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Abstract

The complexity of searching algorithms in classical computing is a clas-
sic problem and a research area. Quantum computers and quantum
algorithms can efficiently compute some classically hard problems. In
addition, quantum machine learning algorithms could be an important
avenue to boost existing and new quantum-based technology, reduc-
ing the supercomputing requirements for executing such problems. This
paper reviews and explores topics such as variational quantum algo-
rithms, kernel methods, and Grover’s algorithm (GA). GA is a quantum
search algorithm that achieves a quadratic speed improvement as a
quantum classifier. We exploit GA or amplitude amplification to simu-
late rudimentary classical logical gates into quantum circuits considering
AND, XOR, and OR gates. Our experiments in our review suggest
that the algorithms discussed can be implemented and verified with
relative ease, suggesting that researchers can investigate problems in
the areas discussed related to quantum machine learning and more.

Keywords: Quantum Computing, Quantum Machine Learning, Grover’s
Search Algorithm, Variational Quantum Circuit Classifier.
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1 Introduction

Quantum mechanics is a framework for understanding micro-universe. At a
low scale of distance, we find several counter-intuitive phenomena, and physi-
cists developed a framework to understand this universe, which is, Quantum
mechanics. This framework provides information on a particle’s state described
by a wave function, labeled as ψ(x, t). The Schrödinger equation describes the
time evolution of this wave function, which contains all available information
about the state [1]:

iℏ
∂ |ψ(t)⟩
∂t

= Ĥ(t) |ψ(t)⟩ , (1)

where i is the imaginary unit, ℏ = 1.054× 10−34 J s, which is a Planck’s con-
stant, |ψ⟩ (t) is time-dependent state. Also, Ĥ(t) is the Hamiltonian operator
which, for general purposes, represents the energy of the system. This formula-
tion requires particular analysis due the notation, and mathematical concepts.
In addition, we consider that physical magnitudes are in the real domain, R,
but the magnitudes in Eq. (1) are given by complex numbers, C; therefore,
we should talk about new ways to define some physical concepts.

Quantum computing (QC) has a good formalization through mathematics
and physics frameworks. QC is relevant in different fields, such as classical fields
theory [2–5]), computational security with quantum algorithms [6], physics [7],
chemistry [8], biology [9], and learning from data as image recognition [10], and
neural networks [11]. There are more contributions on medical and genetics.

Today, we find a quantum word in different contexts and systems. Some
of these system require more analysis. Therefore, we share details and classi-
fication of different systems. a. Topological Quantum computer implements a
finite-dimensional internal state space with no natural tensor product structure
and in which the evolution of the state is discrete, namely the local Hamilto-
nian (H) is zero, Ĥ = 0. This function has the same definition as in (1). It
has good stability to create trapped quantum particles [12]. b. One-way quan-
tum computer (or cluster state) prepares a cluster (entangled, graph) state
performs single qubit measurements on it [13]. c. Quantum Turing machine
computer implements an abstract machine to model the effects of a quan-
tum computer. This is also called a universal quantum computer model which
captures all of the power of quantum computation [14]. d. A quantum uni-
versal gate (QUG) model is a sequence of reversible transformation which are
represented by gates, a.k.a. quantum gates [15]. The graphical depiction of
quantum circuit elements is described using a variant of the Penrose graphical
notation [16]. A quantum circuit is a representation of a quantum operation
that is performed sequentially. Logic qubits are transported on wires (shown
by horizontal lines), and quantum gates (represented by blocks) act on the
qubits in a typical quantum circuit. The logical gate is a device that controls
or processes data; e.g. the Hadamard H and NOT X gates. e. Adiabatic quan-
tum computation. This model relies on the adiabatic theorem, and is closely
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related to quantum annealing [17]. f. Quantum machine learning (QML) is the
integration of quantum algorithms within machine learning concepts. QML
usually refers to ML algorithms for the analysis of classical data executed on
a quantum computer, quantum-enhanced machine learning [17, 18]. We fur-
ther recently found other classification based on speedup [9]. g. Exponential
speedup. This model requires a quantum computer to make a better-quality
approximation computationally tractable. In general, this is thought for high
dimension, or degree of freedom systems. h. Polynomial speedup. This kind
models do not usually need more qubits than are already needed to do calcula-
tions. i. Heuristic speedups. this model has great potential to be explored when
quantum computers are working. We expect that our understanding of the
performance of these heuristics will improve since the speedup level has some
unknown issues. j. Interfacing with classical algorithms. This kind of paradigm
has limitations rely on the ability to share the quantum and the classical com-
puter. k. Big data and quantum RAM. This model has limitations associated
with the superposition concept, and with the large dataset. All above models
are one scheme to perceive the quantum computing area, but this is an area
with more details, and we will probably have other similar sketch soon.

This area and its paradigms such as adiabatic quantum computer, and
QML can improve areas such as cybersecurity and cryptography which impacts
in our communication systems. In addition, quantum algorithms can improve
the performance of supercomputing. QC is one of the most popular concepts
in the last decade, and we expect significant results and revolutionary ideas in
this century.

As was discussed, QC has different models which can harness the laws of
quantum mechanics to process information. We conceive supercomputing as
the process of doing complex and large calculations using supercomputers.
These supercomputers can use parallel processing. We can perform compu-
tations based on some quantum mechanical concepts such as, superposition,
entanglement, teleportation, and Dirac notation, among others to show the
possible power of QC over classical computation that can possibly reduce the
load in super computers. Many theoretical works prove a quantum advantage.
However, current quantum devices are not at the stage to reflect these improve-
ments in practices. We aim to review such approaches in QC and discuss
possible implementations briefly.

In this paper, we review the Grovers algorithm and quantum machine learn-
ing. Our work is motivated by the amplitude amplification associated with
Grovers’ Algorithms. We exploit amplitude amplification to propose a method
to simulate classical logical circuits into quantum circuits. We use the CNOT
and Toffoli gates to construct AND,OR,XOR gates. In this review, we showed
that we could construct an oracle for Grover’s algorithm for provided classi-
cal circuit and calculate the initial input states such that the output of the
classical circuit is one with high probability.

This paper contains the following sections: Context, Models, and Methods
(Section 2) with a description of different quantum computing paradigms. We
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present few algorithms in the machine learning context with their performance.
In particular, this section discusses Grover’s algorithm and its implementa-
tion. We share the implementation code with qiskit [19], in python [20, 21]. We
present related works in Grovers algorithm with brief introduction on varia-
tional quantum algorithm and kernel methods in Section 3. The experimental
setup, proposed methods and algorithm is described in Section 4. We present
results and discussion in Section 5, and future works and conclusions are drawn
in Section 6.

2 Context and Models

As mentioned in Section 1, there are different branches in QC. QC is an active
research field, and we can expect regular changes. However, for the scope of
this paper, we consider two paradigms: quantum machine learning and quan-
tum search algorithms. Some relevant algorithms for QC, such as Deutsch,
Bernstein-Vazirani, Simon, Grover, and Shor will be discussed in subsection
2.2. The following subsection presents the quantum computing topics explored
in this paper.

