
Deep Neural Network Representations for Song
Audio Matching and Recommendation

Brandon Litwin and Pablo Rivas
Department of Computer Science, School of Computer Science and Mathematics

Marist College, 3399 North Road, Poughkeepsie, New York 12601

Abstract— With the recent popularity of online music
streaming services, companies are trying to get ahead of the
competition by generating accurate song recommendations
for users that are listening to their service to keep them on
the service for longer. We examine the use of autoencoders
to train models to learn which songs are similar. We found
that the deep autoencoder with multiple hidden layers pro-
duced the best results at the cost of high processing time.
Additionally, we discuss our design of a Node.js webpage
that a user can interact with and receive a recommendation
of an existing song that has been uploaded to our server.

Keywords: learning representations, deep learning, audio, autoen-
coders, music, neural networks

1. Introduction

The popularity of online music streaming services such
as Spotify and Apple Music has increased rapidly in recent
years. They are convenient, as a simple monthly subscription
allows consumers to access millions of songs whenever they
want. One of the most popular features of these services is
their ability to play songs by similar artists based on what
the user has just listened to. Our motivation for this project
is to examine a machine learning approach to generating
song recommendations. We train autoencoders to learn how
to compress songs’ audio data to very small dimensions
that we can perform low-dimensional searches on by sound
similarity. We also use the trained model to determine which
of the system’s stored song files is the most similar to a new
song that the model has never seen before.

In this paper, we describe our methodologies finding the
best autoencoder models for comparing music files. We
used three different approaches: a simple autoencoder, an
autoencoder with a sparsity constraint, and a deep-learning
autoencoder with six hidden layers. We also attempted a
fourth approach: a convolutional method, but it proved to
be computationally difficult to train on the song data. We
also discuss our results and describe which of the three
approaches is the most effective. Finally, we briefly explain
the design of our website that demonstrates how a user could
interact with a recommendation system like the one proposed
here.

Fig. 1: Example of a shallow autoencoder neural network.
This autoencoder takes an input with eight dimensions,
compresses it down to two dimensions (encoder) and then
reconstructs it back to eight dimensions (decoder).

2. Background and Other Work

Typically, recommendation systems rely on usage pat-
terns. For example, a user can like or dislike a song
and the system will use that information to better filter
its recommendations. This is known as the collaborative
filtering approach [1]. An autoencoder is a neural network
model that can compress the large amounts of data found
in song files to just two dimensions to make comparisons
and visualization easier, and then it attempts to reconstruct
the data to its original dimensional space [2]; a visual
explanation of a shallow autoencoder neural network is
depicted in Fig. 1. Finally, we briefly explain the design of
our website that demonstrates how a user could interact with
a recommendation system like the one proposed here. This
approach has been tested and found to be a viable option as
at least the first step in an accurate music recommendation
system [3]. Other researchers have tested a hybrid method
that uses a similar deep-learning method in combination
with collaborative filtering [4]. In the following section, we
explain the design of the proposed autoencoder.



3. Methodologies
We used three different autoencoders to test our song data.

Each autoencoder was given 20 songs of varying genres
to learn from. 2.5 million samples were taken from each
song, which is equivalent to about 57 seconds of a WAV file
with 44,100 samples per second. After each training session,
the model’s loss was measured. We reduced the 2.5 million
samples to 2 values and scaled them between 0 and 1, so
that we could graph them and get a visual representation of
the similarity of songs.

The simple autoencoder is the most basic autoencoder
with a single layer between the input and output. It reduces
the 2.5 million samples to just 2 neurons, and then recon-
structs it back again.

3.1 Sparse Autoencoder
Like the simple autoencoder, the sparse autoencoder has

a single layer. It adds a sparsity constraint, which adds a
bit of stability to the encoding process and pushes weight
sparsity. We used a regularization parameter of of 10e-9.

3.2 Deep Autoencoder
The deep autoencoder adds more than one hidden layer.

We used three layers, first compressing the 2.5 million sam-
ples to 32, then 8, then 2. Then, the decoder reconstructed
the data back with the same number of layers and neurons.

