). 135

All legal continuations are enumerated (Extract possible moves) and tokenized. Each resulting child 136

position is passed through our Transformer encoder (purple blocks) in parallel, producing H-dimensional 137

embeddings. Each candidate embedding z′ is linearly projected into the latent space and scored by 138

its cosine similarity with the advantage vector a⃗: score(z′) = cos(z′, a⃗) (Cosine similarity block). The 139

resulting scalar values reflect how promising each move is in terms of directional alignment with 140

winning positions. 141

If the current search depth is equal to a predefined maximum S (as checked in the green S levels 142

deep? decision node), the search terminates, and the initial move leading to the best final similarity 143

score is selected (Select first move...). Otherwise, the top-k highest scoring candidate positions (Top-k 144

module) are selected and the process continues recursively, as shown by the loop labeled Recursive 145

search. 146



5 of 7

Figure 2. System overview of the embedding-guided beam search. Candidate moves are embedded, scored via
similarity to an advantage vector, and selected recursively based on top-k alignment.

4. Results 147

4.1. Experimental Setup 148

Each model was evaluated against Stockfish 16 with a fixed per-move time limit of 50 ms [17]. We 149

configured our embedding beam search with a width (k) of 3 and ablated over search depths. At each 150

depth, our model played at least 600 games against Stockfish configured with different Elo caps using 151

its internal UCI_LimitStrength setting. Caps were selected to ensure that each model configuration 152

yielded at least one matchup with a positive win rate and one with a negative win rate. Elo ratings 153

were computed using Bayesian logistic regression via the BayesElo [28] program with the default 154

confidence parameter of 0.5. Summarized Elo estimates are presented in Table 2. 155

Table 2. Estimated Elo ratings for our models by search depth and size.

Model Size Depth 2 Depth 3 Depth 4 Depth 5 Depth 6

Small 2067 2282 2388 2487 2548
Base 2115 2318 2433 2538 2593

4.2. Performance Across Search Depths 156

Our results show that Elo ratings increase consistently with search depth. The base model climbs 157

from 2115 at depth 2 to 2593 at depth 6, roughly matching the strength of Stockfish configured to 2600 158

Elo. The small model follows a similar pattern with a consistent gap of 30–50 Elo relative to the base 159

model. 160

Gains are nearly linear up to depth 5, but level off at depth 6. This tapering is likely due to the 161

limitations of greedy beam search, which constructs plans incrementally. Because each step depends 162

on the top-k projections from the previous state, strong continuations outside this trajectory will be 163

excluded. As a result, our model can miss advantageous lines that would only be considered via wider 164

exploration. 165

4.3. Qualitative Game Trajectories 166

We visualize latent trajectories of real games to better understand the interpretability of the 167

embedding space. Figure 3 shows three representative examples: a game won by White, a game that 168

remains balanced throughout, and a game won by Black. Each trajectory is plotted over the same 169

2D projection from a sample dataset. Positions are embedded independently and connected with 170

arrows to indicate move progression. Games that are decisively won by one player trace smooth paths 171

through the space, while closely contested games fluctuate around the center. 172



6 of 7

(a) White steadily gains advantage. (b) Game remains balanced. (c) Black steadily gains advantage.

Figure 3. Latent trajectory visualizations of three games embedded in the shared representation space. Red arrows
indicate the progression of positions as the game unfolds.

5. Discussion 173

We have presented a chess engine that selects moves by advancing through a learned embedding 174

space without relying on deep search. Despite using only a 6-ply search, the system achieves an 175

Elo rating of 2593. Visualizations of real games further show that latent trajectories follow smooth 176

evaluative trends. 177

While these results are promising, the system has notable limitations. Firstly, the greedy beam 178

search cannot revise early commitments, restricting its ability to recover from errors. Broader planning 179

strategies, such as policy networks, non-greedy beam exploration, and search memoization may 180

improve robustness. Secondly, the current training pipeline assumes a fixed evaluation target derived 181

from Stockfish, which may not reflect human intuition. Future work could explore reinforcement 182

learning fine-tuning, larger models, and a broader sampling of positives to further shape the structure 183

of the embedding space. 184

Overall, these results suggest that latent-space reasoning may offer a viable alternative to con- 185

ventional search. We hope this work contributes to a broader rethinking of planning in games and 186

decision-making domains, not as brute-force optimization but as strategic interpolation through 187

learned representations. 188
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