2.1 Quantum Computing

Quantum computing is an application of quantum theory calculus to calcu-
late the probabilities of the output of measurements on physical system [22].
Quantum algorithms implement transformations which are matrices, in terms
of Linear Algebra, and those have their particular (Dirac) representation [23].
Each transformation requires an operator to create superposition, rotation
(on state), or another change on the system. Operator act on states. Each of
those states has the form |ψ⟩ = α |0⟩+ β |1⟩ , which is the general state in the
{|0⟩ , |1⟩} basis, where {α, β} are complex numbers, a.k.a. amplitudes [24]. In
quantum circuit model, one operator, namely acting on states, has the form:

H =
1√
2

(
1 1
1 −1

)
, (2)

H =
1√
2

(
|0⟩ ⟨0|+ |0⟩ ⟨1|+ |1⟩ ⟨0| − |1⟩ ⟨1|

)
. (3)

Where, |1⟩ = (0 1)T , |0⟩ = (1 0)T , and ⟨1| = |1⟩† , ⟨0| = |0⟩† live in the
dual space. The product |k⟩ ⟨l| is an operator, k, l ∈ {0, 1}, and the 1√

2
is a

normalization factor. Eq. (2) is the matrix representation of Hadamard gate
and (3) is its Dirac (bracket) representation. H transforms single-qubit as |ψ⟩ .
Nonetheless, we can propose a generalization, it means if we apply H on each
qubit in a system with N qubits, the system is now on superposition.
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2.2 Quantum algorithms

Quantum algorithms can be of two types: those to run on quantum computers,
or to run on classical computer with quantum concepts executed as subrou-
tine in quantum device. Regardless the type, these algorithms should improve
speedup or processing of information.

Table 1 shows four basic quantum algorithms, their mappings, and their
functions. Where Deutsch function maps from one qubit to one qubit, Deutsch-

Table 1 Some quantum algorithms, mapping and a brief function description.

Problem Maps Function

Deutsch f : {0, 1} → {0, 1} f(x) balanced and constant
Deutsch-Jozsa f : {0, 1}n → {0, 1} Black box oracle function.
Bernstein-Vazirano f : {0, 1}n → {0, 1} f(x) = a · x
Simon f : {0, 1}n → {0, 1}n f(x) = a⊕ x

Jozsa and Bernstein-Vazirano function means maps from n qubits to one
qubits, and Simon maps n qubits to one n qubits. On the other hand, · and ⊕
are product modulo 2, and exclusive OR, respectively.

Table 2 presents ten classical algorithms that are proven to achieve speedup
with quantum computing.

Table 2 This table was inspired by ref. [25]. The column headed “Algorithm” refers the
classical learning method. The column headed “Speedup” lists how much faster (if any)
the quantum variant is compared with the best known classical version. And the column
headed “Generalization Performance” indicates whether this quality of the learning
algorithm was studied in the relevant articles.

Generalization
Algorithm Speedup Performance

K-medians Quadratic No
Hierarchical clustering Quadratic No
K-means Exponential No
Principal components Exponential No
Associative memory No
Neural Networks Yes/Numerical
SVM Quadratic/Exponential Yes/Analytical
Nearest neighbors Quadratic Yes/Numerical
Regresssion Quadratic No
Boosting Quadratic YesYes/Numerical

Quantum algorithms are those algorithms that run on a quantum com-
puter. These algorithms achieve performance or efficiency improvements over
any classical counterparts. Quantum algorithms and their applications include
cryptography, medicine, search and optimization, solving linear equations, and



Springer Nature 2021 LATEX template

6 SC Leverages Quantum Machine Learning and The Grover’s Algorithm

simulating quantum systems [26]. Shor’s algorithm was one of the first algo-
rithms to deliver the application of quantum computers [27]. Given an integer
N = a × b, where a and b are the prime numbers, Shor’s algorithm factor-
izes this problem in O(logN)3 complexity. Most cryptography relies on the
difficulty of integer factorization. Shor’s algorithm implies that these systems
are not safe against large quantum computer attacks. Possible applications
and mathematical explanations of Shor’s algorithm are beyond this paper’s
scope. Please refer [27–29] for detailed explanations and discussion on possi-
ble applications. Harrowe et al. first proposed a quantum algorithm for linear
system [30]. Deutsch and Jozsa algorithm make a single query to determine
whether a function from Zn

2 to Z2 is balanced or constant [23]. For this prob-
lem, any classical algorithm requires at least two function queries. Numerous
quantum machine learning algorithms and applications have been proposed in
recent years. In [31–34] the authors describe some of those algorithms with
data encoding techniques, measurements, and their applications.

Grover’s algorithm enables us to find an item x from an unstructured
dataset of N item with O(

√
N) operations [35–37]. With the algorithm shown

in Fig. 1, the goal is to find w, given an oracle Uf with f : {0, 1}n → {0, 1},

f(x) =

{
1 if x = w

0 else if,

and

f0(x) =

{
0 if x = 000...0

1 else,

where the phase oracle is

Uf |x⟩ = (−1)f(x) |x⟩ ,

where,

Uf :

{
|w⟩ → − |w⟩
|x⟩ → |x⟩ ∀x ̸= w.

Then

Uf = 1− 2 |w⟩ ⟨w| ,

and

Uf 0 :

{
|0⟩ → |0⟩⊗n

|x⟩ → − |x⟩ ∀x ̸= 00...000.
(4)
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With this algorithm we want to find the input x ∈ {0, 1}n such that f(x) = 1.
With f : {0, 1}n → {0, 1} as an unknown function, where we implemented Uf

as an oracle. y = w with highest probability. T = H⊗nUf0H
⊗n, from (4), we

obtain Uf0 = 2
(
|0⟩ ⟨0|

)⊗n− I. This result is known as reflection operator and
it will be used soon [38].

Fig. 1 Quantum circuit for the general version of Grover algorithm.

Two registers used in Grover’s algorithm, n qubits in the first register
and one qubit in the second register, are the critical architectural structure
to achieve this speedup complexity over the classical algorithm [39]. We start
the circuit for Grover’s Algorithm by creating a superposition of 2n computa-
tional basis states in the top register (we show the general version of Grover’s
algorithm Fig. 1). We initialized all the qubits in the first register to state
|0, ......, 0⟩. After applying the n Hadamard gate, H⊗n, on the first, we have
the state:

|ψ⟩ = H⊗n |0⟩ = 1√
N

N−1∑
x∈{0,1}n

|x⟩ . (5)

Where N = 2n. Note that, |ψ⟩ is the superposition here. If we start the
second register with a single qubit in state |0⟩ or |1⟩, after the Hadamard we
achieve the respective Hadamard basis [40]. Let f : {0, 1}N → {0, 1} be a
function defined as:

f(x) =

{
1 if x is the searched element

0 Otherwise.

We define Uf as an oracle often referred to as a black box, defined as,

Uf (|i⟩ |j⟩) = |i⟩ |j⟩ ⊗ f(i). (6)

When we apply Uf on the state |ψ⟩, the state of the second register does
not change (4), but the state of the first register changes, and we call this state
|ψ⟩1. We assume that the Hadamard basis in the second qubit is |−⟩. Here,



Springer Nature 2021 LATEX template

8 SC Leverages Quantum Machine Learning and The Grover’s Algorithm

|ψ⟩ and |ψ⟩1 lives in HN . Eq. (7) defines the effect of an oracle on the achieved
superposition.

|ψ⟩1 |−⟩ = Uf |ψ⟩ |−⟩ =
1

N

N−1∑
i=0

(−1)f(i) |i⟩ |−⟩ . (7)

Due to Quantum parallelism,, we can observe all the database elements simul-
taneously at the quantum level. If the position of the searched element is
known, then it will be labeled as the negative value of i in equation (7). It is
impossible to get this result at the classical level. Before we perform the mea-
surement and collapse our superposition in the classical bits, we apply another
set of Hadamard gates, unitary operator, and n Hadamard gates for O(

√
N)

times. From (4), let us define this unitary operator, Uf0 as

Uf0 = 2 |ψ⟩ ⟨ψ| − I. (8)

When we apply this operator on state ψ1 we have,

|ψ⟩ =
(
2 |ψ⟩ ⟨ψ| − I

)
|ψ⟩1

=

√
2n − 1

2n
∣∣w†〉+√

1

2n
|w⟩ . (9)

Equation (9) is the state of the first register and the second register is still
on state |−⟩ by assumption. Notice, |ψ⟩ is defined in terms of {w,w†} states, w
represents the summation of all states that can be solution to search problem;
and w† is the summation of all states which are no solutions. Coefficients are
factor normalization constrained by the normalization condition,

∑
i |ci|

2
= 1.

