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Abstract: Quantum Computing in the Noisy Intermediate-Scale Quantum (NISQ) era has shown
promising applications in machine learning, optimization, and cryptography. Despite these pro-
gresses, challenges persist due to system noise, errors, and decoherence. These system noises
complicate the simulation of quantum systems. The depolarization channel is a standard tool for
simulating a quantum system’s noise. However, modeling such noise for practical applications is
computationally expensive when we have limited hardware resources, as is the case in the NISQ
era. This work proposes a modified representation for a single-qubit depolarization channel. Our
modified channel uses two Kraus operators based only on X and Z Pauli matrices. Our approach
reduces the computational complexity from six to four matrix multiplications per channel execution.
Experiments on a Quantum Machine Learning (QML) model on the Iris dataset across various circuit
depths and depolarization rates validate that our approach maintains the model’s accuracy while
improving efficiency. This simplified noise model enables more scalable simulations of quantum
circuits under depolarization, advancing capabilities in the NISQ era.
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1. Introduction

Quantum Computing has seen significant progress in recent years, with the develop-
ment of quantum algorithms for a variety of applications, including machine learning [1–6],
optimization [7–11], and cryptography [12–15]. However, the development of quantum
algorithms is still in its infancy. Many of the developed algorithms are not yet ready
for practical use [16,17]. Due to the susceptibility of NISQ device operations to inherent
errors and decoherence [18,19], simulating quantum systems remains a major challenge in
developing quantum algorithms [17].

In the NISQ era, system noise is not merely a challenge to be addressed but a funda-
mental tool that shapes the field of QML research. Interestingly, many works have chosen
to regard noise not as a challenge but as an opportunity to advance their research. Studies
have shown that, unlike classical algorithms, quantum learning of n-bit parity functions is
highly resilient to depolarization noise [20]. This early work demonstrated the potential
for quantum algorithms to maintain a learning advantage even in noisy conditions. While
traditionally viewed as a detrimental factor to quantum computation, depolarization noise
under certain conditions can enhance the robustness and functionality of quantum learning
algorithms against adversarial attacks [21–25]. This counterintuitive finding highlights the
potential of noise to endow quantum models with robustness against malicious attempts
that aim to manipulate the model’s outputs.

However, harnessing the power of noise as a training tool requires careful consid-
eration. For example, the effectiveness of adversarial training techniques hinges on the
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assumption that the test attack and the training attack employ the same methods to gen-
erate adversarial examples. In real-world scenarios where attackers may employ diverse
and unknown strategies, this advantage is not guaranteed [26,27]. Therefore, deriving
robust guarantees against worst-case scenarios remains crucial for building truly secure
and resilient quantum learning algorithms.

The challenges posed by noise extend beyond algorithm design, impacting the very
foundations of QML. The inherent noise in the NISQ machines also presents significant chal-
lenges to the learning capabilities of Quantum Neural Networks and QML models [18,28].
System noise can significantly diminish the quantum kernel advantage [29], raising con-
cerns about the viability of quantum kernel methods [30,31]. Additionally, calculating
numerical gradients on noisy qubits presents a delicate balancing act: reducing the step
size to improve accuracy can obscure subtle differences in the cost function for nearby
parameter values [32]. Further research into controlled noise simulations, such as the
depolarization channel, is necessary to comprehend better and mitigate these complexities.

In the worst-case scenario, we can use the depolarization channel to simulate the quan-
tum system’s noise [30]. However, executing depolarizing noise in a controlled manner on
quantum hardware presents critical challenges and intriguing opportunities for advancing
our understanding and mitigation of this noise model. One of the primary challenges
in executing depolarizing noise lies in its inherently probabilistic nature. Depolarization
introduces errors with a certain probability, often modeled by the Kraus operators, onto the
quantum state [33]. Implementing such probabilistic errors precisely on hardware requires
sophisticated control techniques and careful calibration procedures. Inaccurate noise injec-
tion can lead to deviations from the expected noise model. This deviation can compromise
the validity of subsequent experiments and analyses. To fully realize the potential of
QML, it is crucial to develop effective error correction techniques [34]. Techniques like
surface codes [35] and stabilizer codes [36] offer promising avenues for error correction
and safeguard the integrity of quantum computations. Combining noise-estimate circuits
with other error correction techniques can accurately estimate and correct noise in circuits
even with extensive CNOT gates [37]. We can improve the accuracy of error mitigation
using multi-exponential error mitigation techniques [38]. On the one hand, we may be able
to model depolarizing noise accurately, but on the other hand, the computational cost can
be prohibitive in the NISQ era [39].

The conventional depolarization noise channel utilizes three Pauli matrices, (X, Y, and Z),
to capture isotropic noise processes affecting quantum states [33]. Simulating the stan-
dard noisy channel requires three Kraus operators for each Pauli matrix, resulting in six
matrix multiplications. However, as discussed by [17], this mathematical formalism intro-
duces significant computational overhead, particularly in near-term systems with limited
hardware resources.

To address these challenges, we propose a modified approach for single-qubit de-
polarization utilizing only two Kraus operators and the X and Z Pauli matrices. This
reduced model simplifies the mathematical representation and decreases the computational
complexity from six to four matrix multiplications for each noise channel execution. Our ap-
proach provides a more efficient means of simulating depolarization in resource-constrained
quantum hardware, an essential capability in the NISQ era where computational resources
are scarce. By developing simplified yet representative noise models, our work aims to
enable more efficient and scalable approaches to simulating and correcting depolarization
noise in deep quantum circuits.

1.1. Contribution

We summarize the contribution of our work as follows:

1. Depolarization Channel Representation: We propose a modified representation of the
depolarization channel for single-qubit quantum states.

