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Abstract

Despite the mounting anticipation for the quantum revolution, the success of quantum machine learning (QML) in the noisy
intermediate-scale quantum (NISQ) era hinges on a largely unexplored factor: the generalization error bound, a cornerstone
of robust and reliable machine learning models. Current QML research, while exploring novel algorithms and applications
extensively, is predominantly situated in the context of noise-free, ideal quantum computers. However, quantum circuit (QC)
operations in NISQ-era devices are susceptible to various noise sources and errors. In this article, we conducted a systematic
mapping study (SMS) to explore the state-of-the-art generalization error bound for QML in NISQ-era devices and analyze
the latest practices in the field. Our study systematically summarizes the existing computational platforms with quantum
hardware, datasets, optimization techniques, and the proposed error bounds detailed in the literature. It also highlights the
limitations and challenges in QML in the NISQ era and discusses future research directions to advance the field. Using a
detailed Boolean operators query in five reliable indexers, we collected 544 papers and filtered them to a small set of 37 relevant
articles. This filtration was done following the best practice of SMS with well-defined research questions and inclusion and

exclusion criteria.

Keywords Quantum machine learning - Generalization error bound - NISQ devices - Quantum circuits

1 Introduction

In the field of machine learning, the fundamental theory of
learning from data (Abu-Mostafa et al. 2012), it is defined
that any model aims to learn an unknown target function
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f X - Y from a dataset D = {(x1, ¥1), ..., (Xn, yn)}
using a learning algorithm A. The algorithm produces a
hypothesis g from a hypothesis set H that approximates
f. In classical machine learning, the generalization error
or generalization gap is the difference between a model’s
performance on the training data and unseen data (Emami
et al. 2020; Jakubovitz et al. 2019; Nadeau and Bengio
1999). The true error E(g) = Plg(x;) # f(x;)] is the
expected difference between the hypothesis output g(x;) and
the actual output f(x;),i = 1,..., N, and the empirical
error I@I(g) = % Zf\;l[[g(xi) # f(x;)] is the average dif-
ference between true label y; and predicted label y; over
the dataset. In this context, g(x) is the model’s current best
approximation of f and IP[-] is the probability of an event. A
bound on the generalization error provides an upper limit to
the model’s error rate on unseen data. It is typically derived
using statistical learning theory and depends on factors such
as the complexity of the model (hypothesis class), the number
of examples in the training data, and the randomness in the
data generation process. Hoeffding’s inequality (Hoeffding
1994) gives a common form of the generalization bound in
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classical machine learning. Hoeffding’s inequality provides
an error bound for f based on D (Duchi n.d.) by giving the
deviation probability of ﬂ:](g) from [E(g) as function of a pos-
itive tolerance € and total number of training samples N and
is given by

PlE(g) — F(g)| > €] < 2¢72N¢ (1)

This equation states that the probability that the absolute
difference between the in-sample and out-of-sample errors
being greater than € is less than or equal to 2¢ =2V <’ How-
ever, the effectiveness of this bound may be reduced or
invalidated when the underlying random variable is affected
by the noise, as is the case with NISQ devices (De Palma
et al. 2023; Du et al. 2021; Hakkaku et al. 2022). While
some noise is beneficial for classical machine learning (Nee-
lakantan et al. 2015), excessive noise in quantum systems
can limit the performance of QML algorithms (Bharti et al.
2021; Wang et al. 2021). To overcome this challenge, NISQ-
era hardware-related noise and QC operations-induced noise
must be considered when developing reliable QML models.

QML is an emerging field with great promise for rev-
olutionizing learning from data (Arunachalam and de Wolf
2017; Biamonte et al. 2017; Carleo et al. 2019; Wittek 2014).
It focuses on improving machine learning using quantum sys-
tems through a mathematical framework (Arunachalam and
de Wolf 2017). Several learning models (Arunachalam and
de Wolf 2017; Martin-Guerrero and Lamata 2022) have been
proposed in QML, including probably approximately correct
(PAC) that explores how quantum resources, such as superpo-
sition and entanglement, can improve the sample complexity
or computational efficiency of learning classical concepts
(Rocchetto et al. 2019). However, our ability to harness QML
capabilities is particularly impacted by the practical limita-
tions of NISQ devices, which are presently the most advanced
quantum computers available (Bharti et al. 2021; Preskill
2018). Variational quantum computing (Cerezo et al. 2021)
uses imperfect NISQ-era devices for computation. The vari-
ational quantum circuit (VQC) model is a QML model that
can be described as a quantum circuit model (Schuld and
Petruccione 2021; Wittek 2014) and is defined as

Jo(x) = (Y (x, OHIMIY (x,0)). 2

with | (x, 6)) being a quantum state prepared by a param-
eterized quantum circuit (PQC) U(x,6) with trainable
parameters 6 (Benedetti et al. 2019) and M a measurement
operator. On a system with n number of qubits, the circuit
U (x, 0) initiates with a sequence of quantum gates from an
initial state predominantly |0)®" (Biamonte et al. 2017). The
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relationship between the PQC and the unitary is crucial and
can be defined as follows:

¥ (x,0)) = U(x, 0)]0)®" A3)

Though theoretically promising, studies have shown that
deep quantum circuits are especially vulnerable to noise,
accumulating gate errors and experiencing significant deco-
herence (Alam and Ghosh 2022; Wang et al. 2022). In
addition, the benefits of quantum kernels (Heyraud et al.
2022; Kiibler et al. 2021; Schuld 2021; Thanasilp et al. 2024,
Wang et al. 2021) are reduced in the presence of large sys-
tem noise and a higher number of measurements (Huang et al.
2021; Preskill 2018; Thanasilp et al. 2024; Wang et al. 2021).
Furthermore, the limited data available for training quantum
models becomes even more challenging to work with due
to the noise inherent in NISQ devices, leading to potential
misdirection in learning and increasing generalization error
(Schuld and Killoran 2019).

The implication is clear: algorithms implemented on
NISQ devices are susceptible to considerable noise and may
not work as expected (Bharti et al. 2021; Wang et al. 2021),
causing a divergence between theoretical predictions and
empirical results. To fully exploit the potential of QML
models in the NISQ era, it is crucial to develop a deep under-
standing of these constraints and establish a robust error
bound to account for the impact of the existing system noise
and hardware limitations. Consequently, a dedicated study to
define and understand the generalization error bound (GEB)
for QML in the NISQ era is not merely a theoretical inter-
est but a critical necessity for the practical realization of the
potential of quantum computation.

In this paper, we investigate the GEB in supervised QML
and its validity in the NISQ era. Additionally, we seek to
explore the types of algorithms used in QML research, the
platform of choice for these algorithm implementations, opti-
mization techniques, datasets, and whether most of the work
is theoretical or experimental. Further, we investigate the
effectiveness of these QML models by presenting their per-
formance metrics on classical benchmark datasets such as
MNIST, Fashion MNIST, and IRIS, along with the num-
ber of classes analyzed and the context of the experiments,
whether conducted in noisy or ideal settings, as described in
Section 3.1.1. We conducted a systematic literature review
(SLR) designed as an SMS to achieve these objectives.
Research has demonstrated that SMS is a valuable tool for
organizing and categorizing existing discoveries while also
identifying limitations and gaps for improvements (Kitchen-
hametal. 2011). This paperis structured as follows: Section 2
provides an overview of the methodology for SLR, including
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its protocols. Section 3 presents the result of this SLR, and
Section 4 provides the discussion. Finally, in Section 5, we
conclude this review with a summary of our findings and
their implications.