Thus, we can measure this state on both the register to evaluate the func-
tion f and get the probability of finding the x record. Below, we present the
implementation of this algorithm. Assuming we have an output of 1 for the
function f with high probability, we calculate the probability of all possible
input qubits on both the register. It is guaranteed to achieve the mentioned
output. Many research are benefited from effective implementation of Grover’s
algorithm. We present such works in the following section.

3 Related Works

This section discusses some works on Grover’s algorithm and Quantum
Machine Learning. In 2018, Mandviwalla et al. tested the capabilities of then-
available IBM quantum computers via four qubit implementation of Grover’s
algorithm [41]. Their initial result showed then quantum computers could
only solve small problems with a small amount of data accurately and that
there is still some time before a quantum computer can surpass any classical
computer. However, for the first time, in 2021, Zhang et al. presented bench-
marking results for successful execution of five-qubits searching algorithm on
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IBM quantum processor [42]. The errors associated with the quantum devices
and searching algorithms hinder the efficient implementation of these algo-
rithms in NISQ devices. Zhang et al. proposed three strategies to improve
the performance of quantum search algorithms: (a) Hybrid classical-quantum
search. (b) Divide-and-conquer search. (c) Quantum Search optimization via
utilization of partial diffusion operator. Currently, the efficient implementa-
tions of Grovers’ algorithm on NISQ devices are limited to a few qubits. But
there are impressive theoretical contributions based on the Grovers’ search
algorithm.

Schwabe and Westerbaan improved the complexity of solving multivari-
ate quadratic MQ over F2 from O(2n) to O(2n

2 ) [43]. They evaluated the
quadratic equations at a superposition implementing Grover’s “oracle” for all
possible inputs. They claim even ninety-two logical qubits can break MQ
instances. Chakraborty and Maitra achieved an exponential speed-up in check-
ing the resiliency property of a Boolean function [44]. They analyze the Grover
algorithm for quadratic improvement in query complexity. In the proposed
strategy, quantum query complexity for resiliency analysis in terms of input
variables requires polynomial measurements. Previously it was exponential in
the worst case. The local search problem is often combined with Grover’s
algorithm for global optimization of a problem (system). Grover’s algorithm
promises a quadratic speed-up for searching problems. Bulger combined the
Grover algorithm with a local search technique to solve the problem that a
local search technique can not solve alone [45]. The problem definition is math-
ematically dense, so we leave [45] as a reference for the interested reader. The
amplitude amplification associated with Grovers’ algorithm has been applied
in pattern recognition and quantum machine learning.
Tezuka et al. applied Grover search for image pattern matching [46]. They
combined Amplitude Approximation Encoding (AAE), which uses a constant
circuit-depth variational quantum circuit for data encoding into the quan-
tum state [47] with the inversion-test operation that determines the projected
quantum state. The projected state tries to match the targeted query set for
pattern matching. The author claims the proposed framework benefits NISQ
and FTQC devices. However, the author barely pays attention to the compu-
tational overhead in the AAE circuit. Grover Search had been implemented for
learning in Quantum Neural Network. Du et al. reformulated the classification
task as a searching problem [39]. They presented the application of Grover
Search in Quantum Machine Learning(QML). We will briefly discuss QML in
Section 3.1. The authors replaced the first oracle of Grovers’ algorithm with
an authors-defined variational quantum circuit and multiple controlled qubits
gates along Z-axis. They claim that the constructed circuit will reformulate the
chosen classically hard classification task as a searching problem that can be
executed with possible quantum advantage in NISQ devices [39]. Some appli-
cations of quantum machine learning can provide an advantage over classical
counterparts. Support Vector Machine (SVM) can reformulate and solve the
classical problem for N features and M data in O(log

(
ϵ−1

)
poly(N,M)) with
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ϵ accuracy [48]. However, Rebentrost et al. proved that training and classifica-
tion can be done with O(logNM) run time complexity using quantum SVM
[49].
Grovers’ search algorithm has been used in cryptography, optimization, search-
ing and sorting, machine learning classification, and many others that we
can not argue to be aware of. The above-presented applications are some
applications of Grover’s application in different areas.

In the next section, we discuss the possible implementation of quantum
computing from the Quantum machine learning perspective.

3.1 Potential applications in Quantum Machine Learning

In this section, we briefly describe variational quantum algorithms and kernel
methods. These are the potential models to implement quantum computing
as a quantum classifier with application in Machine Learning.

3.1.1 Variational Quantum Algorithms

Variational Quantum Algorithms (VQA) address the circuit depth limit, and a
limited number of qubits constrain in current (near-term) quantum devices by
training the parameterized quantum circuit as a classifier. In practice, VQAs
run the parameterized quantum circuit in the Quantum devices and param-
eter optimization on the classical optimizer. VQAs mitigate the noise of the
quantum circuit because it keeps the depth of the quantum circuit shallow.
VQA is considered the prime proposal to achieve the quantum advantage with
near-term quantum devices [50]. Given any problem (we believe classification
for our simplicity), the first step is to define the loss (or cost) function C. C
encodes the solution to our problem. We then perform the quantum operation
using ansatz to optimize the parameter θ. Define the optimization task as:

θ∗ = argmin
θ
C(θ). (10)

Equation (10) is trained in quantum-classical loop to obtain θ∗ that is expected
to approximate the real parameters. One thing to note here is that while we use
the classical optimizer to train θ, the VQAs use quantum devices to estimate
C. This behavior is often considered the trade-off of VQAs. Once we define the
cost function and ansatz, we are ready to train the parameter θ and solve the
problem defined by Eq. (10). Using the information in the C and optimization
technique like gradient descent, it is proved that we can guarantee the speedup
and convergence of optimizer for many optimization problems such as Eq. (10).

The most prominent implementation of VQA, sometimes also called Quan-
tum Neural Network (QNN) is to tackle the classification task [51]. Here we
briefly discuss the implementation of VQAs in the Grover search algorithm for
classification. Du and Tao reformulated the classification task as the search
algorithm using VQAs. The Grover-search-based quantum learning scheme



Springer Nature 2021 LATEX template

SC Leverages Quantum Machine Learning and The Grover’s Algorithm 11

(GBLS) dramatically reduces the number of measurements, and it outper-
formed the classical classifier in the measure of query complexity [39, 52].
Following the optimization problem in Eq. (10), we can define the update rule
for θ as:

θ(t+1) = θ(t) − η

B

B∑
i=1

∇L(θ(t), Bi), (11)

where η is the learning rate, Bi is the i − th batch for batch gradient descent
and B is the total number of batches. We can use varied B for optimization of
different quantum classifiers. One can use only grover-based searching for the
training classifier and the prediction is done using optimized Variational Quan-
tum Circuit (VQC). Recall from Grover 1996 article [36], the algorithm finds
the record, a, from the dataset of size N by iteratively applying a predefined
oracle

UOf
= I − 2 |a⟩ ⟨a| , (12)

and a diffusion operator defined on Eq. (8), and Eq. (5) as the input state.
See Fig. 1 for the implementation of the circuit for the Grover algorithm.
We can replace the predefined oracleUp in Grovers’ Algorithm with VQC

UL1 =
∏L

l=1 U(θl), where L is the depth Up, θ
l are the parameters to be opti-

mized at layer l of Up. More generally, the VQC consists of a data-encoding
circuit S(x) and parameterized circuit W (θ) applied to the computational

basis state. The operation can be defined as |ψ⟩ = W (θ)S(x) |0⟩N , where N
is the number of qubits. A detailed implementation of VQC cal be found on
[53, 54]. the VQA with VQC is easy to implement in NISQ. However, the
training and optimization of parameters can be troublesome. The next section
briefly discusses the different strategy, kernel methods.