2. Kraus Operators Configuration: The proposed method contains only two Kraus oper-
ators.
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3. Pauli Matrices Utilization: Unlike the standard approach that uses three Pauli matrices,
our channel only uses two, X and Z, Pauli matrices.

4. Computational Efficiency: The proposed representation reduces the computational
complexity from six to four matrix multiplications for each channel execution.

5. Theoretical Verification: We rigorously prove the validity of our proposed Kraus
operators and the modified channel.

6. Experimental Validation: We empirically tested the proposed channel representation
using a QML model on the Iris dataset. We evaluated the model performance across
various circuit depths and depolarization rates.

1.2. Organization

The rest of the paper is organized as follows. Section 2 provides background on
the standard depolarizing channel, and Section 3 derives the proposed modified channel.
Section 4 experimentally analyzes the modified channel on the QML task on the Iris dataset.
Section 5 discusses the implications of our method, and Section 6 concludes with a summary
of our contributions and an outlook on future research directions.

2. Preliminaries

This section provides the preliminaries of quantum computing, quantum machine
learning, and depolarizing channel representation. Chapter 3 and 8 from [33] is an excel-
lent reference for quantum computing and quantum noise. Readers can refer to [40] for
quantum machine learning and quantum neural networks. In the following, we provide a
brief overview of the quantum state, quantum gates, depolarizing channel, and quantum
machine learning.

2.1. Quantum State and Quantum Gates

A two-dimensional complex vector represents the single qubit quantum state. The quan-
tum vector space for a single qubit in a computation basis space is spanned by the basis
vectors |0⟩ and |1⟩, which are represented as:

|0⟩ =
[

1
0

]
and |1⟩ =

[
0
1

]
. (1)

The general single qubit quantum state can be represented as:

|ψ⟩ =
[

α
β

]
= α |0⟩+ β |1⟩ , (2)

where α and β are complex numbers, and |α|2 + |β|2 = 1. Similarly, the quantum gates
are the unitary operators that act on the quantum state to perform quantum operations.
The Pauli matrices, X, Y, and Z, are the fundamental quantum gates in quantum computing.
These single-qubit gates are at the heart of quantum computing and are used to perform
quantum operations on the quantum state. Quantum gates and the quantum state form the
building blocks of quantum circuits. This circuit is measured at the end to obtain the final
output. Figure 1 shows an arbitrary single-qubit quantum circuit.

|0⟩ H · · · X

Figure 1. An arbitrary single qubit quantum circuit starting at |0⟩, applying a Hadamard gate, followed
by a sequence of unspecified single quantum gates, then a Pauli-X gate, and finally measurement.

The measurement operator O, also called observable, is used to measure the quantum
state at the end of the quantum circuit. A Hermitian matrix represents the measurement
operator. The measurement outcome is probabilistic and real, and the probability of
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obtaining a particular outcome is given by the Born rule [33]. Given a quantum state |ψ⟩
and a measurement operator O, the expectation value of O is given by :

⟨O⟩ = ⟨ψ| O |ψ⟩ . (3)

In addition to the pure states described above, quantum systems can also be in mixed
states. A mixed state is a statistical ensemble of pure states, and a density matrix represents
it. The density matrix ρ for a quantum state |ψ⟩ is given by:

ρ = |ψ⟩ ⟨ψ| . (4)

Similar to (3), the expectation value of the measurement operator O for a mixed state ρ is
given by:

⟨O⟩ = Tr{ρO}, (5)

where Tr denotes the trace operation. The density matrix representation is essential for
modeling quantum noise and errors in quantum systems. In practice, quantum systems
are often subjected to noise and errors that can affect the quantum state. The depolarizing
channel is a standard tool for modeling such noise in quantum systems.

2.2. Depolarization Channel Representation

The depolarization channel is a quantum channel that characterizes the loss of purity
in quantum information due to specific types of noise. This channel randomly applies
one of the Pauli operations or leaves the quantum state unchanged, each with certain
probabilities. As a result, the quantum state becomes more mixed. The depolarization
channel is important in quantum computing for modeling errors and understanding how
quantum information degrades in real-world quantum systems. The standard expression
of the depolarizing channel E for a single qubit is given by:

ρ′ = E(ρ) = (1 − p)ρ +
p
3
(XρX + YρY + ZρZ) (6)

where p is the depolarization rate; and X, Y, and Z are the Pauli matrices, for the X, Y,
and Z quantum gates, respectively.

Equation 6 implies that with probability (1 − p), the qubit state remains unchanged,
and with probability p, it is subjected to equal mixtures of bit-flip, phase-flip, and both bit
and phase-flip errors.

We can represent (6) using Kraus operators as:

ρ′ = K0ρK†
0 + K1ρK†

1 + K2ρK†
2 + K3ρK†

3 = ∑
i

KiρK†
i , (7)

where
K0 =

√
1 − pI, K1 =

√
p
3 X, K2 =

√
p
3 Y, K3 =

√
p
3 Z,

and I is an identity matrix. As mentioned in the previous section, modeling such noise
for practical applications is computationally expensive when we have limited hardware
resources. We propose a modified representation of the depolarizing channel to address this
challenge and improve the efficiency of simulating depolarization noise. We aim to reduce
the computational complexity of the depolarization channel while maintaining its accuracy
and effectiveness in modeling quantum noise. This improvement will enable more efficient
and scalable simulations of quantum circuits under depolarization, advancing capabilities
in the NISQ era. In Section 3, we derive an alternative representation of this channel.