2 Methodology

SLR in this study followed the Kitchenham et al. (2011)
process, which consists of three phases: planning, conduct-
ing, and reporting. This approach helped us to systematically
identify, analyze, evaluate, and interpret the literature to
answer the proposed research questions. In the planning
phase, we selected the database for the literature search
and defined research questions along with the inclusion and
exclusion criteria. We also designed the boolean algebra for
the search query. The conducting phase involved identifying
relevant articles based on the defined protocols. Finally, the
results were interpreted and reported in a structured format
in the reporting stage.

For this review, we used two applications: “Publish or
Perish”! and “Zotero”.> “Publish or Perish” was used for
searching the literature across multiple platforms, while
“Zotero” was used for organizing the literature, checking for
duplicates, and generating a bibliography. Additionally, we
used Microsoft Excel to keep track of our progress during
various stages of the review.

We conducted a systematic literature search across five
academic databases to identify relevant papers for our study.
The databases included Google Scholar, Scopus, ACM Digi-
tal Library, IEEE Xplore, and Semantic Scholar. We collected
a total of 678 articles from various platforms, which, after
accounting for overlaps and duplicates, resulted in 534
unique publications. We added 10 articles that did not appear
in the initial articles but were relevant to this study. These
articles were hand-picked during the snowballing process.
Among databases, Google Scholar had the highest number
of relevant papers, totaling 183, after removing duplicates,
representing 33.7% of the entire collection. ACM Digital
Library and Semantic Scholar followed, with 108(20%) and
106(19.5%) papers, respectively. Scopus sourced 79 articles,
making up 14.54%, while IEEE Xplore contributed 58 arti-
cles, which was 10.68% of the total. About 1.6% of articles
were manually added. Additionally, we used query strings
“Quantum” OR “quantum” AND “Quantum Machine Learn-
ing” AND “error bound” AND “noisy” AND “NISQ” or
“Quantum Machine Learning” AND “error bound” to search

! https://harzing.com/resources/publish-or-perish/

2 https://www.zotero.org/
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Fig. 1 The Prisma diagram provides the literature counts at various
stages of the SLR process. From the collected paper count of 688, the
filtration steps excluded 144 papers, and the eligibility steps excluded
507 papers, resulting in 37 papers for the analysis

for the relevant literature from 2010 to 2023. At the end of the
study, we identified 37 articles that met the inclusion crite-
ria. We summarized the identification and selection process
using the PRISMA diagram in Fig. 1.

Figures 2, 3, and 4 reveal key trends in the field’s research
practices. Figure2 shows an increase in publications num-
ber as the year progresses, suggesting a growing research
interest. However, only a few of these publications meet the
high standards for inclusion in this review, indicating rig-
orous selection criteria. Figure 3’s analysis of the databases
shows Google Scholar as the most significant source, but
Scopus and Google Scholar lead in quality, as they con-
tribute the most to the final paper selection. This suggests
these databases might have more relevant and higher-quality
papers. Lastly, Fig. 4 indicates a common trend of 2 — 5
authors per paper, pointing to collaboration in the field, and
highlights journal articles as the favored publication type,
suggesting a preference for formal, peer-reviewed research
channels over conference papers. This analysis highlights the
importance of research quantity and quality, the majority of
collaborative efforts, and a tendency toward standard publi-
cation types.
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Fig.2 a Bar graph presenting the number of publications per year from 2010 to 2023 among initially extracted papers. It is evident that the number
of publications has increased over the years, mainly in the last 5 years. b Bar graph for the number of papers extracted per year among the final

papers

2.1 Planning

The study primarily focuses on current practice in QML,
possible developments, and the difficulties that accompany
it, especially regarding the generalization error bound. We
formed a team of six members to ensure the study maintains
rigor and avoids biases. These members had specialized

backgrounds in machine learning, quantum computing, and
quantum machine learning. This collective expertise ensured
comprehensive coverage and allowed us to view the articles
from multiple directions.

The QML field has gathered much attention in the last
decade or so. For this reason, we limited our search from 2010
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Fig. 3 a Figure showing the number of papers extracted from each
database source. Google Scholar was the most significant source for
this study. b Bar graph for the number of papers extracted from each
publisher among the final papers. We can see that the majority of the
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papers were published in ArXiv. This graph represents the final papers
after the filtration process. Naturally, it is expected that the platform
with free access to full-text articles would have the most papers
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Fig. 4 a Bar graph for a count of authors per paper. For most papers,
we can see a collective research effort trend of 2 — 5 authors per paper.
b Bar graph for the number of papers per publication type. The major-

to 2023.3 We selected the dataset mentioned above because
these databases provided access to a large number of articles
with full-length searches or customized searches of an arti-
cle and were available for free via the licenses held by the
University. Once the relevant research papers were collected,
the next step involved meticulously extracting the informa-
tion. We focused on details like the authors, publication year,
venue, research approach, tools and techniques employed,
a platform used for quantum computation, outcomes, chal-
lenges, datasets and data encoding strategy, optimization
technique, and further research suggestions. This structured
extraction method ensured that the data we gathered was
comprehensive and easy to interpret and analyze.

2.2 Research questions

In this article, we focused on answering the following ques-
tions:

1. RQ1: What is the current state-of-the-art generalization
error bound for quantum machine learning applied to
noisy intermediate-scale quantum (NISQ) devices?

2. RQ2: What are the current standard practices in QML in
the context of NISQ?

3. RQ2a. Is the majority of the research focused on theoret-
ical, empirical, or other approaches?

4. RQ2b. How is success measured in QML research: com-
plexity, accuracy, training time, or other metrics?

5. RQ2c. What types of datasets are commonly used in
QML research: real, synthetic, or others?

3 Some of the recently published articles were included as part of the
snowballing phase.
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ity of the papers were journal articles. This suggests a preference for
formal, peer-reviewed research channels over conference papers

journalArticle

6. RQ3. What computing platforms/devices are used in the
experiments?

2.3 Inclusion and exclusion criteria

We defined the following inclusion and exclusion criteria
for filtering the extracted article. The filtration process was
divided into three phases: phase 1, phase 2, and phase 3
(which shall be discussed later). Any article satisfying at least
two inclusion criteria in phase 1 moved to phase 2. Also, any
article satisfying at least one exclusion criterion was directly
excluded in phase 1.

Inclusion criteria:

1. Topic: Papers focused on QML in the context of the NISQ
era.

2. Error bounds: Papers discussing Hoeffding’s error bound
or related error bounds or noise for QML in NISQ.

3. Research approach: Papers presenting theoretical, empir-
ical, or other research approaches relevant to the research
questions.

Exclusion criteria:

1. Language: Papers not published in English.

2. Topic: Papers not focused on QML or NISQ devices.

3. Error bounds: Papers that do not discuss generalization
error bound, noise in NISQ, or related error bounds.

4. Relevance: Papers that do not provide sufficient informa-
tion or context to address the research questions.

5. Publication type: Non-peer-reviewed articles, such as
opinion pieces, editorials, or preprints without substantial
evidence or contribution to the field or Book.

@ Springer
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6. Duplicates: Papers that have already been included in the
review.

2.4 Search process and query string

The initial phase of this review involved gathering relevant
publications as described previously. The search process
consisted of formulating search queries tailored to each
database and successively filtering out papers based on inclu-
sion and exclusion criteria until final selections were made.
We defined the following keywords to aid the search pro-
cess: quantum machine learning, generalization error; NISQ
devices, quantum circuits. With these keywords defined, we
constructed search queries for various platforms as follows:

1. Google Scholar: (all fields: Quantum OR quantum AND
Quantum Machine Learning AND error bound AND data
AND noisy AND NISQ. Date: 2010 — 2023)

2. Scopus: (title, abstract, and keywords: Quantum Machine
Learning AND noisy AND NISQ AND PUBYEAR >
2010 AND PUBYEAR <= 2023)

3. ACM Digital Library: (title: quantum) AND (Abstract:
quantum machine learning) AND (E-Publication Date:
(01/01/2010 TO 03/31/2023))

4. IEEE Xplore: (all metadata: quantum machine learn-
ing) AND (Abstract: quantum machine learning) AND
(Abstract: bound). Date:2010 — 2023.