3.1.2 Kernels

The kernels method is an eminent tool in patterns analysis to identify non-
linear relationships in any given dataset [55]. The fundamental of kernel
methods lies in data embedding into higher dimensional Hilbert space where
they are easy to analyze. The kernel method uses kernel functions that esti-
mate the similarity between data in higher dimensional space by calculating
their inner product. We can switch between different kernel methods simply by
switching between the kernel functions. In Quantum computing, this approach
corresponds to changing the data encoding strategy.
Here we define a data encoding strategy. Let ϕ : X → F be a feature map
for a input space X and k : X × X → C be a real or complex values positive
definite functions for two data points.

Definition 1 (Modified from Def. 2 of [32]) : Quantum Kernel is defined as the
inner product between two data encoding feature vectors with x, x′ ∈ X

k(x, x′) =| ⟨ϕ(x)′ | ϕ(x)⟩ |2 (13)

We define ⟨. |.⟩ as the inner product of two pure quantum states.
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Quantum models are often considered linear models in feature space. We
can estimate Eq. (13) using quantum computers that can calculate the inner
product between two pure quantum states.

Let us define a Hermitian operatorM acting on a vectors in Hilbert space
H. We can defineM as

M =
∑
i

αi |µi⟩ ⟨µi| , (14)

where αi are the eigenvalues ofM [56]. | ⟩ ⟨ | is the outer product and |µi⟩ is
an orthonormal basis in H.M is an observable or a Hamiltonian. αis are the
measurements associated with |µi⟩ ⟨µi|. Now we define quantum models as a
function f of data input x:

f(x) = ⟨ϕ(x)|M |ϕ(x)⟩ . (15)

Notice that Eq. 15 is in the form ⟨ | ⟩ and can be calculated as an inner prod-
uct which we have defined as kernel methods. Thus, any quantum models can
be considered kernel methods, and those models are a.k.a. quantum neural
networks; however, based on the definition 1 those are closely related to ker-
nel methods. Ref. [31, 32, 55, 57] investigates in-depth on quantum kernels.
The scope of this paper is not to construct a quantum classifier but to relate
quantum classifiers as kernel methods. The mathematical definition of VQA
is closely related to the kernel methods. In both approaches, we analyzed the
data in higher-dimensional Hilbert space. Previously we discussed how VQAs
could reformulate classification tasks as searching problems. Constructing an
oracle is an essence of implementing Grovers algorithm for quantum machine
learning.

Below, we present a elementary implementation for constructing an oracle
using the universal gates, AND, XOR, and OR gates.

4 Algorithm Implementation

4.1 Experimental Setup

Below we present a method and experiment for the proposed work. We ran
the experiment using the Qiskit library, IBM open-source software for working
with quantum computers (refer [58] for details). Our experimental results are
divided into two parts; a) Simulation Results. b) Quantum Computer Results.
While simulator experiments are executed “qasm simulator” and utilized up
to eight qubits, due to the limited available qubits in real quantum computers,
we restricted ourselves to two qubits experiment.

4.2 Methods

The proposed algorithm 1 requires users to initialize the number of qubits.
With the number of the qubits fixed, users can define operations between these
qubits as clauses in format qubit number, Universal gates, qubit number. Based
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on individual clause, one of two or three qubits gates, (see Fig. 2b, 2a, 2c for
gates visualization) is applied to circuit in sequence. The algorithm combines
these gates to construct a circuit, U . U is applied as the first oracle to Grover’s
algorithm. Exploiting the amplitude amplification, the final circuit will output
probabilities of possible states in O(n+ c) time complexity in term of number
of qubits n and number of clauses c. The state with the highest probabilities
guarantees to yield 1 on measurement for the provided clauses. One example
for possible input sequence is provided in Table 3.

Table 3 An example of input to an algorithm: input Number of qubits and clauses.

Qubits Clauses

3

4 0 AND 1 1 XOR 2 2 OR 3

The table represents the circuit initialization with 4 qubits and 3 clauses.
For these three clauses the algorithm first applies AND gate Fig. 2b to the
state H⊗4 |0⟩, followed by XOR gate Fig. 2a, and OR gate Fig. 2c in sequential
order. We aim to predict the input sequence based on these clauses, so the
final measurement is 1. As mentioned before, we limit ourselves to universal
gates. Below we present the construction of these gates.

We implemented the XOR gate Fig. 2a using two CNOT gates with two
circuit depth. The input qubits are control qubits, and the ancilla qubit is a
target qubit. In our example of 1 XOR 2, (1, 2), are the control qubits. Using
two CNOT gates, we forced our circuit to result 1 on measurement if only
either control qubit is 1.

The AND gate Fig. 2b is implemented using a Toffoli gate with one circuit
depth. Similar to XOR gate, the input qubits are the control qubits and ancilla
qubit is a target qubit. If both control qubits are in |1⟩ state, the output will
be one, else zero.

The OR gate Fig. 2c is implemented using a Toffoli and 2 CNOT gates
with three circuit depth. For the selected gates, output is one if and only if
one of the input gates has value 1.

(a) XOR gate. (b) AND gate. (c) OR Gate.

Fig. 2 Gates and their representation in a circuit.
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Apart from initialized qubits, n, for each clause we add one extra qubit.
For our example with three clauses, we need three extra qubits, c, here c = 3,
resulting total of (n+c) qubits circuit. These additional requirements of ancilla
qubits, and up to five qubits access from IBM, limit us to implement two/three
qubits inputs with two clauses in a real quantum computer. The oracle, U , is
constructed under these abstractions and mathematical definition described in
the introduction section. A Hadamard operation, H⊗(n) |0⟩ is applied resulting
state |Ψ⟩. We perform U |Ψ⟩ operation and apply a diffuser, US , before the
measurement. US is universal. Thus, any two oracles with the same number of
input qubits can use the same diffuser. An example of a complete circuit with 4
qubits and 3 universal clauses , |q0⟩AND |q3⟩ , |q1⟩XOR |q2⟩, and |q2⟩AND |q3⟩,
is shown in Fig. 3. For a circuit of 4 qubits and three clauses, we can see
that we need three additional qubits. These qubits are essential part of an
algorithm. The first layer, l1, has Hadamard operations, followed by UUS and
measurement.

Fig. 3 Quantum circuit for Grover algorithm with user-defined oracle on clauses
|q0⟩AND |q3⟩ , |q1⟩XOR |q2⟩, and |q2⟩AND |q3⟩. Note that we need seven qubits in total. For
c clauses, three in this case, we require c additional qubits and one output qubit, resulting
(n+ c+1) qubits quantum circuit. The circuit depth for an oracle is (2

∑c
i=1 Gi)+1, where

Gi is individual gate depth. Refer to figures in Fig. 2 for actual circuit depth for each gate.