2.3. Quantum Machine Learning

Quantum Machine Learning is an emerging field that combines quantum computing
and machine learning to develop quantum algorithms for solving computationally hard
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problems. It leverages the principles of quantum mechanics to enhance the performance
of machine learning models, offering the potential to solve computationally intractable
problems more efficiently than classical methods [40,41]. A parameterized quantum circuit
model also called a variational circuit, can be trained as a QML model. The variational
quantum circuit model is a QML model represented by a quantum circuit [40,42]. The model
f is expressed mathematically as:

fθ(x) = ⟨ψ(x, θ)| O |ψ(x, θ)⟩ (8)

Here, |ψ(x, θ)⟩ represents a quantum state, which is generated by the parameterized
quantum circuit U(x, θ). This circuit includes input vector x and trainable parameters θ
that can be optimized during training [43]. For a quantum system with n qubits, the cir-
cuit U(x, θ) begins with a set of quantum gates starting from an initial state, typically
|0⟩⊗n [41]. The following equation can define the connection between the PQC and the
unitary operation:

|ψ(x, θ)⟩ = U(x, θ) |0⟩⊗n (9)

During the model training process, the parameters θ are optimized to minimize the cost
function C(θ) using a classical optimization algorithm. The goal of the training process is
to find the optimal parameters θ∗ that minimize the cost function C(θ) and maximize the
model’s performance. The noise introduced in the quantum system can affect the model’s
performance. In this work, we will analyze the effect of depolarizing noise on the QML
model’s performance. In Section 4, we will experimentally evaluate the performance of the
QML model on the Iris dataset under the proposed modified depolarizing channel.

3. Derivation

In this section, we derive an alternative representation of the depolarizing channel
characterized by reduced matrix multiplication operations using only the X and Z Pauli
matrices. We will also define the Kraus operators for the modified depolarizing channel
and prove their validity. To establish the validity of the modified channel, we prove that
the modified channel is equivalent to the standard depolarizing channel, the density matrix
is preserved, and the Kraus operators are valid.

3.1. Alternative Expression of the Depolarizing Channel

We define the alternative representation of the depolarizing channel as:

ρ′m = (1 − 2p
3
)ρ +

2p
3

Z((ρX)TX)Z. (10)

In this representation, the state is partly retained with a coefficient of (1 − 2p
3 ) and partly

subjected to a specific combination of Pauli X and Z operations with a coefficient of 2p
3 .

This alternative expression is validated below to produce the same results as (6).

Theorem 1. Equations 6 and 10 are equivalent.

Proof. Consider the Pauli Matrices:

X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
, I =

[
1 0
0 1

]
.

Consider an arbitrary single-qubit density matrix ρ =

[
a b
c d

]
. Substituting ρ in (6)

and (10) and with trivial algebraic work, we get:

ρ′ = ρ′m =

[
−2a p

3 + 2ad p
3 −4b p

3 + b
−4c p

3 + c −2d p
3 + d

]
. (11)
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Hence, it can be seen that (6) and (10) are the same for a single qubit and for an arbitrary
ρ.

Next, we will define Kraus operators and prove their validity.

Theorem 2. The following Kraus operators are valid operators for (10).

K0 =
√

1 − 2p
3 I, K1 = i

√
2p
3 ZX.

Proof. From (10), one can immediately see that the corresponding Kraus operator corre-

sponding to the term (1 − 2p
3 )ρ is:

√
1 − 2p

3 I. Now let us consider the second terminology

of (10), i.e., 2p
3 Z((ρX)TX)Z, which enables us to re-write without loss of generality the

following:

2p
3

Z((ρX)TX)Z =
2p
3

ZXρXZ (∵ ρ = ρT and AXT = XA), for any A ∈ R2×2.

Next, we want a Kraus operator K1 s.t. K1ρK†
1 = ZXρXZ.

Thus, intuitively,

K1 ∝ ZX, K1 = xZX, (x is a scalar).

Following the Kraus operator completeness constraint, we can write:

K0K†
0 + K1K†

1 = I,

or
K1K†

1 =
2p
3
I. (12)

To satisfy (12), K1 must have a magnitude of
√

2p
3 . Therefore,

K1 =

√
2p
3

ZX.

We added “i” to correct a sign discrepancy while validating the operators, resulting in:

K1 = i

√
2p
3

ZX.

Next, we show that the derived Kraus operators are valid. We know that any set of
Kraus operators satisfies the completeness property. That is,

∑
i

K†
i Ki = K†

0K0 + K†
1K1 = I.

Solving each of the Kraus operators squared individually, we can get,

K†
0K0 = (1 − 2p

3 )I, K†
1K1 = 2p

3 I,

∴ K†
0K0 + K†

1K1 = (1 − 2p
3
)I+ 2p

3
I = I.

This proves that the Kraus operators proposed in Theorem 2 are valid Kraus operators.

It follows from (7) that we can re-define (10) as:

ρ′m = K0ρK†
0 + K1ρK†

1 . (13)
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In general, for a single qubit representation (6), (7), (10) and (13) yield the same result.
The above derivations show that the modified depolarization channel expression is

equivalent to the standard equation. We further proved that the proposed Kraus operators
for (10) are valid Kraus operators. The next step is to show that the matrix given by the
modified channel is a valid density matrix. We must prove that (10) is Hermitian, positive,
semi-definite, and has a unit trace.

Theorem 3. The matrix given by (10) is a valid density matrix.

Proof. First, we show that ρ′m is Hermitian.
A matrix is Hermitian if it equals its conjugate transpose, A = A†.
To show ρ′m is Hermitian, we calculate its conjugate transpose using its definition

given by (13):

(ρ′m)
† = (K0ρK†

0 + K1ρK†
1)

†

= (K0ρK†
0)

† + (K1ρK†
1)

†

= (K†
0)

†ρ†K†
0 + (K†

1)
†ρ†K†

1 (∵ (AB)† = B† A†)

= K0ρK†
0 + K1ρK†

1

= ρ′m.

Since K0 and K1 are constructed from unitary matrices and complex numbers, their
conjugate transposes are their adjoints. Hence ρ′m is Hermitian.