5. Semantic Scholar: (all fields: Quantum Machine Learn-
ing AND bound AND NISQ, Date: 2010 — 2023)

From these searches, we identified 688 papers. Upon
removing duplicates, we had 534 unique articles. Table 1
details the search counts for each platform based on the for-
mulated queries and fields. Figure (2, 3, 4) visually illustrates
the publication rates, source-specific paper counts, and dis-
tribution of paper types.

Table 1 Search results from various sources

Source Field Result count (ini-
tial/filtered)

Google Scholar All fields 183

ACM Digital Title, abstract 108

Library

Semantic Scholar All fields 106

Scopus Title, abstract, keywords 79

IEEE Xplore Abstract 58

Snow balling 10

Duplicates 118

Article published before 2010 26

Total 688/544

@ Springer

The filtration and information extraction were divided into
the following phases:

Phase 1: At this stage, each paper was evaluated by two
members based solely on its title, abstract, and keywords
following the inclusion/exclusion criteria. Papers receiving at
least one approval proceeded to phase 2. During this process,
we removed 388 irrelevant papers and proceeded with 146
for phase 2.

Phase 2: In this phase, we addressed any inconsistencies
that had occurred in phase 1. We flagged that the decision
for an article is inconsistent if both the reviewers had differ-
ent decisions for a paper during the phase 1 review. Of the
146 papers, 46 had inconsistent decisions. Different team
members who had not previously worked on inconsistency
papers re-evaluated each of these papers using the inclu-
sion/exclusion criteria. This phase concluded with 23 of the
46 disputed papers advancing to phase 3, totaling 123 papers.

Phase 3: Each team member was assigned a subset of papers
and was tasked with thoroughly reading assigned papers and
determining their suitability for the review. They were there-
upon asked to decide if the paper should be included in the
study. By the end of this phase, 27 papers were deemed per-
tinent to our study.

Phase 4: Those who undertook comprehensive paper assess-
ments in phase 3 were then responsible for extracting key
data based on a predefined coding schema.

Snow balling: This process included adding the papers that,
for some reason, did not show up in the search result or
were filtered during the above phase but are relevant to the
research. We added 10 papers manually during the review
process.

With the final papers selected, we extracted the relevant
information from each paper. Table 2 presents the final list
of papers. In the next section, we present the results of our
analysis of these papers.

3 Result

In this section, we present the results of our SLR. We begin
by discussing the datasets and optimization techniques used
in QML research. We then present the performance metrics
of the QML models and the platforms used for the experi-
ments. We also discuss the research approach, generalization
and other relatable error bounds, and the experimental and
theoretical nature of the research.

3.1 Dataset

Table 3 shows a wide diversity in both the types of datasets
and optimization techniques used in QML research, offering
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Table2 List of final papers

Title Reference Published year Source Publisher
Robust classification with adiabatic Dencheyv et al. (2012) 2012 Semantic Scholar ArXiv
quantum optimization

Implementable quantum classifier Du et al. (2018) 2018 Google Scholar ArXiv
for nonlinear data

Towards quantum machine learning Huggins et al. (2019) 2019 Google Scholar ArXiv
with tensor networks

Error-mitigated data-driven circuit Hamilton and Pooser (2020) 2020 Scopus Springer
learning on noisy quantum hard-

ware

Quantum classifier with tailored Blank et al. (2020) 2020 Google Scholar Nature
quantum kernel

Quantum error mitigation with arti- Kim et al. (2020) 2020 IEEE IEEE
ficial neural network

The Born supremacy: quantum Coyle et al. (2020) 2020 Scopus NPJ Quantum Inform
advantage and training of an Ising

Born machine

Layerwise learning for quantum Skolik et al. (2021) 2021 Scopus Springer
neural networks

On the expressibility and overfitting Chen et al. (2021) 2021 ACM Quantum (ACM)
of quantum circuit learning

A rigorous and robust quantum Liu et al. (2021) 2021 Scopus Nature Physics
speed-up in supervised machine

learning

Robust quantum classifier with min- Park et al. (2021) 2021 Scopus 1IEEE
imal overhead

I-QER: an intelligent approach Basu et al. (2022) 2021 ACM ACM
towards quantum error reduction

Can noise on qubits be learned in Liang et al. (2021) 2021 Scopus 1IEEE
quantum neural network? A case

study on QuantumFlow

Power of data in quantum machine Huang et al. (2021) 2021 Scopus Nature communications
learning

Generalization in quantum machine Banchi et al. (2021) 2021 Semantic Scholar APS
learning: a quantum information

perspective

Quantum one-class classification De Oliveira et al. (2021) 2021 IEEE IEEE
with a distance-based classifier

Noise-induced barren plateaus in Wang et al. (2021) 2021 Google Scholar Nature
variational quantum algorithms

Encoding-dependent generalization Caro et al. (2021) 2021 Snow balling Quantum
bounds for parametrized quantum

circuits

The power of quantum neural net- Abbas et al. (2021) 2021 Snow balling Nature Communication
works

The inductive bias of quantum ker- Kiibler et al. (2021) 2021 Snow balling NeurIPS
nels

Towards understanding the power Wang et al. (2021) 2021 Scopus Quantum
of quantum kernels in the NISQ era

Problem-dependent power of quan- Du et al. (2022b) 2022 Snow balling ArXiv
tum neural networks on multi-class

classification

Theoretical error performance anal- Qi et al. (2023) 2022 Google Scholar Nature

ysis for variational quantum circuit-
based functional regression

@ Springer
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Table2 continued

Title Reference Published year Source Publisher
QOC: quantum on-chip training Wang et al. (2022) 2022 Semantic Scholar ACM
with parameter shift and gradient

pruning

Quantum  perceptron revisited: Roget et al. (2022) 2022 Scopus AUAI
computational-statistical tradeoffs

Implementation and empirical eval- Zardini et al. (2022) 2022 Google Scholar ArXiv
uation of a quantum machine learn-

ing pipeline for local classification

Noisy quantum kernel machines Heyraud et al. (2022) 2022 Google Scholar APS

A kernel-based quantum random Srikumar et al. (2022) 2022 Google Scholar ArXiv
forest for improved classification

Bandwidth enables generalization Canatar et al. (2022) 2022 Snow balling ArXiv

in quantum kernel models

The dilemma of quantum neural Qian et al. (2022) 2022 IEEE IEEE
networks

Generalization ~ with  quantum Haug and Kim (2023) 2023 Snow balling ArXiv
geometry for learning unitaries

Ensemble-learning variational Li et al. (2023) 2023 Google Scholar ArXiv
shallow-circuit quantum classifiers

Generalization in quantum machine Caro et al. (2022) 2023 Google Scholar Nature
learning from few training data

Understanding quantum machine Gil-Fuster et al. (2023) 2023 Snow balling ArXiv
learning also requires rethinking

generalization

Quantum machine learning beyond Jerbi et al. (2023) 2023 Snow balling Nature Communications
kernel methods

Out-of-distribution generalization Caro et al. (2023) 2023 Snow balling Nature Communications
for learning quantum dynamics