Based on our algorithm and methods defined we compare and argue on the
results from simulation and quantum computers in the next sections.

5 Results and Discussion

As mentioned previously and shown in Fig. 3, we need c extra qubits to
process c clauses, where c is the number of clauses. Thus for experimental
purposes on real quantum computers, we are limited to implementing two
qubits circuit with two clauses as an input under five qubits constraint from
IBM. Under these settings, we executed our experiments. We experimented
on “ibmq bogota” and “ibmq santiago” backend for quantum computers and
on “aer simulator” for simulation. On both quantum computer backend, our
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Algorithm 1 To construct a defined oracle.

Input: q1, q2, ..., qn and c1, ......., ck
Parameter: Set of universal clauses.
Output: Input bits that output 1.

1: while input qi do
2: |ψ1⟩ ←− Hadamard(qi)
3: end while
4: while clause cj do
5: ORACLE:
6: Oi ←− ci(qj , qk)
7: out←− Toffoli(O1, O2, ....., On)
8: end while
9: Grover(ORACLE)

submitted job had a queue of approximately four hundred. So each experiment
took about half an hour to execute. We acknowledge that some institutions
might provide better quantum computers and achieve better results. But for
this research purpose, we limit ourselves to the IBM quantum lab.

Consider these set of clauses: (a) 0 AND 1 (b) 1 XOR 2 in a 3 qubits circuit.
Upon the input of 110 the circuit yields 1 analytically. Given such clauses, our
oracle, U , is guaranteed to find these input sequence with a high probability,
0.776 in this case,(Fig. 4). To clarify, consider the first clause 0 AND 1. One
can immediately conclude that it yields 1 if and only if both the inputs are 1.
Combining this result with the second clause, 1 XOR 2, it is only possible to
obtain 1 as an output if and only if the third qubit is 0. So, without looking
at any result, one can confirm that the possible input to obtain 1 as output
for given clauses is 110. Our algorithm obtains the same result. We provide a
histogram Fig. 5 for four qubits circuits inputs with three clauses; (a) 0 AND
3 (b) 1 XOR 2 (c) 2 AND 3. We get 1011 input sequence with a probability
of 0.453. One can verify that these inputs hold following previously explained
clarification.

Fig. 4 Histogram for clauses 0 AND 1,1 XOR 2
on 3 qubits circuit.

Fig. 5 Histogram for clauses 0 AND 3,1 XOR 2,
2 AND 3 on 4 qubits circuit. rest is the probabili-
ties of the states that are not shown in histogram.

states ∈ {0, 1}4



Springer Nature 2021 LATEX template

16 SC Leverages Quantum Machine Learning and The Grover’s Algorithm

In two of the provided examples, we observe that the probability of the
right input sequences decreases as we increase the number of qubits. However,
this hypothesis does not always hold. Furthermore, as we increase the number
of qubits, we will have different options for right input sequence. Table 4, 5
provides the result for five qubits with the clauses: (a) 0 AND 1 (b) 1 XOR 4
(c) 2 OR 4 (d) 3 XOR 0 and eight qubits circuit with clauses: (a) 0 AND 1
(b) 1 OR 2 (c) 2 XOR 3 (d) 3 XOR 4 (e) 4 OR 6 (f) 5 AND 7. One can look
in the table and find various possible answers. We only highlight the one with
the highest probability. The only constraint it respects is the sum of proba-
bilities has to be 1. We do not have any limitations on the number of clauses.
The only constrain on our algorithm is that the control qubit precedes uni-
versal gate followed by target qubit. The simulations results looks satisfying.
However, the result are very different when we run such experiments in real
quantum computers. Below we compare three results obtained on simulations
and quantum computers.
1. An experiment for a clause 0 AND 1 and 1 XOR 0.

Fig. 6 illustrates a histogram with probabilities for a clause 1 on
simulation and quantum computer. We can visualize that histograms
(Fig. 6a, 6b) gives different results under the same operations. This is
because the simulation has a higher degree of fault-tolerant and is prone
to provide better results than the actual quantum computer. Error miti-
gation in quantum devices is an active area of research. Some of the work
can be found on [59–61].

2. An experiment for a clause 0 XOR 1 and 1 AND 0.
Fig. 7 illustrates the histogram of state probabilities for the above clause.
We see while simulation provides the resulting state as |11⟩ with the
highest probability of 0.267 followed by state |01⟩ with a probability of
0.26, real quantum provides different results, state |10⟩ with a probability
of 0.281 followed by a state |01⟩ with a probability of 0.256. If we follow
the descriptions from Section 4.2 and replace Universal gates in clauses
2 by the quantum gates provided in Fig. 2, we can analytically verify
that state |11⟩ satisfy the clause. In practice, the results from quantum
computers are probabilistic rather than deterministic. This means the
same experiment is conducted multiple times, and the result is sampled
from the generated probability distribution. Measurements in quantum
devices are beyond the scope of this paper. Interested readers can refer
to [56, 62].

3. An experiment for a clause 0 AND 1.
Fig. 8 illustrates the surprising result. Analytically, one can immedi-

ately verify that for a clause 0 AND 1, |11⟩ is the valid input state.
While Fig. 8a yields the targeted state with 1 probability, surprisingly,
Fig. 8b shows that the probability of obtaining the targeted state |11⟩ is
approximately to 36% when the experiment is executed on actual quan-
tum computers. This probability is lower than flipping a coin. Due to
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probabilistic approach for quantum measurement, the circuit was exe-
cuted for 5000 shots. Unfortunately, current quantum computers are
noisy/error-prone [63, 64] and significantly affects the results. There are
numerous works for error-corrections and building fault-tolerant quantum
devices. (a) Decoherence Noise. (b) Control Noise. (c) Pulse Shape noise.
(d) Crosstalk noise. (e) Leakage noise. are few noises classes that accom-
pany errors in quantum devices.Although quantum computers’ results
tries to mimic the simulation results, these results vary due to various
errors and noises.

(a) Simulation result for a given clause (b) quantum computer result.

Fig. 6 Simulation and quantum computer results for 0 AND 1 and 1 XOR 0 clauses.

(a) Simulation result. (b) quantum computer result.

Fig. 7 Simulation and quantum computer results for 0 XOR 1 and 1 AND 0 clauses.

The difference in simulation and real quantum computers results brings
the issue of noise and errors in current quantum devices. We briefly discussed
that due to these various errors, listed in 3, the measurements/outcomes of
quantum computers are probabilistic. The experiment provided in this paper
are trivial and targeted at the audience with no/few prior quantum comput-
ing experience. Our algorithm can help the users to simulate any classical
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(a) Simulation result. (b) quantum computer result.

Fig. 8 Simulation and quantum computer results 0 AND 1 clause.