Second, we show that ρ′m is Positive Semi-Definite.
Given the Kraus operators K0 and K1, and density matrix ρ′m we want to show that for

any vector v, the expectation value v†ρ′mv is non-negative.
Starting with the expression for v†ρ′mv:

v†ρ′mv = v†(K0ρK†
0 + K1ρK†

1)v.

This expands to:
v†ρ′mv = v†K0ρK†

0v + v†K1ρK†
1v.

We can express each term as:

v†K0ρK†
0v = (K†

0v)†ρ(K†
0v),

v†K1ρK†
1v = (K†

1v)†ρ(K†
1v),

where w0 = K†
0v and w1 = K†

1v are vectors in the Hilbert space.
Since ρ is a positive semi-definite density matrix, we have for any vector w, w†ρw ≥ 0.

Applying this to w0 and w1:
(w0)

†ρw0 ≥ 0,

(w1)
†ρw1 ≥ 0.

Therefore, the sum is also non-negative:

v†ρ′mv = (w0)
†ρw0 + (w1)

†ρw1 ≥ 0,

which establishes that ρ′m is positive semi-definite.
Third, we show that ρ′m has Unit Trace ,i.e., Tr(ρ′m) = 1 .
The trace of ρ′m is given by:

Tr(ρ′m) = Tr(K0ρK†
0) + Tr(K1ρK†

1).
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Using the cyclic property of the trace, we can rewrite this as:

Tr(ρ′m) = Tr(K†
0K0ρ) + Tr(K†

1K1ρ).

Computing K†
0K0 and K†

1K1, we get:

K†
0K0 = (1 − 2p

3
)I,

K†
1K1 = −2p

3
I,

Thus, the trace of ρ′m simplifies to:

Tr(ρ′m) = Tr((1 − 2p
3
)Iρ)− Tr(

2p
3
Iρ).

As ρ is a density matrix with unit trace, Tr(ρ) = 1, this leads to:

Tr(ρ′m) = (1 − 2p
3
)− 2p

3
= 1 − 2p + 2p = 1.

Therefore, ρ′m maintains the unit trace property, as required for any density matrix.

Next, we derive the expression on how (10) evolves when the depolarization channel
is applied m times on a quantum state ρ that leads us to the following lemma.

Lemma 1. When a depolarization channel with p depolarizing rate is applied on a single qubit
quantum state ρ up to m times, the resulting quantum state is defined as follows up to first order
in p:

ρ′mm = (1 − 2mp
3

)ρ +
2mp

3
Z((ρX)TX)Z +O(p2). (14)

And, for an observable O, the expectation value is given as:

⟨O⟩ρ′mm
= Tr{Oρ′mm} = Tr{Oρ} − 2mp

3
Tr{Oρ} +

2mp
3

Tr{OZXTρTXZ}. (15)

In the following section, we verify that the difference between the results obtained
from (15) and the measurement of O on standard channel simulations are negligible. We
will demonstrate through experimental evidence that (10), (14) and (15) can be effectively
used for training machine learning models.

4. Experiment

We start this section by showing that the results from (15) are consistent with simu-
lation results of (6) for multiple values of m and p. Later, we empirically show that the
Depolarization rate up to threshold w does not affect the performance of the single qubit
QML model for the iris dataset. For the scope of this experiment, we are considering
the binary classification. We used the first, Setosa, and third, Virginia, flower classes and
only the first two features, Sepal length and sepal width. We experimented on Python
with Pennylane for quantum circuit simulations and quantum computation. Otherwise
mentioned, we used (10) for the depolarization channel and (15) for the depolarization
channel applied m times.

4.1. Quantum Circuit Behavior Analysis under Depolarization Channel up to m Times

Equation 15 posits that when a depolarization channel with a rate p is applied m times
to a quantum state ρ, the resultant state ρ′mm adheres to a predictable transformation that
maintains linearity with respect to p in the first order for small value of p. This suggests
that despite the iterative application of noise, the overall system’s behavior under the
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depolarization channel can be approximated linearly. We conducted a series of simulations
to substantiate this theory. We computed the expectation values for a single qubit with
varying depths—specifically, 3, 8, and 15 gates. The behavior is assessed across different
depolarization rates, p = [0.0, 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01],
and depolarization channel repetition, m = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

Figure 2 presents a scatter plot visualization for the expectation value differences
between (14) and the standard depolarization model as a function of both p and m for Pauli-
Z observables. A minimal deviation exists between the standard and modified channels’
expectation value for low depolarization rates across all gate counts. This alignment
implies that the modified equation retains fidelity to the standard model’s predictions in
the low-noise regime. There is a uniform trend across the plots where, for small values of p,
the difference in expectation values is negligible across all values of m. This insignificant
difference remains consistent as the number of gates increases, emphasizing the robustness
of the modified model. For a three quantum gates system, the difference between standard
and modified channel expectation values across all combinations is 0. When we increased
the gate count to 8, the difference had a mean of 0.00023 and a standard deviation of
0.00038. Only about 6% of computed differences were above 0.001. However, for a 15 gates
system, the difference has a mean of 0.00065 and a standard deviation of 0.00106. About
22% of computed differences were above 0.001. We present this information in Table 1. We
observe that the difference between the standard and modified channels’ expectation values
increases as the number of gates increases. Regardless, the difference remains minimal,
with the majority of values below 0.001. This analysis demonstrates that the modified
depolarization channel is a reliable and efficient alternative to the standard model for
simulating quantum circuits under depolarization noise.