Dynamical simulation via quan- Gibbs et al. (2024) 2024 Snow balling APS

tum machine learning with provable
generalization

a glimpse into the current practice of the field. The dataset
types vary from synthetic cases, often tailored to quantum-
specific issues, to established ones like MNIST (LeCun et al.
2010), Fashion MNIST (Xiao et al. 2017), Iris (Anderson
1936; Fisher 1936), and UCI* datasets. The use of synthetic
data in many studies suggests that QML is often operat-
ing in a proof-of-concept stage, possibly due to the NISQ
constraints. We observed a recurring use of the MNIST
dataset and its variants, which, while well-established in
classical machine learning, raises questions in the quantum
context. It is well known that quantum advantage is not
universal but problem-specific (Ball et al. 2020; Herrmann
et al. 2023). Therefore, the frequency of MNIST and other
classical datasets might unintentionally misguide the field
into a comparability trap with classical machine learning.
This might hint at an ongoing struggle to balance between
specificity and generalizability in QML models. The use
of synthetic datasets, while necessary for proof-of-concept,

4 https://archive.ics.uci.edu/

@ Springer

should be complemented with real-world datasets to ensure
the practicality of the models. Studies should ideally focus on
problems that are inherently difficult for classical algorithms
but are solvable more efficiently on a quantum setup. This
observation leads to the question: Are we perhaps focusing
on familiar grounds at the expense of uncovering quantum
advantage?

On the other hand, the optimization of QML models is
a complex task. The use of classical techniques such as
stochastic gradient descent (SGD) or backpropagation, and
their quantum counterparts, is a topic of ongoing discus-
sion between classical and quantum computation (Lavrijsen
et al. 2020; Khairy et al. 2020). However, these classical
techniques may not be the most suitable for optimizing
quantum circuits, particularly in the presence of quantum
noise (Khairy et al. 2020). The optimization landscape of
these models is highly non-convex, leading to low con-
vergence rates for SGD. Moreover, the use of Nystrom
approximation or Hamming distance-based optimization
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Table 3 Comparative overview of datasets and optimization techniques in quantum machine learning research

Reference

Type of dataset

Optimization technique

Basu et al. (2022)
Blank et al. (2020)
Du et al. (2018)

Chen et al. (2021)
Srikumar et al. (2022)

Heyraud et al. (2022)
Zardini et al. (2022)
Qi et al. (2023)

Li et al. (2023)

Caro et al. (2022)
Roget et al. (2022)

Huang et al. (2021)

Liu et al. (2021)

Skolik et al. (2021)
Liang et al. (2021)
Wang et al. (2021)

Coyle et al. (2020)

Hamilton and Pooser (2020)

Huggins et al. (2019)
Wang et al. (2022)
Banchi et al. (2021)
Dencheyv et al. (2012)

Kim et al. (2020)

De Oliveira et al. (2021)

Qian et al. (2022)
Wang et al. (2021)

Abbas et al. (2021)
Kiibler et al. (2021)

Canatar et al. (2022)

Jerbi et al. (2023)
Caro et al. (2023)
Gibbs et al. (2024)
Gil-Fuster et al. (2023)

Haug and Kim (2023)
Du et al. (2022b)

Synthetic: Tabular with quantum gate as features
Synthetic: Quantum states parametrized by angles

Synthetic: Linear and nonlinear dataset generated
following (Havlicek et al. 2019)

Real: Iris dataset and synthetic: non-linear

Real: Fashion MNIST, breast cancer and heart dis-
eases

Real: MNIST

Real: UCI and Iris

Real: MNIST

Real: MNIST and synthetic: phase recognition
Synthetic: Ground states phase

Real: Iris and synthetic: following (Mohri et al.
2018)

Real: Fashion-MNIST and synthetic: Engineered
dataset

Synthetic: 2D points with hyperplane distance
Real: MNIST
Real: MNIST

Real: Fashion-MNIST and synthetic: Engineered
dataset

Synthetic: Engineered dataset (QCIBM)
Synthetic: 4-qubit circuit targets

Real: MNIST

Real: MNIST, Vowel-4

Synthetic: 2-Moon

Real: UCT and synthetic: Long-Servedio, Mease-
Wyner

Synthetic: Rand. quant. circuits
Real: Iris
Real: Wine, MNIST

Synthetic: Randomly generated graphs follow-
ing (ERDdS and R&wi 1959)

Real: Iris (First two classes)

Synthetic: drawn from a uniform distribution on
[0, 2714

Real: FMNIST, KMNIST, PLAsTiCC and syn-
thetic following (Shaydulin and Wild 2022)

Real: FMNIST
Synthetic: Random product states
Synthetic: Har-random product states

Synthetic: Generalized cluster Hamiltonian of n
qubits

Synthetic: Random product states
Parity and FMNIST

Grid search
OptimizelqGates (Qiskit)
Parameter-shift rule

Backpropagation (Simulator) following (Watabe
et al. 2019)

Nystrom approximation

Least-square loss function minimization
Hamming distance optimization

SGD with Adam optimizer

Automatic differentiation with Adam
SPSA with Matrix Product State

Gradient descent
Gradient descent

Convex quadratic optimization
Parameter-shift with binary cross-entropy
Qubit Mapping

Grid search (regularization parameter)

SGD (parameter-shift rule)
Gradient-based (Adam, parameter-shift)
SPSA, finite difference gradient

SGD with Adam

Variational quantum info bottleneck

Adiabatic quantum optimization

Gradient descent (RMSE)
SGD
SGD, SQNGD

Quantum approximate optimization algorithm

Cross-entropy loss with Adam

Mean square error with Kernel-target Alignment
Convex quadratic optimization

Gradient descent with Adam
Gradient Free Nelder-Mead
Gradient descent

Covariance matrix adaptation evolution strategy

Gradient descent

Gradient descent with Adagrad optimizer
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methods may be an attempt to circumvent quantum hardware
limitations. Furthermore, the intrinsic difficulty of these opti-
mization problems is highlighted by the NP-hard nature of
training variational quantum algorithms (Bittel and Kliesch
2021). Even shallow variational quantum models, devoid
of barren plateaus (Marrero et al. 2021; Arrasmith et al.
2021; Wang et al. 2021; McClean et al. 2018; Holmes
et al. 2022; Zhao and Gao 2021), have a superpolynomi-
ally small fraction of local minima within any constant
energy from the global minimum (Anschuetz and Kiani
2022). Just as in classical machine learning (Bermeitinger
et al. 2019; Skorski et al. 2021), these models become
untrainable without an appropriate initial estimate of the opti-
mal parameters. In addition, the exponential suppression of
cost function differences in a barren plateau hampers the
progress of gradient-free optimizers without exponential pre-
cision (Arrasmith et al. 2021). Learning can also be hindered
without multiple copies of a state or if there is an excess of
entanglement within the circuit (Abbas et al. 2024; Marrero
et al. 2021). These challenges underscore the complexity of
the optimization landscape in QML and the need for further
research. While innovative, these methods should be criti-
cally assessed to ensure they do not compromise the potential
advantages of a fully quantum approach, as they could result
in quantum solutions that are neither faster nor more accurate
than their classical counterparts (Dunjko and Briegel 2018).