Table 4 Probabilities values for five qubits

String Probability String Probability String Probability String Probability

11111 0.02051 11010 0.01465 00000 0.02637 10000 0.02441
01100 0.02148 10011 0.02441 10110 0.02441 11001 0.01953
01011 0.02832 01110 0.02637 00010 0.03516 11100 0.25879
11011 0.01465 01000 0.03125 01111 0.02930 01010 0.03418
01001 0.03027 00101 0.01855 10111 0.01660 00100 0.02344
11000 0.02734 10101 0.02051 01101 0.02734 00011 0.02441
10001 0.02441 00111 0.01563 00110 0.01953 11110 0.02051
10100 0.03223 11101 0.02051 10010 0.02539

Table 4 present the probabilities values for 5 qubits circuit with 4 clauses: a. 0 AND
1 b. 1 XOR 4 c. 2 OR 4 d. 3 XOR 0.

logical circuits built using universal gates into a quantum system. Provided
with the parsed operations, (e.g A AND B), our algorithms can provide the
valid input results in O(n+c

2 ) complexity in number of qubits n and clauses
c. The results showed that Grover’s algorithm with a universal gates-defined
oracle could obtain the input states that satisfy the circuit. The Grover’s Algo-
rithm has shown promising results in secure secret-sharing in two qubits case
[65], extracting key Advanced Encryption Standard (AES) plaintext-ciphertext
pairs [66], constructing a gate for conditional phase-shift [67], cryptography
[68] and many searching problems. There are quantum algorithms that solve
many of the classical algorithms efficiently, but we lack the quantum comput-
ers to execute these algorithms. It is well known even a few qubits circuit is
not fault-tolerant. We have shown it in the sections of our results too. We
believe quantum computing exploits machine learning and cryptography, and
there are different works to prove it. Refer [31–33, 68–72] for various works
on quantum cryptography and quantum machine learning. Although the cur-
rent limitations of quantum computers and qubits do not serve any real-world
purpose, with the current advancement, we believe it will surpass classical
computers in solving many classically hard problems efficiently in the future.
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Table 5 Probabilities values for eight qubits

String Probability String Probability String Probability String Probability

00110111 0.001953125 00100110 0.003906250 00100100 0.002929688 11011110 0.004882813
00001101 0.000976563 00011101 0.002929688 00110000 0.002929688 01010010 0.006835938
01010000 0.000976563 00111000 0.004882813 00011010 0.000976563 11011000 0.001953125
11101110 0.001953125 01111100 0.004882813 00010101 0.004882813 10011011 0.007812500
00100001 0.002929688 11011101 0.005859375 11100101 0.003906250 01000100 0.001953125
01010100 0.003906250 00011000 0.001953125 00000110 0.004882813 10011111 0.003906250
10110011 0.001953125 01000011 0.003906250 11001010 0.001953125 01101010 0.001953125
01000110 0.001953125 01000001 0.002929688 11110111 0.002929688 11011001 0.005859375
10111101 0.001953125 00000000 0.002929688 00101010 0.003906250 11110000 0.002929688
01001011 0.001953125 10010001 0.003906250 10110000 0.005859375 10001111 0.007812500
00000001 0.005859375 10000100 0.007812500 01111000 0.001953125 00001100 0.004882813
10011100 0.001953125 10011000 0.004882813 11011010 0.008789063 10111110 0.003906250
10001100 0.002929688 10001101 0.003906250 11100111 0.031250000 11000011 0.003906250
10010000 0.002929688 01111011 0.003906250 11111000 0.000976563 01110000 0.002929688
10001001 0.002929688 00010001 0.005859375 01100100 0.005859375 00011001 0.002929688
00110011 0.000976563 00101001 0.005859375 01011000 0.002929688 01010011 0.001953125
00011110 0.000976563 01001101 0.002929688 10101110 0.004882813 11110010 0.002929688
01100111 0.000976563 11101011 0.001953125 11110001 0.009765625 01000010 0.003906250
10100111 0.003906250 10001011 0.004882813 01110010 0.002929688 10001110 0.003906250
10111100 0.001953125 11100001 0.005859375 01011100 0.004882813 10110010 0.003906250
11000001 0.004882813 11101001 0.002929688 11010010 0.001953125 01100010 0.004882813
01110100 0.000976563 01101000 0.003906250 01010111 0.004882813 00000011 0.006835938
10100100 0.003906250 10101111 0.003906250 11000110 0.003906250 10100011 0.003906250
11010110 0.002929688 11101000 0.002929688 00010110 0.005859375 10011010 0.004882813
11111001 0.004882813 11001110 0.001953125 10110101 0.002929688 01011011 0.005859375
00101100 0.000976563 01010101 0.003906250 11011100 0.002929688 11101101 0.043945313
00101000 0.003906250 00000010 0.005859375 01000000 0.002929688 10000110 0.001953125
01001110 0.002929688 11011111 0.003906250 11010001 0.003906250 01010001 0.004882813
11000111 0.002929688 01011010 0.002929688 00010100 0.000976563 01011101 0.003906250
00001111 0.002929688 11111111 0.001953125 01001010 0.006835938 11111011 0.005859375
10100101 0.002929688 10010110 0.003906250 01111010 0.005859375 01100001 0.003906250
10010111 0.001953125 10010101 0.005859375 00001110 0.002929688 10000111 0.001953125
11100110 0.002929688 11101111 0.038085938 10100001 0.004882813 11010111 0.002929688
01001111 0.001953125 11010100 0.000976563 10111010 0.002929688 01101111 0.003906250
01110101 0.003906250 00011111 0.005859375 11100010 0.003906250 10100110 0.003906250
11110100 0.000976563 11001000 0.003906250 00110101 0.004882813 11010011 0.003906250
10111011 0.003906250 00101111 0.003906250 10001000 0.001953125 10101000 0.003906250
11101100 0.001953125 00010010 0.005859375 01010110 0.002929688 11000000 0.005859375
11011011 0.002929688 00111101 0.002929688 00101101 0.003906250 11100011 0.001953125
01100101 0.002929688 11111010 0.002929688 00001000 0.002929688 01101110 0.004882813
10110111 0.002929688 11110011 0.001953125 00111011 0.001953125 11110101 0.006835938
01100110 0.001953125 01100011 0.004882813 10000010 0.003906250 00000100 0.000976563
00111111 0.002929688 00100010 0.004882813 01111101 0.002929688 10110110 0.002929688
10101010 0.001953125 00011011 0.004882813 11100100 0.003906250 10101100 0.001953125
00111110 0.002929688 00100000 0.002929688 10011101 0.001953125 01011111 0.002929688
10011110 0.003906250 01110001 0.005859375 00000111 0.004882813 10000101 0.002929688
00111001 0.001953125 10101101 0.002929688 11000010 0.003906250 11101010 0.005859375
10101011 0.003906250 01111111 0.002929688 00100101 0.000976563 00111100 0.003906250
10000001 0.002929688 10000011 0.001953125 11001100 0.002929688 00010011 0.000976563
01100000 0.004882813 10110001 0.001953125 10100000 0.001953125 10111001 0.002929688
00100011 0.003906250 11001101 0.000976563 01000101 0.005859375 10101001 0.002929688
00001011 0.002929688 00100111 0.001953125 10010011 0.005859375 01110011 0.002929688
01111110 0.000976563 10010100 0.005859375 01110111 0.003906250 10011001 0.003906250
11000100 0.004882813 10000000 0.003906250 10111111 0.003906250 00010000 0.002929688
00001010 0.002929688 01011001 0.006835938 00110001 0.004882813 00101011 0.002929688
01101100 0.001953125 00111010 0.001953125 11100000 0.001953125 11111101 0.001953125
01101011 0.004882813 11111110 0.001953125 11110110 0.003906250 00110010 0.001953125
00101110 0.001953125 11010101 0.004882813 01101101 0.001953125 11001111 0.005859375
01101001 0.003906250 01001100 0.003906250 00001001 0.002929688 10010010 0.005859375
01001001 0.006835938 00000101 0.004882813 00110100 0.002929688 00011100 0.001953125
10110100 0.006835938 01110110 0.003906250 11000101 0.001953125 11010000 0.002929688
01001000 0.002929688 11001001 0.004882813 00110110 0.003906250
00100110 0.003906250 00011101 0.002929688 00010111 0.0048828125

Table 5 present the probabilities values for 8 qubits circuit with 6 clauses: a. 0 AND
1 b. 1 OR 2 c. 2 XOR 3 d. 3 XOR 4 e. 4 OR 6 f. 5 AND 7.