(a) (b) (c)

Figure 2. Scatter plots present the difference between the standard channel and modified depolar-
ization channel expectation value. Each channel was applied to a quantum circuit with single qubit
gates of 3, 8, and 15, respectively. The result for 3 single qubit gates is presented in plot (a), while
plot (b) and (c) represent the results for 8 and 15 gates circuits, respectively. The x-axis of each plot
represents the number of times the noisy channel was applied and is given by m, while the y-axis
gives the varying depolarization rates.

Table 1. Comparison of Differences between Standard and Modified Channels expectation values.

Gate Count Mean Difference Standard Deviation % of Differences above 0.001

3 0 0 0%
8 0.00023 0.00038 6%

15 0.00065 0.00106 22%

Extending on these results, we analyze the training of the QML model on the Iris
dataset under the modified depolarization channel. First, we map the classic data into
quantum Hilbert space via a feature map.
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4.2. Data Encoding

We start by initializing the qubit in a computational basis |0⟩. Let ϕ : x 7→ ϕ(x) be a map-
ping from input space X to a quantum Hilbert Space R. Let us define ϕ(x) = RX(x1)RY(x0),
where x0 and x1 are features of the input vector, and

RY(x0) =

[
cos( x0

2 ) −sin( x0
2 )

sin( x0
2 ) cos( x0

2 )

]
,

RX(x1) =

[
cos( x1

2 ) −isin( x1
2 )

−isin( x1
2 ) cos( x1

2 )

]
,

are rotational single qubit quantum gates. We chose the angle encoding scheme because it
linearly separates input data in the Bloch Sphere better than amplitude encoding, as shown
in Figure 3.

(a) (b)

Figure 3. Feature Mapping of the Iris dataset using Amplitude Encoding and Rotational encoding
method. The Rotational encoding scheme, a combination of RX and RY, provides better mapping
results for the classification problem. The red color represents Class 1, the blue color represents Class
2, and the green color represents Class 3. (a) Bloch Sphere representation of the quantum states
obtained by Amplitude encoding of the features vectors. (b) Bloch Sphere representation of the
quantum states obtained by Angle encoding of the features vectors.

Motivated by the result in Figure 4, we choose RX, RY rotational gates for feature
encoding. Thus, for an input vector x, the data-encoded state is defined as:

|ψ⟩ = ϕ(x) |0⟩ = RX(x1)RY(x0) |0⟩ . (16)

Our learning circuit consists of the encoding and variational layers with trainable
parameters. In the next section, we describe this variational circuit.

4.3. Variational Layers

Similar to the encoding scheme, we applied a series of variational gates (RY and RX
with parameters) whose parameters θ can be optimized during training. For N trainable
parameters θ, we define the operation of Variational layers U as:

U(θ) =
N

∏
i=1

Gatei(θi), (17)

where Gatei(θi) is either an RY or RX gate with parameter θi. Thus, we can define a
variational circuit as:

|Ψ⟩ = U(x, θ) = U(θ) |ψ⟩ . (18)

Let ρ = |Ψ⟩ ⟨Ψ| be a density matrix. The system undergoes evolution through a
depolarization channel. This channel, denoted as E(ρ), transforms the state be ρ of the
qubit by mixing it towards a maximally mixed state as the depolarization rate p increases
as given by (6) and (10).
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Figure 4. Various encoding schemes for single qubits using the rotational encoding. The combination
of RZ and RX gates provides the best mapping for binary classification. The red color represents
Class 1, the blue color represents Class 2, and the green color represents Class 3.
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Let this state ρ′. Now we measure an observable Pauli−Z =

[
1 0
0 −1

]
matrix to get a

quantum machine learning model that can be defined as:

f (x, θ) = Tr{Zρ′}. (19)

In the following section, we train this QML model on the Iris dataset under a modified
depolarization channel and discuss the results.

4.4. Training

We trained the model for various values of m = [1, 3, 5, 10, 15] and p = [0.0, 0.001, 0.005,
0.01, 0.05, 0.08, 0.1, 0.5]. This wide range of values was selected to understand the model’s
behavior under varying noise levels and circuit depths through an empirical trial-and-error
approach. The initial learnable parameters were chosen randomly, a common practice
in machine learning to break symmetry and ensure diverse initial weights. We used the
Adam optimizer because it effectively handles sparse gradients on noisy problems [44].
We determined through empirical testing that a step size of 0.1 effectively balanced con-
vergence speed and stability. We used the standard square loss as the loss function and a
parameter-shift rule to compute the gradients. The parameter-shift rule provides an ana-
lytical method to estimate gradients of quantum circuits, well-suited for training models
involving quantum components in the NISQ era when traditional backpropagation is not
feasible [45]. We trained for 30 epochs for each combination of p and m based on empirical
observations of the model’s convergence speed and performance. The script ran for approx.
3842 seconds to train the model on an M1 pro chip with 10 cores and 32 GB memory for
the standard depolarization channel and approximately 2492 seconds for the modified
depolarization channel. We discuss the gain in computational efficiency in Section 5.

The pictorial representation of the depolarization noise at each layer of the circuit and
its influence on the QML model training is presented in Figure 5. The decision boundaries
in the figure’s right column illustrate the model’s behavior across varying noise and circuit
depth levels. The blue data points are from the Setosa class, while the red points represent
the Virginia class. Since the possible measurement values for Z observable are between −1
and 1, we labeled Setosa as −1 and Virginia as 1. The decision boundary is the line that
separates the two classes. Similarly, the blue decision boundary represents the model’s
prediction for the Setosa class, while the red represents the Virginia class. We observe
that with an increase in circuit depth, while the expressivity of the model may enhance,
there is a concurrent increase in its vulnerability to noise, adversely affecting the quality of
the decision boundary. Notably, the model’s performance appears to be robust for circuit
depths ranging from 1-5. The model can create a decision boundary at a depth of 5, even
when the depolarization rate is 0.1 or at a depth of 15 for a 0.05 error rate. To determine the
impact of noise on model training, we can analyze the training dynamics of the model as
shown in the left column of Figure 5. The graphs display the model’s accuracy and loss
over 30 epochs for varying noise levels and circuit depths. The results indicate that the
model’s performance is consistent across all circuit depths for noise levels up to 0.5. This
consistent performance of the model at lower noise levels across all circuit depths indicates
that QML models can be robust to noise up to a certain threshold.