3.1.1 Algorithm performance

In this section, we present the performance of various models
proposed among the selected papers. We focus on the per-
formance of these models on the classical dataset. A quick
glimpse of these datasets is presented in Table 3 and their
performance in Table 4. We conveniently mapped the Fash-
ion MNIST or FMINIST classes to 0 — 9 classes. When a
study involves a subset of classes, it is indicated in the table
under the number of classes column, e.g., (3 - (3,6,8)) rep-
resents a work focused on three specific classes—3, 6, and
8. We also note that accuracies are presented in percentages,
and when individual noise rates were specified in the origi-
nal works, we include them for context. It is apparent from
Table 4 that the type and level of noise are pivotal in affect-
ing the performance of the models. It is also evident that the
performance of these models is sensitive to the presence of
noise. For instance, the model by Liang et al. (2021) shows an
impressive 98.04% accuracy on MNIST in a noiseless envi-
ronment, but that number drops significantly under both flip
error and phase error conditions. This sort of degradation is
not unique and appears across multiple works, emphasizing
the impact that different kinds of quantum noise can have
on model performance. Similarly, Chen et al. (2021) model
on the Iris dataset experiences an accuracy of 80.7% under
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gate noise conditions, suggesting that even a relatively low
noise level can have a measurable impact. The same pattern
is observed in work by Wang et al. (2021) on the Fashion
MNIST dataset, where the accuracy drops from 96% in a
noiseless setting to 91.2% under a depolarizing rate of 0.05.
Additionally, models trained on actual quantum hardware
generally have lower accuracies compared to those trained
in noiseless or simulated noisy environments.

This suggests that how a model is designed could be inte-
gral in mitigating specific noise types. More importantly,
these shifts in accuracy due to the presence of noise high-
light the challenges of operating in the NISQ era, mainly
when the noise rates are non-negligible. Additionally, the
performance accuracy of models trained on real quantum
hardware raises questions about hardware-specific optimiza-
tions and the challenges this presents for reproducibility.
The performance also seems to vary when only subsets of
classes are considered, as seen in work like Wang et al. (2021)
and Huggins et al. (2019); this often raises concerns about the
applicability of these models to real-world scenarios where
class distributions are often imbalanced. It is also interesting
to note that despite its simplicity, the Iris dataset tends to yield
lower accuracies than more complex datasets like MNIST.
Simpler datasets are often prone to be impacted by noise,
and this is reflected in the performance of the models (Khanal
and Rivas 2023). This suggests that the performance of QML
models is not only sensitive to the type and level of noise but
also to the complexity of the dataset.

3.2 Bounds

In this section, we discuss different bounds and complexities
proposed in the selected literature. This focus is to discuss
the theoretical guarantees in QML proposed across litera-
ture under our inclusion criteria for model performance. The
authors have proposed numerous bounds in different cat-
egories to provide a robust framework for evaluating the
performance of QML models. One of the most prominent
categories is the generalization bound, which is a metric cen-
tral to any machine learning task. We encourage readers to
refer to the original works for a detailed derivation for each
bound. In this paper, we discuss common properties observed
across these bounds.

Generalization bound is an essential quantitative measure
for assessing how well a model is expected to generalize
to unseen data. In a QML setting, this bound often offers
rich insights into the intricate interplay between quantum
and classical computational resources beyond performance
indicators. This contributes to our understanding of the capa-
bilities and limitations of QML algorithms. A careful analysis
of the generalization bounds provided in Abbas et al. (2021);
Banchi et al. (2021); Caro et al. (2021, 2022, 2023); Gibbs



Quantum Machine Intelligence (2024) 6:90

Page 110f20 90

etal. (2024); Gil-Fuster et al. (2023); Huang et al. (2021); Liu
etal. (2021); Qi et al. (2023) reveals a universal dependency
on the dataset size N. This dependency aligns with well-
established understandings in classical machine learning that
larger datasets result in better model generalization (Abu-
Mostafa et al. 2012), reducing the model’s uncertainty and
error on unseen data. It is worth noting, however, that the
influence of N on the bounds is not uniform across the board;
the magnitude of its impact varies depending on other model
parameters and method-specific assumptions. Furthermore,
the generalization improvements appear to follow a sublin-
ear trend, as most bounds show a O(\/ﬁ ) behavior with
respect to N. Additionally, these bounds frequently incorpo-
rate specific model parameters—such as the Hilbert space
dimension d in Abbas et al. (2021); Caro et al. (2021); Chen
et al. (2021); Huang et al. (2021); Jerbi et al. (2023); Qi
et al. (2023), the number of trainable quantum circuit gates

T in Caro et al. (2022, 2023), and parameters w in Liu et al.
(2021). The bounds from Abbas et al. (2021); Canatar et al.
(2022); Caro et al. (2021); Gibbs et al. (2024); Heyraud et al.
(2022); Qi et al. (2023) are additionally bounded in variables
that are method specific. This implies two things: firstly,
these bounds are often tailored to the specific algorithmic
techniques or problem domains they are designed for, and
secondly, the bounds suggest avenues for model fine-tuning,
particularly by adjusting these specific parameters. Another
noteworthy observation is that Quantum Kernel Theory is
a recurring approach across many proposed generalization
bounds (Blank et al. 2020; Canatar et al. 2022; Heyraud et al.
2022; Huang et al. 2021; Kiibler et al. 2021; Liu et al. 2021,
Wang et al. 2021). In QML landscape, kernel theory appears
to be serving as a foundational technique for constructing
algorithms with both robust performance and theoretically
justifiable generalization guarantees (Schuld and Killoran

Table 4 Prediction accuracy of various works on the MNIST and IRIS datasets

References Dataset Number of classes Accuracy Setting
Heyraud et al. (2022) MNIST 3-(3,6,8) 94.50 Decoherence (spin dephasing)
Li et al. (2023) MNIST 4-(1,3,5,7) 95.00 Noiseless
Skolik et al. (2021) MNIST 2-(6,9) 90.00 Noiseless
73.00 Shot noise
Liang et al. (2021) MNIST 10 98.04 Noiseless
88.24 Flip error (0.01)
91.67 Phase error (0.01)
77.78 Phase + flip error (0.01)
Huggins et al. (2019) MNIST 28 -(4,9) 88.00 Noiseless
80.60 Amplitude(0.04) and dephasing(0.03) noise
Wang et al. (2022) MNIST 4-(0,1,2,3) 63.70 Trained on-chip at ibmq_jakarta
2-(3,6) 86.00
Qian et al. (2022) MNIST 10 94.00 Noiseless
80.00 Gate noise
Srikumar et al. (2022) FMNIST 10 93.30 Noiseless
Wang et al. (2021) FMNIST 2-(0,3) 96.00 Noiseless
91.20 Depolarizing rate(0.05)
Wang et al. (2022) FMNIST 4-(0,1,2,3) 57.00 Trained on ibmq_manila
2-(3,6) 90.70 Trained on ibmq_santiago
Chen et al. (2021) IRIS 3 80.70 Gate noise(0.01)
De Oliveira et al. (2021) IRIS 2-(0,1) 98.89 Noiseless
Abbas et al. (2021) IRIS 2-(0-1) 23.14° Trained on ibmq_montreal
FMNIST 2 92.60
Canatar et al. (2022) KMNIST 2 91.50 Noiseless
PLASTICC 2 78.90
Du et al. (2022b) FMNIST 9 50.00 Noiseless

4Section IV on Huggins et al. (2019) presents results for 45 cases (10c2) combinations. Here, we only report the result that is severely impacted by

the noise
bt is training loss of a model as reported in Abbas et al. (2021)
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2019; Schuld 2021). However, it is crucial to emphasize
that the effectiveness of kernel methods trainability guar-
antees, due to convex loss landscapes (Schuld 2021; Schuld
and Killoran 2022), hinges on the efficient estimation of ker-
nel values to a sufficient precision (Thanasilp et al. 2024).
This is particularly challenging because, similar to the Bar-
ren plateau barrier in QNNs, hardware-induced noise in the
near-term serves as a source of concentration for quantum
kernel values to be exponentially concentrated towards some
fixed value over different input data (Thanasilp et al. 2024).

