
Memorable Password Generation with AES in

ECB Mode

Timothy Hoang1 and Pablo Rivas

1Marist College, Poughkeepsie New York 12601, USA, timothy.hoang1@marist.edu

Abstract This paper presents ALP: an adjustable Lexicon-generated password

mechanism. ALP is a password encryption web application. In ALP, a password is

generated randomly from an imported dictionary of words. For example, with an

entire dictionary, it will pick out random strings that add up to a 128-bit hex key

and return the key to the user. The password will be "easy to remember" since it

will be made of a chosen pool of words. It will then take in the user’s message to be

encrypted and output the encrypted message according to the key. The password

generator, if need be, can be switched to a completely random mode which will

make it output a string of random numbers and letters if the user does not choose to

use the easy to remember password generator function. The application will also be

able to decrypt the AES-128 encrypted message and transform it back into normal

text. This experiment suggests that the proposed model is a block cipher that can

successfully generate a memorable random password.

Keywords: AES, ECB, Password Generation

1 Introduction

Password security is a constant bother in the modern world. Today, it is possible to

save passwords into Google’s autofill and other password manager programs. These

programs can generate passwords on the fly and store them on a computer or online

account so that one would only have to remember a single password to access every

other password they have. This is useful for people to have a multitude of different

secure passwords for all of their accounts to make it more difficult for malicious

entities to access them all. However, the downside of this technology is that all of

the accounts are linked to one crucial location. Another downside is needing to first

log into the master account if signing onto one of the accounts from another

2

location, making access to the desired account difficult. The last downside is that

many of these programs charge a subscription fee to securely store passwords. With

ALP program, it is possible to create multiple randomly generated passwords that

should be easy to remember given the user’s parameters. This solves the one loca-

tion and access from other computers issues since one can more easily remember

each individual password since they are readable. Since the password will be read-

able, and therefore more memorable, one will have an easier time accessing their

accounts from other locations without access to the password manager.

2 Concerns

There is a concern for dictionary attacks with normal random word combinations

for password generation [1]. That is why the lexicon was made completely custom-

izable, as it will negate the effect of this type of brute force attack. With the cus-

tomizable lexicon, the user is not limited to traditional words found in the diction-

ary. The user is able to add whatever string that they deem memorable. This includes

slang, names, made-up words, non-English words, sentimental numbers, and any

bit of information. This is useful as it allows one to create passwords that are equally

complex as a completely random string of the same length, while also being secure

from traditional dictionary attacks since a stylistic touch is added to the lexicon.

Therefore, unless the attackers know exactly what "words" were in the dictionary at

the time of creating the password, they cannot perform a dictionary attack. This

makes the customizable lexicon approach protected against brute force dictionary

attacks.

 E.g., in the lexicon, the user puts in these strings, “4Plakilt3, WaR75atel8, M1zule,

Laz4Apt, M0der0ck". To the user, these made up words are memorable for some

reason (the numbers, capitalization, and segments of the words hold some signifi-

cance to that specific user and no one else). Now, say the user requests that the

password be 16 characters in length. From those words, the program can combine

them to generate a password such as M1zuleWaR75atel8 or 4Plakilt3Laz4Apt. So

long as the user has enough words and variety in word lengths within the dictionary,

it is possible to create many completely unique passwords at any length. Since the

"words" in the dictionary are deemed memorable according to the user, what may

look like a bunch of random characters to someone, can be easily remembered by

the user. Unless the attacker knows every word within the lexicon that the user uti-

lized at the time of generating their password, the only way to brute force it would

be to brute force every single character. This gives the same time complexity as if

they were to brute force a password where every character is random.

3

3 Methodology/Experimental Setup

The lexicon reading and password generation portion of the ALP application is

complete. The function is for the program to read a lexicon that the user creates.

From the lexicon of words, a random “readable” password will be generated. Each

word in the .txt file is separated by line. Although any length word can be added to

the lexicon, the program, as it stands, will only choose words that are 16 characters

or less since that is what is required for the AES 128. This character count can be

expanded easily in the code, but for the purpose of demonstrating its use in an AES

128 cipher, it was limited to 16. If the smallest word in the lexicon is too big to fill

in the remaining characters needed, randomly generated characters will be chosen

for the remainder of the password. In addition to this, the user is able to toggle

between a “read- able” and a completely random password. In the completely ran-

dom passwords, each character is randomly generated and not read from the lexicon

at all. These programs are only intended for English letters and numbers, so it may

produce problems when introduced to other characters.