The model has difficulty making accurate predictions, even with one or three train-
able gates when the noise level is 0.5 or higher. This indicates a possible threshold for both
circuit depth and noise level that maximizes QML model performance. In our experiments,
reaching a plateau at a depth of five suggests that the model’s capacity for feature represen-
tation may be sufficiently saturated by a depth of five. Beyond this point, we observed a
decline in precision, F1 score, and accuracy. These results suggest that while QML models
exhibit robustness in lower noise environments and at shallower circuit depths, their
performance diminishes with increased circuit complexity and higher noise levels.

In the next section, we discuss the advantages and limitations of a modified depolar-
ization channel and the trade-off between model complexity and noise resilience.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 5. Experimental results for decision boundary evolution presented in the right column and
training dynamics in the left column for a QML model on the Iris dataset, with varied noise levels (p)
and depolarization channel applied up to (m) times. The decision boundaries are plotted for depths
of 1, 3, 5, 10, and 15, at noise levels ranging from 0.0 to 0.5. The results across rows are presented in
chronological order in circuit depth. Accuracy and loss graphs display the model’s performance over
30 epochs, highlighting the impact of noise rate and circuit depth on learning efficacy.
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5. Discussions

We argue that (10) and (15) provide the computation advantage for simulating depo-
larization noise. As long as p is small, similar to (15), we can define the density matrix of a
system under depolarization channel up to m times for (6) as follows:

ρ′m = (1 − mp)ρ +
mp
3

(XρX + YρY + ZρZ) +O(p2). (20)

The expectation value of an observable O can be defined as:

⟨O⟩ρ′m = Tr{Oρ′m} = Tr{Oρ} − mpTr{Oρ} + mp
3

[Tr(OXρX) + Tr(OYρY) + Tr(OZρZ)]. (21)

We studied to analyze the computational efficiencies of two depolarizing channel
models applied to quantum states. These models were given by (6) and (10). We focused
on the matrix multiplication overhead and the operational requirements, specifically using
Pauli gates.

Our findings suggest that the standard depolarizing channel, given by (6) and (20),
requires a higher computation. It requires six matrix multiplications for a single state
evolution and an additional four for computing expectation values, as shown in (21),
totaling ten multiplications. This approach utilizes (X, Y, Z) Pauli gates. The use of all
Pauli gates can introduce complexity in gate operations and potential errors in practical
quantum computing environments.

On the other hand, the modified depolarizing channel, given by (10) and (14), presents
an efficient alternative. It requires only four matrix multiplications for a single state
evolution and two additional ones for expectation value computations, according to (15),
totaling six multiplications. The modified model also eliminates the need for direct Pauli
Y−gate applications, thereby simplifying the operational framework. Let us consider that
n is the number of qubits in a system. Since the quantum state space grows exponentially,
let d = 2n represent the dimension of ρ. If we assume the computational complexity
of matrix multiplication generally scales at O(d3), the standard depolarizing channel
requires O(10d3) operations, while the modified channel requires O(6d3) operations.
Although the overall time complexity is the same due to the exponential nature of the
complexity, in practice, the modified model would still be faster due to the difference
in time complexity coefficients. As the number of qubits increases, the computational
overhead for both models will grow exponentially. However, the modified model will
always have a lower computational overhead than the standard model due to the fewer
matrix multiplications required.

In practical scenarios like cloud-based quantum computing environments, users often
face lengthy queues, leading to extended wait times. These queues usually span for hours to
execute a single operation. By reducing the matrix multiplications, our approach effectively
reduces the computational load by at least 16 multiplication and 8 addition operations.
Considering that a typical user might only perform one operation per hour on real quantum
hardware due to these queuing constraints, our method could result in substantial time
savings. This makes it ideal for quantum algorithms where efficiency and gate operation
minimization are essential.

We further argue that we can extend the modified channel to train the QML model.
The results on QML model behavior demonstrate the nuanced interplay between circuit
depth, noise levels, and the model’s performance. The results suggest that there exists
a level of quantum circuit complexity where the representational power of the model is
optimal. However, as we extend the circuit depth beyond this optimal point, we observe
diminishing returns in model performance, highlighting a critical trade-off between the
expressiveness of deeper quantum circuits and their susceptibility to noise.
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6. Conclusions

In this study, we proposed a modified depolarization channel that reduces the compu-
tational overhead and operational complexity compared to the standard depolarization
channel. The modified channel requires only two Kraus operators and eliminates the need
for direct Pauli Y-gate applications. By reducing the number of matrix multiplications,
the modified channel offers a more efficient alternative for simulating depolarization noise.

The significance of the modified channel lies in its ability to reduce computational
overhead and operational complexity. It requires only four matrix multiplications for state
evolution and two additional ones for expectation value computations. This reduction in
computational load can lead to substantial time savings, particularly in practical scenarios
such as cloud-based quantum computing environments with lengthy queues.

Furthermore, we demonstrated that we can efficiently extend the modified channel to
train QML models. Our experiments on the Iris dataset classification showed that as circuit
complexity and noise levels increase, the performance of the QML model diminishes. This
highlights the critical trade-off between the expressiveness of deeper quantum circuits and
their susceptibility to noise.