On the other hand, measurement complexity, defined as
the number and nature of quantum measurements required to
extract classical information from a quantum system, plays a
crucial role in determining the generalization capabilities of
QML models, particularly in noisy quantum systems. Caro
et al. (2021) establish a fundamental trade-off between the
complexity of measurement observables and the amount
of training data required for the effective generalization of
QNN . Their work demonstrates that while more complex
measurements can enhance the expressivity of QNNs, they
simultaneously demand larger training datasets to achieve
robust generalization. This relationship is further explored
in the context of quantum kernel methods, where Gentinetta
et al. (2024); Liu et al. (2021) provide rigorous bounds
on the number of measurement shots required to success-
fully train fidelity-based kernels (Havlicek et al. 2019).
Furthermore, Wang et al. (2021) offer an optimistic per-
spective, showing that quantum kernel generalization can
remain competitive with ideal scenarios when the number
of measurements scales as O(N>) provided the noise rate
p remains low. However, Thanasilp et al. (2024) present
a contrasting view, demonstrating that under conditions of
exponential concentration in quantum kernel values, the
required number of measurement shots for precise kernel
estimation scales exponentially. This dichotomy underscores
the critical nature of measurement complexity in QML model
performance, especially in noisy environments. Additionally,
measurement complexity bounds proposed in Blank et al.
(2020); Park et al. (2021) offer insights into the algorithm’s
resource requirements, specifically, the number of quantum
measurements needed to maintain a certain level of accuracy
in kernel-based quantum classifier models. These bounds

m) from
Blank et al. (2020), valid for p < 0.5, reveals a quadratic
dependency on the noise rate p. This relationship implies
that even small increases in noise can substantially elevate
the measurement complexity, potentially limiting the algo-
rithm’s practicality in noisy environments. It is important
to acknowledge that these bounds are primarily applicable
within the specific context of kernel-based quantum models
and may not necessarily extend to other QML frameworks.

exhibit a dependence on p. The bound O (
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Regardless, collectively, these works emphasize the delicate
balance between measurement complexity, noise tolerance,
and generalization performance in QML models.

Next, we discuss the query and runtime complexities,
as these factors are instrumental in determining the prac-
tical feasibility of quantum approaches. Query complex-
ity, which quantifies the number of interactions between
an algorithm and an oracle or database, provides insight
into the information-theoretic efficiency of quantum algo-
rithms. Du et al. (2018) proposed a query complexity bound
of O(pol y(log(d)\/ﬁ )) where d represents the feature
space dimension, and N 1is the dataset size. The bound
exhibits a potential quantum advantage, as it scales poly-
nomially with log(d) and only with the /N, potentially
outperforming classical algorithms for high-dimensional
data. However, this advantage must be weighed against
the challenges posed by measurement complexity in noisy
quantum systems, as discussed earlier. Runtime complex-
ity, on the other hand, directly reflects the required com-
putational time. The proposed runtime complexity bound
O(poly(logdlog(dlog N))/log N) by Du et al. (2018)
demonstrates a more intricate scaling behavior, with poly-
nomial dependencies on logarithmic terms of both d and
N. While this scaling is generally favorable compared to
many classical algorithms, especially for large datasets, it
is important to note that the actual performance advantage
can be mitigated by the overheads associated with quantum
state preparation and measurement, particularly in near-term
devices.

Furthermore, we observed that the authors also employ
the Vapnik-Chervonenkis (VC) dimension to define gen-
eralization bounds. VC dimension plays a crucial role in
understanding a model’s capacity to generalize, providing
an upper limit on the complexity of learnable functions. The
VC dimension, defined as the largest number of points that a
hypothesis class H can shatter (i.e., perfectly separate regard-
less of their labeling), takes on a distinctive form in quantum
systems. Chen et al. (2021) established a VC bound for quan-
tum models: 2 < dy. < (2% + 1)%4, where d is the feature
dimension and #n is the number of qubits. This bound high-
lights a fundamental difference from classical models: the
VC dimension in quantum settings depends explicitly on the
number of qubits, suggesting that the expressive power of
quantum models scales with the size of the quantum system.
Moreover, in noisy quantum environments, the VC bound
incorporates an additional dependency on the circuit depth
L., as observed in works by Abbas et al. (2021); Caro et al.
(2021, 2023, 2022). This three-way dependency on feature
dimension, qubit count, and circuit depth represents a sig-
nificant departure from classical machine learning, where
generalization typically depends primarily on the feature
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space dimension and sample size. The inclusion of circuit
depth in the VC bound for noisy quantum systems empha-
sizes the intricate relationship between model complexity,
noise, and generalization in QML. It suggests that deeper
quantum circuits, while potentially more expressive, may
face greater challenges in generalization, especially in the
presence of noise. Furthermore, these bounds hint at both
potential advantages and challenges for QML models. On one
hand, the dependence on qubit count suggests that quantum
models might offer enhanced expressive power that scales
efficiently with system size. On the other hand, the sensitivity
to circuit depth in noisy settings underscores the challenges
of maintaining this expressivity in practical, noisy quantum
devices.

3.3 Computing platforms

The choice of quantum computing platforms is a crucial
aspect of QML research, as it directly impacts the experi-
mental feasibility and the generalizability of the results. In
Table 5, we provide the list of quantum computing platforms
used for an experiment by the work listed in Table 2. The IBM
Quantum Platform, such as Melbourne, Ourense, Rome, and
Montreal, appears to be quite popular. The Melbourne pro-
cessor, a 15 qubits system retired on 08/09/2021, tends to
be the most utilized in the IBM quantum series, likely due
to its higher qubit count and may be due to its early market
entry. Specifically, Melbourne is used in works by Basu et al.
(2022); Srikumar et al. (2022); Wang et al. (2021); Kim et al.
(2020); De Oliveira et al. (2021), Ourense by Blank et al.
(2020); Wang et al. (2021), Rome by Park et al. (2021), and
Montreal by Abbas et al. (2021); Liang et al. (2021); Wang
et al. (2021). While using these platforms is understandable,
given their accessibility and the extensive support provided
by IBM, it is important to note that the choice of platform
can impact the results and potentially create research bias.
For instance, the noise rates and error models of these plat-
forms can vary, leading to different performance outcomes
for the same model.

Another crucial observation is the use of Qiskit, a popu-
lar quantum computing software development kit (SDK) by
IBM. Qiskitis used in works by Basuetal. (2022); Blank et al.
(2020); Canatar et al. (2022); Chen et al. (2021); De Oliveira
et al. (2021); Kim et al. (2020); Liang et al. (2021); Sriku-
mar et al. (2022); Zardini et al. (2022). This is not surprising,
given that Qiskit is one of the most widely used quantum
computing frameworks. Software simulation often provides
the first line of feasibility tests for quantum algorithms. How-
ever, these results can be optimistic compared to the NISQ
devices since the simulators usually lack noise models under
normal settings. Furthermore, the use of Pennylane only in
Kiibler et al. (2021); Qi et al. (2023); Qian et al. (2022) is

intriguing, mainly because Pennylane’s focus on differen-
tiable quantum computing makes it particularly well-suited
for hybrid quantum-classical models. Additionally, the use of
Julia in Li et al. (2023) and TensorFlow Quantum in Huang
etal. (2021); Skolik et al. (2021) might hint at a move towards
using more traditional machine learning frameworks. How-
ever, one could argue that these choices should not merely
be about convenience or the ease of integration with classi-
cal models. They should also be critically evaluated for their
capability to handle quantum-specific issues, such as error
correction or the intricacies of quantum gate operations.