 For the decryption portion, inverse programs were created for the ShiftRow(), Nib-

bleSub(), and MixColumn() functions that are present in the AESencryption.java

file which encrypts messages with AES 128. The changes to these functions include

the change present in InvMixColumn(), where there is Galois multiplication in dif-

ferent fields. In addition to these inverse functions, the order of key operations has

been reversed.

4

Fig. 1. Order of operations for AES encryption and decryption.

 Fig. 1 contains the order of operations to be done for encryption and decryption in

AES. Since the encryption part was completed previously, here is an explanation of

the right side of the picture from the bottom up. The program starts by adding the

round key. Then for the next nine keys the following will take place: invShiftRow(),

invNibbleSub(), add the round key, then InvMixColumn(). For the last key, the pro-

gram will do the same process except it will leave out the InvMixColumn() function.

The order of operations is achieved in the AESdecrypt() function, which is located

in the AESdecipher.java file [2].

5

Fig. 2. Inverse Shift Row function.

 In InvShiftRow(), all the program does is change the rows opposite to how it was

shifted in ShiftRow(). That is, instead of taking the last one, two, and three subjects

of the bottom three rows in the matrix and bringing them to the front, the program

takes the first three, two, and one subjects from those rows and moves them to the

back. This is displayed visually in Fig. 2 [3].

Fig. 3. Inverse Nibble Substitution function substitution values.

 For InvNibbleSub(), the program does the exact same operation as AESNibble-

Sub() but uses the substitution values contained in the table shown in Fig. 3 [4].

Fig. 4. Inverse Mix Column function.

 For InvMixColumn(), the program will perform operations as shown in Fig. 4,

where the numbers in the second matrix are the Galois field numbers [5].

6

4 Experiment Results

The program will produce a memorable password using words provided in the lex-

icon of choice. By running the main program, it has produced passwords such as

hic3cco7dinhl4mb and contr2buto9hedrd. These passwords are concatenations of

the strings [“hic", “3cco7dinh”, “l4mb”] and [“contr2buto9”, “hedrd”] respectively.

The test cases for each of the inverse functions can be performed by running

test.java program. test.java will display the matrices passed into each of the func-

tions as well as their resulting matrices. The output for these test cases can be found

in the testcases.txt file located within the data folder of this project. All of the in-

verse functions perform as intended. Attempting to run the full decryption process

does not decrypt the message properly. Despite the fact that several experiments

were conducted to address this, the source of this issue has not been found.

5 Conclusion

In conclusion, the ALP program is able to create secure, memorable passwords for

use with the lexicon of choice. However, the decryption process of the program is

still being investigated. Work has been made on the individual processes and order

methodology functioning properly as far as the test cases and results show, there is

something holding back the full decryption. The password generation portion of

ALP has many use cases for individuals of all kinds, as everyone needs proper se-

curity for their many accounts in the modern world. For further improvement, fig-

uring out and fixing the error concerning the order of operations in the AES decryp-

tion process is the most crucial. In addition to this, adding the ability to have special

characters in the lexicon for password generation and being able to set requirements

for the resulting password, such as requiring a certain number of numbers, special

characters, and capitalization can be done.

The code to reproduce the experiments can be accessed under the MIT license in

this repository: github.com/timhoangt/ALP

Acknowledgements

This work was supported in part by the New York State Cloud Computing and An-

alytics Center, and by the VPAA’s office at Marist College.

7

References

1. Bošnjak, Leon & Sres, J. & Brumen, B.. (2018). Brute-force and dictionary attack on hashed

real-world passwords. 1161-1166. 10.23919/MIPRO.2018.8400211.

2. Wadday, Ahmed & Wadi, Salim & Mohammed, Hayder & Abdullah, Ali. (2018). Study of

WiMAX Based Communication Channel Effects on the Ciphered Image Using MAES Algo-

rithm. International Journal of Applied Engineering Research. 13.

3. Bhattarai, Bibek & Giri, Naresh Kumar. (2015). FPGA Prototyping of the secured biometric

based Identification system. 10.13140/RG.2.1.4067.2729.

4. Selimis, Georgios & Kakarountas, Athanasios & Fournaris, Apostolos & Milidonis, Athanasios

& Koufopavlou, Odysseas. (2007). A Low Power Design for Sbox Cryptographic Primitive of

Advanced Encryption Standard for Mobile End-Users. Journal of Low Power Electronics. 3.

327-336. 10.1166/ jolpe.2007.139.

5. Raju, L.M. & Manickam, Sumathi. (2015). Secured high throughput of 128-Bit AES algorithm

based on interleaving technique. 10. 11047-11058