It is important to note that while our work applies only to small values of p, we believe
it lays a solid foundation for future research. Future research will focus on expanding this
approach to multi-qubit systems and exploring its effectiveness with higher values of p. We
believe that our work will inspire further research in this area and contribute to advancing
quantum computing and quantum machine learning.
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2. Havlíček, V.; Córcoles, A.D.; Temme, K.; Harrow, A.W.; Kandala, A.; Chow, J.M.; Gambetta, J.M. Supervised learning with

quantum-enhanced feature spaces. Nature 2019, 567, 209–212.
3. Liu, Y.; Arunachalam, S.; Temme, K. A rigorous and robust quantum speed-up in supervised machine learning. Nat. Phys. 2021,

17, 1013–1017.
4. Sajjan, M.; Sureshbabu, S.H.; Kais, S. Quantum machine-learning for eigenstate filtration in two-dimensional materials. J. Am.

Chem. Soc. 2021, 143, 18426–18445.
5. Cai, X.D.; Wu, D.; Su, Z.E.; Chen, M.C.; Wang, X.L.; Li, L.; Liu, N.L.; Lu, C.Y.; Pan, J.W. Entanglement-based machine learning on

a quantum computer. Phys. Rev. Lett. 2015, 114, 110504.
6. Ciliberto, C.; Herbster, M.; Ialongo, A.D.; Pontil, M.; Rocchetto, A.; Severini, S.; Wossnig, L. Quantum machine learning: A

classical perspective. Proc. R. Soc. A Math. Phys. Eng. Sci. 2018, 474, 20170551.
7. Farhi, E.; Goldstone, J.; Gutmann, S. A quantum approximate optimization algorithm. arXiv 2014, arXiv:1411.4028.
8. McClean, J.R.; Romero, J.; Babbush, R.; Aspuru-Guzik, A. The theory of variational hybrid quantum-classical algorithms. New J.

Phys. 2016, 18, 023023.
9. Rebentrost, P.; Schuld, M.; Wossnig, L.; Petruccione, F.; Lloyd, S. Quantum gradient descent and Newton’s method for constrained

polynomial optimization. New J. Phys. 2016, 21, 073023. https://doi.org/10.1088/1367-2630/ab2a9e.
10. Bittel, L.; Kliesch, M. Training Variational Quantum Algorithms Is NP-Hard. Phys. Rev. Lett. 2021, 127, 120502. https://doi.org/10.1

103/PhysRevLett.127.120502.
11. Rebentrost, P.; Lloyd, S. Quantum computational finance: Quantum algorithm for portfolio optimization. arXiv 2018,

arXiv:1811.03975.

https://doi.org/10.1088/1367-2630/ab2a9e
https://doi.org/10.1103/PhysRevLett.127.120502
https://doi.org/10.1103/PhysRevLett.127.120502


Mathematics 2024, 1, 0 16 of 17

12. Broadbent, A.; Schaffner, C. Quantum cryptography beyond quantum key distribution. Des. Codes Cryptogr. 2015, 78, 351–382.
https://doi.org/10.1007/s10623-015-0157-4.

13. Padamvathi, V.; Vardhan, B.; Krishna, A.V. Quantum Cryptography and Quantum Key Distribution Protocols: A Survey. In
Proceedings of the 2016 IEEE 6th International Conference on Advanced Computing (IACC), Bhimavaram, India, 27–28 February
2016; pp. 556–562. https://doi.org/10.1109/IACC.2016.109.

14. Lai, H.; Luo, M.; Pieprzyk, J.; Zhang, J.; Pan, L.; Li, S.; Orgun, M. Fast and simple high-capacity quantum cryptography with error
detection. Sci. Rep. 2017, 7, 46302. https://doi.org/10.1038/srep46302.

15. Pirandola, S.; Andersen, U.; Banchi, L.; Berta, M.; Bunandar, D.; Colbeck, R.; Englund, D.; Gehring, T.; Lupo, C.; Ottaviani, C.;
et al. Advances in Quantum Cryptography. Adv. Opt. Photonics 2020, 12, 1012–1236. https://doi.org/10.1364/AOP.361502.

16. Harrow, A.; Montanaro, A. Quantum computational supremacy. Nature 2017, 549, 203–209. https://doi.org/10.1038/nature23458.
17. Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2018, 2, 79.
18. Du, Y.; Hsieh, M.; Liu, T.; You, S.; Tao, D. Learnability of quantum neural networks. PRX Quantum 2021, 2, 040337. https://doi.org/10.1

103/PRXQuantum.2.040337.
19. Khanal, B.; Rivas, P.; Orduz, J.; Zhakubayev, A. Quantum machine learning: A case study of grover’s algorithm. In Proceedings

of the 2021 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA,
15–17 December 2021; IEEE: Piscateville, NJ, USA, 2021; pp. 79–84.

20. Cross, A.; Smith, G.; Smolin, J. Quantum learning robust against noise. Phys. Rev. A 2014, 92, 012327. https://doi.org/10.1103/
PhysRevA.92.012327.

21. Du, Y.; Hsieh, M.; Liu, T.; Tao, D.; Liu, N. Quantum noise protects quantum classifiers against adversaries. Phys. Rev. Res. 2021,
3, 023153. https://doi.org/10.1103/PhysRevResearch.3.023153.

22. Huang, J.; Tsai, Y.; Yang, C.; Su, C.; Yu, C.M.; Chen, P.Y.; Kuo, S.Y. Certified Robustness of Quantum Classifiers against Adversarial
Examples through Quantum Noise. In Proceedings of the ICASSP 2023–2023 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023.

23. West, M.T.; Tsang, S.L.; Low, J.S.; Hill, C.D.; Leckie, C.; Hollenberg, L.C.; Erfani, S.M.; Usman, M. Towards quantum enhanced
adversarial robustness in machine learning. Nat. Mach. Intell. 2023, 5, 581–589.