It is imperative to acknowledge, however, that this dis-
tribution does not necessarily mirror the broader QML
community’s platform preferences. Preliminary observations
and informal surveys within the community suggest a sig-
nificant and possibly growing interest in platforms like
PennyLane, Tensorflow quantum, and QuTip, which may
not be fully represented in our dataset. Hevia et al. (2022);
Kordzanganeh et al. (2023); Serrano et al. (2022) are some
of the works that provide a comprehensive study on quantum
computing platforms used in literature.

In our findings, the platform selections are far from arbi-
trary, influenced by factors such as ease of use, capability, and
perhaps even academic and commercial affiliations. Observ-
ing these diverse platforms used in the experiment raises
the issue of reproducibility. How many of these papers pro-
vide adequate information for replicating their experiments
on other platforms?’ The field risks becoming fragmented
if results obtained on one platform cannot be compared or
reproduced on another.

3.4 Research approach

Among the selected papers, we find that the research
approaches are diverse, with a mix of theoretical and empir-
ical work. Most of the research appears to use a theoretical
approach with empirical validation. Such an approach is nec-
essary, especially in the NISQ era, where empirical work
can offer immediate insights into error rates, robustness, and
other practical considerations that are crucial for theoretical
generalizations. It is interesting to note that various articles
address core concerns in machine learning from a quantum
perspective, such as generalization bound (Abbas et al. 2021;
Banchietal.2021; Canataretal. 2022; Caroetal. 2022, 2023;
Chen et al. 2021; Gibbs et al. 2024; Gil-Fuster et al. 2023;
Huang et al. 2021; Wang et al. 2021), kernel methods (Blank
et al. 2020; Canatar et al. 2022; Heyraud et al. 2022; Jerbi
et al. 2023; Kiibler et al. 2021; Srikumar et al. 2022; Wang

3 Note that Pennylane has various plugins for an accessible dispatch of
quantum functions to different quantum devices.
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et al. 2021),° and ensemble learning (Basu et al. 2022; Caro
et al. 2023; Li et al. 2023; Srikumar et al. 2022). Unlike
other works discussed in this review, Jerbi et al. (2023) pro-
vide the lower bound for qubit complexity for QNNs in an
ideal setting. It is no surprise that these bounds are expressed
in terms of the feature space dimension d. This suggests
that the field is actively working towards addressing foun-
dational learning problems, such as the true capabilities and
limitations of QML models and their robustness and error
tolerance in a NISQ environment. However, given that many
of these approaches combine theory and experiment, one can
hypothesize that the field is still working towards addressing
foundational learning problems, such as the true capabilities
and limitations of QML models and their robustness and error
tolerance in a NISQ environment. We provide such empirical
results on classical data in Table 4.

Another interesting observation is the use of quantum
kernel methods. Kernel methods seem to be an attempt to
utilize classical machine learning techniques in quantum
architectures to benefit from the mathematical rigor of kernel
theory while aiming to harness quantum advantages. This
could offer better generalization for QML models (Schuld
and Petruccione 2021). Recent research has been motivated
towards the quantum kernel-based theoretical and experi-
mental advancement, with studies establishing a connection
between supervised learning and quantum kernels (Schuld
and Killoran 2019). For a class of machine learning problems,
quantum kernel methods can solve them efficiently, which
is hard for all classical methods (Liu et al. 2021). Further-
more, expressivity and generalization capacity of quantum
kernels have been investigated in studies by Chen et al.
(2021); Heyraud et al. (2022). Huang et al. (2021) found
that data availability can modulate the computational hard-
ness of learning tasks. However, Heyraud et al. (2022); Wang
etal. (2021) reveal that the inner products or fidelity measures
constituting quantum kernels can be particularly susceptible
to noise, thereby affecting their overall performance and the
reliability of the QML models built upon them.

Nonetheless, while quantum kernels have the potential
to be advantageous in NISQ settings due to their ability
to find better or equally good quantum models compared
to variational circuit training (Schuld 2021), it is impor-
tant to acknowledge that they might suffer from exponential
concentration under certain conditions (Thanasilp et al.
2024). This phenomenon, while not necessarily affecting
the trainability of quantum kernels, can lead to poor gen-
eralization, where the model’s predictions on unseen data
become independent of the input data, thereby undermining
the expected advantages. Thanasilp et al. (2024) identified
the expressivity of data embedding, global measurements,

6 Jerbi et al. (2023) provide a sample complexity which can be con-
verted in to generalization bound in most of the cases.

entanglement, and noise as a source of the concentration
in quantum kernel models. This trade-off between the opti-
mization advantages of quantum kernels and their potential
generalization challenges is a careful consideration for kernel
model design and implementation.

Furthermore, the efficiency of data encoding plays a
crucial role, with compact encoding schemes potentially min-
imizing the number of gates required (Gan et al. 2023; Schuld
et al. 2021). While both quantum kernel methods and QNNs
utilize quantum circuits to encode data into quantum states,
the role and function of these circuits differ between the
two approaches. In quantum kernel methods, the quantum
feature map is explicitly designed to project data into a high-
dimensional quantum space, where classical algorithms may
then operate more effectively, depending on the problem.
This can result in simpler classification circuits, as the com-
plexity is handled by the classical algorithm post-quantum
feature mapping. In contrast, QNNs embed the data encod-
ing within a parameterized quantum circuit, where the entire
model, including the quantum feature map, is optimized
during training. As a result, the simplification observed in
quantum kernel methods may not directly apply to QNNs.
This potential for shallower circuits and fewer gates in quan-
tum kernel methods aligns well with the limitations of NISQ
devices, where circuit depth is constrained by noise (Wang
et al. 2021). However, it is important to note that the best
choice between quantum kernels and other QML methods
depends on the specific dataset, data-encoding ansatz, learn-
ing problem, and the available hardware (Jerbi et al. 2023).
On the other hand, QNNs can offer significant expressive
power and flexibility in learning complex patterns (Abbas
et al. 2021). However, this expressivity frequently comes
with increased computation resource requirements, espe-
cially with deeper architectures (Qian et al. 2022; Skolik
et al. 2021). This can pose challenges for NISQ devices.
Furthermore, concerns exist regarding the learnability and
trainability of QNN in noisy settings (Du et al. 2021; Qian
et al. 2022). In contrast, quantum kernel methods often ben-
efit from guarantees of convex optimization and potential
advantages in resource utilization (Park et al. 2021) but suffer
from exponential concentration (Thanasilp et al. 2024). Yet,
their data scaling limitations and reliance on specific kernel
functions can restrict their applicability. Additionally, data
requirements for QNNs often scale with circuit depth and
problem complexity, potentially becoming substantial (Sko-
lik et al. 2021).

Another research approach that appears in the final paper
list is ensemble learning for error mitigation. Li et al. (2023);
Srikumar et al. (2022) used this approach for error mitigation,
suggesting that it might be a practical strategy to make quan-
tum algorithms more robust. However, ensemble methods
inherently require the collection of multiple models, which
could be resource-intensive. We do not find any work explic-
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itly addressing the trade-off between improved performance
and increased resource utilization.

4 Discussion

In this section, we discuss the implications of our findings and
the limitations of our methodology. We discuss the interplay
between generalization bounds and others’ complexity, the
pitfalls in a dataset and optimization choices, platform stan-
dardization vs. research bias, the theoretical-experimental
divide, fragmented research approaches, and the implications
for the NISQ era. Our analysis suggests that there is a gap
in the techniques and tendencies that could advance QML
research in certain directions, both limiting and enabling.