6 Conclusion

This paper discusses the basics of quantum computing, including Grover’s algo-
rithm, and quantum machine learning. We focused on Grover’s algorithm and
gave a presented an experiment to simulate classical logical circulate exploiting
amplitude amplification. We consider that quantum computing and quantum
machine learning can provide an advantage over some classically challenging
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problems by leveraging quantum computers’ efficiency, reducing the need for
supercomputing power to execute such programs.

Furthermore, we describe two approaches for quantum machine learn-
ing, namely, variational quantum circuits and kernel-based quantum machine
learning, as potential applications in supercomputing and other technologies.
Quantum algorithms and their applicability in machine learning problems is
an area that necessitates further research to identify equivalent solutions and
improvements over classic machine learning computing. We encourage the
reader to keep track of research in these areas as we believe there are signif-
icant opportunities for kernel-based approaches to succeed in the short-term
future of quantum machine learning and supercomputing.

Our future work plans include testing our algorithm with actual data of the
classical circuit. We will also parse the circuit and supply it to our algorithm,
c.f. Section 5. We will work towards improving computational complexity with
respect to the classical approach. We believe the classification problems in
machine learning can be formulated as a searching problem that can be exe-
cuted using Grover’s Algorithm. Finally, we will attempt to reformulate this
problem as a kernel method that can be efficiently solved as a searching prob-
lem. We believe this future work can successfully exploit Grover’s algorithm
advantages.
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A., Azad, U., Lang, R.A., Niu, Z., Matteo, O.D., Moyard, R., Soni,
J., Schuld, M., Vargas-Hernandez, R.A., Tamayo-Mendoza, T., Aspuru-
Guzik, A., Killoran, N.: Differentiable quantum computational chemistry
with PennyLane (2021)

[9] Emani, P.S., Warrell, J., Anticevic, A., Bekiranov, S., Gandal, M.,
McConnell, M.J., Sapiro, G., Aspuru-Guzik, A., Baker, J.T., Bastiani, M.,
et al.: Quantum computing at the frontiers of biological sciences. Nature
Methods, 1–9 (2021)

[10] Khanal, B., Rivas, P., Orduz, J.: Human activity classification using basic
machine learning models. In: 2021 International Conference on Computa-
tional Science and Computational Intelligence (CSCI) (2021). Accepted,
to be published soon

[11] Rivas, P., Zhao, L., , Orduz, J.: Hybrid quantum variational autoencoders
for representation learning. In: 2021 International Conference on Compu-
tational Science and Computational Intelligence (CSCI) (2021). Accepted,
to be published soon

[12] Freedman, M.H., Kitaev, A., Wang, Z.: Simulation of topological field the-
ories by quantum computers. Communications in Mathematical Physics

https://doi.org/10.22331/q-2021-04-15-433
https://doi.org/10.22331/q-2021-04-15-433


Springer Nature 2021 LATEX template

22 SC Leverages Quantum Machine Learning and The Grover’s Algorithm

227(3), 587–603 (2002)

[13] Raussendorf, R., Browne, D.E., Briegel, H.J.: Measurement-based quan-
tum computation on cluster states. Phys. Rev. A 68, 022312 (2003).
https://doi.org/10.1103/PhysRevA.68.022312

[14] Benioff, P.: The computer as a physical system: A microscopic quan-
tum mechanical hamiltonian model of computers as represented by turing
machines. Journal of statistical physics 22(5), 563–591 (1980)

[15] Kitaev, A.Y.: Quantum computations: algorithms and error correction.
Uspekhi Matematicheskikh Nauk 52(6), 53–112 (1997)

[16] Penrose, R.: Applications of negative dimensional tensors. Com-
binatorial mathematics and its applications 1, 221–244 (1971).
See PDF: https://www.mscs.dal.ca/ selinger/papers/graphical-
bib/public/Penrose-applications-of-negative-dimensional-tensors.pdf

[17] Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation
by adiabatic evolution. arXiv: Quantum Physics (2000)

[18] Childs, A.M., Farhi, E., Preskill, J.: Robustness of adiabatic quantum
computation. Physical Review A 65(1), 012322 (2001)

[19] IBM: Qiskit. https://qiskit.org/

[20] Anonymous: Grover implementation. Anonymous repository. https://
anonymous.4open.science/r/NoRemoving-8DFF/groverAlgo.ipynb

[21] IBM: Grover’s algorithm. website. https://qiskit.org/textbook/ch-
algorithms/grover.html (2021)

[22] Leifer, M.S., Poulin, D.: Quantum graphical models and belief propaga-
tion. Annals of Physics 323(8), 1899–1946 (2008)

[23] Deutsch, D.: Quantum theory, the church–turing principle and the uni-
versal quantum computer. Proceedings of the Royal Society of London.
A. Mathematical and Physical Sciences 400(1818), 97–117 (1985)

[24] Mermin, N.D.: From cbits to qbits: Teaching computer scientists quantum
mechanics. American Journal of Physics 71(1), 23–30 (2003). https://doi.
org/10.1119/1.1522741

[25] Wittek, P.: Quantum machine learning: what quantum computing means
to data mining (2014)

[26] Montanaro, A.: Quantum algorithms: an overview. npj Quantum Infor-
mation 2(1), 1–8 (2016)

https://doi.org/10.1103/PhysRevA.68.022312
https://qiskit.org/
https://anonymous.4open.science/r/NoRemoving-8DFF/groverAlgo.ipynb
https://anonymous.4open.science/r/NoRemoving-8DFF/groverAlgo.ipynb
https://doi.org/10.1119/1.1522741
https://doi.org/10.1119/1.1522741


Springer Nature 2021 LATEX template

SC Leverages Quantum Machine Learning and The Grover’s Algorithm 23

[27] Shor, P.W.: Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. SIAM review 41(2), 303–332
(1999)

[28] Lavor, C., Manssur, L., Portugal, R.: Grover’s algorithm: Quantum
database search. arXiv preprint quant-ph/0301079 (2003)

[29] Vartiainen, J.J., Niskanen, A.O., Nakahara, M., Salomaa, M.M.: Imple-
menting shor’s algorithm on josephson charge qubits. Physical Review A
70(1), 012319 (2004)

[30] Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear
systems of equations. Physical review letters 103(15), 150502 (2009)

[31] Schuld, M., Killoran, N.: Quantum machine learning in feature hilbert
spaces. Physical review letters 122(4), 040504 (2019)

[32] Schuld, M.: Supervised quantum machine learning models are kernel
methods. arXiv preprint arXiv:2101.11020 (2021)

[33] Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd,
S.: Quantum machine learning. Nature 549(7671), 195–202 (2017)

[34] Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum algorithms for super-
vised and unsupervised machine learning. arXiv preprint arXiv:1307.0411
(2013)

[35] Chen, G., Fulling, S.A., Lee, H., Scully, M.O.: Grover’s algorithm for
multiobject search in quantum computing, 165–175 (2001)

[36] Grover, L.K.: Quantum mechanics helps in searching for a needle in a
haystack. Phys. Rev. Lett. 79, 325–328 (1997). https://doi.org/10.1103/
PhysRevLett.79.325