24. Lu, S.; Duan, L.M.; Deng, D.L. Quantum adversarial machine learning. Phys. Rev. Res. 2020, 2, 033212.
25. Skolik, A.; Mangini, S.; Bäck, T.; Macchiavello, C.; Dunjko, V. Robustness of quantum reinforcement learning under hardware

errors. EPJ Quantum Technol. 2023, 10, 8. https://doi.org/10.1140/epjqt/s40507-023-00166-1.
26. Bai, T.; Luo, J.; Zhao, J.; Wen, B.; Wang, Q. Recent advances in adversarial training for adversarial robustness. arXiv, 2021,

arXiv:2102.01356.
27. Kang, D.; Sun, Y.; Brown, T.; Hendrycks, D.; Steinhardt, J. Transfer of adversarial robustness between perturbation types. arXiv,

2019, arXiv:1905.01034.
28. Khanal, B.; Rivas, P. Evaluating the Impact of Noise on Variational Quantum Circuits in NISQ Era Devices. In Proceedings of the

International Conference on Emergent and Quantum Technologies (ICEQT 2023), Las Vegas, NV, USA, 24–27 July 2023; pp. 1–7.
29. Huang, H.Y.; Broughton, M.; Mohseni, M.; Babbush, R.; Boixo, S.; Neven, H.; McClean, J.R. Power of data in quantum machine

learning. Nat. Commun. 2021, 12, 2631.
30. Wang, X.; Du, Y.; Luo, Y.; Tao, D. Towards understanding the power of quantum kernels in the NISQ era. Quantum 2021, 5, 531.
31. Khanal, B.; Rivas, P.; Orduz, J. Kernels and Quantum Machine Learning. In Proceedings of the International Conference on

Emergent and Quantum Technologies (ICEQT 2022), Las Vegas, NV, USA, 25–28 July 2022; pp. 1–15.
32. Piskor, T.; Reiner, J.; Zanker, S.; Vogt, N.; Marthaler, M.; Wilhelm, F.K.; Eich, F.G. Using gradient-based algorithms to determine

ground-state energies on a quantum computer. Phys. Rev. A 2022, 105, 062415. https://doi.org/10.1103/PhysRevA.105.062415.
33. Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2010.
34. Wootton, J.R.; Loss, D. High threshold error correction for the surface code. Phys. Rev. Lett. 2012, 109, 160503. https://doi.org/10.110

3/PhysRevLett.109.160503.
35. Fowler, A.G.; Mariantoni, M.; Martinis, J.M.; Cleland, A.N. Surface codes: Towards practical large-scale quantum computation.

Phys. Rev. A 2012, 86, 032324.
36. Gottesman, D. Stabilizer Codes and Quantum Error Correction; California Institute of Technology: Pasadena, CA, USA, 1997.
37. Urbanek, M.; Nachman, B.; Pascuzzi, V.R.; He, A.; Bauer, C.W.; de Jong, W.A. Mitigating depolarizing noise on quantum

computers with noise-estimation circuits. Phys. Rev. Lett. 2021, 127, 270502.
38. Cai, Z. Multi-exponential error extrapolation and combining error mitigation techniques for NISQ applications. Npj Quantum Inf.

2020, 7, 80. https://doi.org/10.1038/s41534-021-00404-3.
39. Haug, T.; Self, C.; Kim, M. Quantum machine learning of large datasets using randomized measurements. Mach. Learn. Sci.

Technol. 2023, 4, 015005. https://doi.org/10.1088/2632-2153/acb0b4.
40. Schuld, M.; Petruccione, F. Machine Learning with Quantum Computers; Springer: Berlin/Heidelberg, Germany, 2021.
41. Biamonte, J.; Wittek, P.; Pancotti, N.; Rebentrost, P.; Wiebe, N.; Lloyd, S. Quantum machine learning. Nature 2017, 549, 195–202.
42. Wittek, P. Quantum Machine Learning: What Quantum Computing Means to Data Mining; Academic Press: Cambridge, MA,

USA, 2014.
43. Benedetti, M.; Lloyd, E.; Sack, S.; Fiorentini, M. Parameterized quantum circuits as machine learning models. Quantum Sci.

Technol. 2019, 4, 043001.

https://doi.org/10.1007/s10623-015-0157-4
https://doi.org/10.1109/IACC.2016.109
https://doi.org/10.1038/srep46302
https://doi.org/10.1364/AOP.361502
https://doi.org/10.1038/nature23458
https://doi.org/10.1103/PRXQuantum.2.040337
https://doi.org/10.1103/PRXQuantum.2.040337
https://doi.org/10.1103/PhysRevA.92.012327
https://doi.org/10.1103/PhysRevA.92.012327
https://doi.org/10.1103/PhysRevResearch.3.023153
https://doi.org/10.1140/epjqt/s40507-023-00166-1
https://doi.org/10.1103/PhysRevA.105.062415
https://doi.org/10.1103/PhysRevLett.109.160503
https://doi.org/10.1103/PhysRevLett.109.160503
https://doi.org/10.1038/s41534-021-00404-3
https://doi.org/10.1088/2632-2153/acb0b4


Mathematics 2024, 1, 0 17 of 17

44. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
45. Schuld, M.; Bergholm, V.; Gogolin, C.; Izaac, J.; Killoran, N. Evaluating analytic gradients on quantum hardware. Phys. Rev. A

2019, 99, 032331.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Contribution
	Organization

	Preliminaries
	Quantum State and Quantum Gates
	Depolarization Channel Representation
	Quantum Machine Learning

	Derivation
	Alternative Expression of the Depolarizing Channel

	Experiment
	Quantum Circuit Behavior Analysis under Depolarization Channel up to m Times
	Data Encoding
	Variational Layers
	Training

	Discussions
	Conclusions
	References 