The generalization error bound is interlinked with the
measurement, sample, and qubits complexity. While gener-
alization bounds give a theoretical metric to evaluate model
robustness, qubits and sample complexity provide a practical
measure of the resources required to achieve this robustness,
their practical utility depends on the feasibility of mea-
surement. It is striking that all these metrics are yet to be
optimized together in the literature, an oversight that could
hinder the transition from theory to practice. What remains
unavailable is a framework that can combine these aspects,
allowing for not just error prediction but also its empirical
verification on actual quantum hardware.

The use of classical datasets like MNIST and IRIS raises
the concern of what we term as familiarity bias. This leads
to inevitable comparisons with classical algorithms, obscur-
ing the specific advantages that quantum algorithms may
bring. Concurrently, the dataset choices show a clear division
between synthetic datasets and real-world datasets, with each
having its own set of advantages and disadvantages. On one
side, synthetic datasets may allow for a deeper understanding
of quantum-specific phenomena but at the expense of broader
applicability. On the other hand, classical datasets may not
necessarily help demonstrate the quantum advantage.

The frequent use of IBM’s quantum platforms suggests a
potential trend toward platform standardization, but it also
raises a concern about research bias. While standardization
can facilitate result comparison and replication, the field
should be wary of a one-size-fits-all approach. Different
platforms have varying noise models, gate fidelities, and con-
nectivity architectures that can significantly impact algorithm
performance and, hence, the generalizability of the research
findings.

The majority of theoretical work with empirical validation
indicates a field that is cautiously optimistic. However, it is
essential to question whether the empirical work truly vali-
dates the theory or simply provides a proof of concept under
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idealized/simulated conditions. The field needs to bridge the
gap between theory and practice, ensuring that theoretical
insights are validated in realistic settings.

Furthermore, the evident focus on kernel methods indi-
cates a field searching for a stable theoretical foundation.
Kernel methods offer mathematical rigor but could be sus-
ceptible to noise, whereas ensemble learning shows promise
in error mitigation but may raise questions on resource opti-
mization. These diverging approaches risk fragmenting the
field unless they are part of a more extensive, unified strategy.

The QML community has yet to fully adapt to a unique
set of constraints imposed by the NISQ era. While work
on generalization bounds and other complexities indirectly
acknowledges these limitations, direct strategies to navigate
the NISQ landscape are conspicuously absent. The modifica-
tions or quantum patches to classical techniques (like SGD)
can be seen as stop-gap measures but hardly a long-term
solution.

Our analysis suggests a more unified and collaborative
approach. This could involve sharing across generalization
bounds, measurement complexity, dataset selection, opti-
mization techniques, and platform-agnostic strategies. Caro
et al. (2023) proposed to establish a general mathematical
framework for quantum learning. However, it is essential to
recognize that the diversity of machine learning models is a
strength, not a weakness. Each model offers unique benefits
and limitations, and there is no one-size-fits-all solution. The
right model depends on the problem at hand.

The methodology of this survey is based on a system-
atic literature review, which is a well-established method for
synthesizing and analyzing information from previously pub-
lished literature. However, it is important to highlight that our
search and filtration process is subject to certain constraints.
The scope of our search was limited to certain academic
databases and English-language publications, which may
have inadvertently excluded relevant international research,
details on Sections 2.1 and 2.3. Furthermore, the database
search was conducted in early 2023 to collect the relevant
papers from 2010 to 20237 timeframe. The field of QML is
rapidly evolving. Therefore, it is possible that some recent
research may not have been included in our analysis. Further-
more, our inclusion and exclusion criteria were designed to
maintain focus and relevance, but they may also introduce a
degree of selection bias. By recognizing these limitations, we
aim to ensure that the findings of our review are interpreted
with an appropriate level of scrutiny and consideration for
the broader research landscape.

7 Some of the latest papers were hand-picked as the snowballing pro-
cess.
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5 Conclusion

This survey offered a comprehensive analysis of the current
state of QML, focusing on generalization bounds, mea-
surement complexities, datasets, optimization techniques,
platforms, and research approaches. Our findings reveal a
field’s formative stages, struggling to balance theoretical
robustness and practical applicability.

Generalization bounds are a pivotal element in evaluating
QML models, revealing a dependency on dataset size, fea-
ture space dimension, and model-specific parameters. These
bounds have also been closely tied to measurement sample
and qubits complexities, other vital aspects of assessing the
practicality of QML, especially in a NISQ environment. In
practice, the descent number of research work (Canatar et al.
2022; Heyraud et al. 2022; Liang et al. 2021; Huggins et al.
2019; Wang et al. 2022, 2021) shows a trend toward using
well-known classical datasets and optimization techniques.
We presented the performance metrics of these works on
IRIS, MNIST, and FMNIST datasets with gradient descent
being the favorite choice for optimization. This focus raises
questions about the field’s ability to tackle quantum-specific
challenges, calling for broader dataset and algorithmic diver-
sity. It is worth noting that the use of classical datasets and
optimization techniques is not necessarily a limitation but
rather an intermediate step to understanding the possibili-
ties and limitations of QML in the NISQ era. However, it is
important to mention that there has been a shift to develop
GEB in quantum setting with an experiment on quantum
data (Caro et al. 2021, 2023; Gibbs et al. 2024; Gil-Fuster
et al. 2023; Haug and Kim 2023). Despite the diverse direc-
tions of quantum learning theory, Caro et al. (2023) have
propose a formalism for describing quantum learning tasks
that involve training on classical-quantum data and then test-
ing the learned hypothesis on new data. These new directions
show that the QML community is moving towards more
quantum-specific approaches.

Likewise, the frequent use of specific platforms, par-
ticularly from IBM, hints at a potential research bias and
raises questions about cross-platform reproducibility. The
research approaches reflect a blend of theoretical and empir-
ical work, with a focus on foundational problems in machine
learning. Prominent techniques include kernel methods,
ensemble learning, and randomized circuit learning. Yet, sev-
eral unanswered questions remain, especially concerning the
trade-offs between performance and resource utilization. Du
et al. (2022b) have identified that the multi-class classifica-
tion power of QNN classifiers is dominated by the training
loss rather than generalization ability. Gil-Fuster et al. (2023)
have challenged current understandings of generalization in
QML. They presented a compelling result that showed that
state-of-the-art QNNs can memorize random data, defying

standard theories about how these models generalize. This
questions the ability of current frameworks to guarantee how
well a model performs on new data. Their work is key to
understanding and making better QML algorithms.

The field of QML presents both opportunities and chal-
lenges. This survey focused on generalization bounds for
supervised QML, but the field is actively exploring other
branches, such as model expressibility and trainability. Du
etal. (2022a) analyzed the expressivity of VQCs using qudits,
finding an upper bound determined by the number of quan-
tum gates and measurement observables used in the ansatz.
Further research into qudit-based quantum computation and
the expressibility and training of QML models can be promis-
ing future directions for the field.

As we navigate the intricacies of quantum computing, the
task ahead is to address the gaps identified in this survey,
striving for methodological diversity, practical applicability,
and cross-platform standardization. We have identified sev-
eral avenues for future work:

e A closer investigation of the trade-offs between general-
ization and computational costs.

e The need for more diverse datasets tailored for quantum
phenomena.

e Scrutiny of the impact of platform biases on research
outcomes.

e Evaluation of optimization techniques specific to quan-
tum systems.

e Exploration of resource utilization in ensemble learning
and other error mitigation strategies.

e A comprehensive theoretical development to lay the
foundation for the unified understanding of quantum ker-
nels (Gan et al. 2023) and quantum learning (Caro et al.
2023).

By confronting these challenges, the QML community
can move closer to realizing the full potential of quantum
computing in machine learning applications.
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