[37] Grover, L.K.: A fast quantum mechanical algorithm for database search.
In: Proceedings of the Twenty-eighth Annual ACM Symposium on Theory
of Computing, pp. 212–219 (1996)

[38] Rungta, P.: The quadratic speedup in grover’s search algorithm from the
entanglement perspective. Physics Letters A 373(31), 2652–2659 (2009)

[39] Du, Y., Hsieh, M.-H., Liu, T., Tao, D.: A grover-search based quantum
learning scheme for classification. New Journal of Physics 23(2), 023020
(2021). https://doi.org/10.1088/1367-2630/abdefa

[40] Nielsen, M.A., Chuang, I.: Quantum computation and quantum informa-
tion. American Association of Physics Teachers (2002)

https://doi.org/10.1103/PhysRevLett.79.325
https://doi.org/10.1103/PhysRevLett.79.325
https://doi.org/10.1088/1367-2630/abdefa


Springer Nature 2021 LATEX template

24 SC Leverages Quantum Machine Learning and The Grover’s Algorithm

[41] Mandviwalla, A., Ohshiro, K., Ji, B.: Implementing grover’s algorithm on
the ibm quantum computers. In: 2018 IEEE International Conference on
Big Data (Big Data), pp. 2531–2537 (2018). IEEE

[42] Zhang, K., Rao, P., Yu, K., Lim, H., Korepin, V.: Implementation
of efficient quantum search algorithms on nisq computers. Quantum
Information Processing 20(7), 1–27 (2021)

[43] Schwabe, P., Westerbaan, B.: Solving binary MQ with grover’s algo-
rithm. In: International Conference on Security, Privacy, and Applied
Cryptography Engineering, pp. 303–322 (2016). Springer

[44] Chakraborty, K., Maitra, S.: Application of grover’s algorithm to check
non-resiliency of a boolean function. Cryptography and Communications
8(3), 401–413 (2016)

[45] Bulger, D.W.: Combining a local search and grover’s algorithm in black-
box global optimization. Journal of optimization theory and applications
133(3), 289–301 (2007)

[46] Tezuka, H., Nakaji, K., Satoh, T., Yamamoto, N.: Grover search revis-
ited: Application to image pattern matching. Physical Review A 105(3),
032440 (2022)

[47] Nakaji, K., Uno, S., Suzuki, Y., Raymond, R., Onodera, T., Tanaka,
T., Tezuka, H., Mitsuda, N., Yamamoto, N.: Approximate amplitude
encoding in shallow parameterized quantum circuits and its application
to financial market indicators. Physical Review Research 4(2), 023136
(2022)

[48] Tsang, I.W., Kwok, J.T., Cheung, P.-M., Cristianini, N.: Core vector
machines: Fast svm training on very large data sets. Journal of Machine
Learning Research 6(4) (2005)

[49] Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine
for big data classification. Physical review letters 113(13), 130503 (2014)

[50] Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S.C., Endo, S., Fujii,
K., McClean, J.R., Mitarai, K., Yuan, X., Cincio, L., et al.: Variational
quantum algorithms. Nature Reviews Physics, 1–20 (2021)

[51] Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT press, The
MIT Press, Cambridge, MA, USA (2016)

[52] Khanal, B., Rivas, P., Orduz, J., Zhakubayev, A.: Quantum machine
learning: A case study of grover’s algorithm. In: The 19th International
Conference on Scientific Computing (CSC 2021) (2021)



Springer Nature 2021 LATEX template

SC Leverages Quantum Machine Learning and The Grover’s Algorithm 25

[53] Team, T.Q.: Simulating molecules using VQE. Data 100 at UC Berkeley
(2022). https://qiskit.org/textbook/ch-applications/vqe-molecules.html

[54] Team, T.P.: Variational classifier. https://pennylane.ai/qml/demos/
tutorial variational classifier.html

[55] Park, D.K., Blank, C., Petruccione, F.: The theory of the quantum kernel-
based binary classifier. Physics Letters A 384(21), 126422 (2020)

[56] Schuld, M., Petruccione, F.: Machine Learning with Quantum Computers.
Springer, Swizerland (2021)

[57] Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. MIT Press, Cam-
bridge, MA, USA (2001)

[58] IBM Q: IBM Quantum. Website: https://www.ibm.com/quantum-
computing/ (2021)

[59] Endo, S., Benjamin, S.C., Li, Y.: Practical quantum error mitigation for
near-future applications. Physical Review X 8(3) (2018)

[60] Endo, S., Cai, Z., Benjamin, S.C., Yuan, X.: Hybrid quantum-classical
algorithms and quantum error mitigation. Journal of the Physical Society
of Japan 90(3), 032001 (2021)

[61] Strikis, A., Qin, D., Chen, Y., Benjamin, S.C., Li, Y.: Learning-based
quantum error mitigation. PRX Quantum 2(4), 040330 (2021)

[62] Elben, A., Vermersch, B., van Bijnen, R., Kokail, C., Brydges, T., Maier,
C., Joshi, M.K., Blatt, R., Roos, C.F., Zoller, P.: Cross-platform verifica-
tion of intermediate scale quantum devices. Physical review letters 124(1),
010504 (2020)

[63] Lidar, D.A.: Towards fault tolerant adiabatic quantum computation.
Physical Review Letters 100(16), 160506 (2008)

[64] Shor, P.W.: Scheme for reducing decoherence in quantum computer
memory. Physical review A 52(4), 2493 (1995)

[65] Hsu, L.-Y.: Quantum secret-sharing protocol based on grover’s algorithm.
Physical Review A 68(2), 022306 (2003)

[66] Grassl, M., Langenberg, B., Roetteler, M., Steinwandt, R.: Applying
grover’s algorithm to aes: quantum resource estimates. In: Post-Quantum
Cryptography, pp. 29–43 (2016). Springer

[67] Fujiwara, S., Hasegawa, S.: General method for realizing the conditional

https://qiskit.org/textbook/ch-applications/vqe-molecules.html
https://pennylane.ai/qml/demos/tutorial_variational_classifier.html
https://pennylane.ai/qml/demos/tutorial_variational_classifier.html


Springer Nature 2021 LATEX template

26 SC Leverages Quantum Machine Learning and The Grover’s Algorithm

phase-shift gate and a simulation of grover’s algorithm in an ion-trap
system. Physical Review A 71(1), 012337 (2005)

[68] Aumasson, J.-P.: The impact of quantum computing on cryptography.
Computer Fraud & Security 2017(6), 8–11 (2017)

[69] Mavroeidis, V., Vishi, K., Zych, M.D., Jøsang, A.: The impact of quan-
tum computing on present cryptography. arXiv preprint arXiv:1804.00200
(2018)

[70] Brassard, G.: Quantum computing: the end of classical cryptography?
ACM SIGACT News 25(4), 15–21 (1994)

[71] Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on
practical quantum cryptography. Physical review letters 85(6), 1330
(2000)

[72] Adcock, J., Allen, E., Day, M., Frick, S., Hinchliff, J., Johnson, M.,
Morley-Short, S., Pallister, S., Price, A., Stanisic, S.: Advances in
quantum machine learning. arXiv preprint arXiv:1512.02900 (2015)


	Introduction
	Context and Models
	Quantum Computing
	Quantum algorithms 

	Related Works
	Potential applications in Quantum Machine Learning 
	Variational Quantum Algorithms
	Kernels


	Algorithm Implementation
	Experimental Setup 
	Methods

	Results and Discussion
	Conclusion
	Funding
	Conflict of interest
	Availability of data and materials