3.3 Convolutional Autoencoder
The convolutional autoencoder that was attempted had

three convolutional layers and three pooling layers for both
the encoding and decoding layers. First, a one-dimensional
convolution was applied to the 2.5 million samples, which
used the ReLU activation function, 32 filters, and a kernel
size of 33. This was followed by max pooling with a pool
size of 10. Then, the result was convolved again with 8
filters and a kernel size of 77. Then, the same pooling
function was applied, and the result was convolved a final
time to 2 filters and a kernel size of 155, and pooled once
more. The decoding layers deconvolved the filters in reverse
order, starting with 2 and ending with 32. In between each
convolution, an upsampling layer of size 10 was added.
Finally, the data was deconvolved to 1 filter and a kernel
size of 33 using the sigmoid activation function.

After each autoencoder model was completed, it was
trained using the Adadelta optimizer over the binary crossen-
tropy loss function.

4. Experiments and Results
The experimental design began by selecting twenty songs

of various genres that the autoencoders would train on. We
manually paired two songs from each genre that we felt
sounded similar, so that we had a reference for an objective
accuracy of the results of the autoencoders. The full song
list is shown in Fig. 2.

Fig. 2: A list of the songs that the autoencoders trained on.

Fig. 3: Comparison of loss over time between models. A
deep autoencoder converges faster than the other alternatives.

We tested the simple and sparse autoencoders for 64
epochs, and the deep autoencoder for 32 epochs. We found
that compared to the simple autoencoder, adding a sparsity
constraint had a positive impact in reducing the loss recorded
during training. Additionally, adding more hidden layers re-
duced the loss the fastest. Although the loss did not decrease
for the first 16 epochs for any model, it decreased much
faster afterwards. The deep autoencoder’s loss decreased
to 0.6547 after 24 epochs and 0.6483 after 32 epochs, as
shown in Fig. 3. Comparing the plots that were generated
by visualizing the encoded songs from each training model,
the simple and sparse songs are a lot more clustered together
than the deep-learning based songs, as shown in Fig. 4, Fig.
5 and Fig. 6. The deep autoencoder more closely resembles
the expected results than the other two, with music from the
same artists and music from the same genres being closer
to each other, while being further away from genres that are
much less similar to its own. For example, Let It Go and
Magnolia by Playboi Carti both produced a y-value close
to 0.0. These songs are part of the hip-hop genre and are
placed far away from metal songs like Cold by At the Gates
and Take This Life by In Flames, which is expected as the
songs have distinctly different beats, melodies, instruments,



Fig. 4: Simple Autoencoder Song Representations. Most
songs are clustered together implying a poor learned rep-
resentation.

Fig. 5: Sparse Autoencoder Song Representations. The pri-
mary clustering alternative is also present in this case,
suggesting a poor learning of the two-dimensional repre-
sentations.

Fig. 6: Deep Autoencoder Song Representations. The learned
two-dimensional space is richer in mapping songs into the
feature space, preserving songs that sound together close to
each other while at the same time avoiding clustering.

and song structures. We can argue that, without being music
experts, Take This Life, with value (1.0, 1.0), and Let It Go,
with value (0.0, 0.0), are polar opposites of each other.

The experiment on the convolutional autoencoder failed
due to the training model never reaching the second decoding
layer. After decoding the data to two dimensions with a
kernel size of 155 and upsampling it once by a factor of
ten, the training model attempted to convolve the upsampled
data to eight dimensions with a kernel size of 77. After a
reasonable number of minutes, the Python script that was
running the model showed no signs of progress and the
experiment was stopped.

The computer that ran the experiments was an HP Envy
x360 with an Intel i5 processor and 8 gigabytes of RAM.
Training the deep autoencoder model takes almost 5 giga-
bytes of RAM. A computer with a larger amount of RAM
would be able to train on more songs faster, and may be
able to successfully train our convolutional model that takes
up a significant amount of memory.

The training models ran on Keras, an open-source neural
network library for Python, which ran on top of TensorFlow.
The simple, sparse, and deep autoencoders all encoded
and decoded the data with the Dense function, which is
used in sequential modeling to create a densely connected
neural network layer. This function has a parameter that
can be set to the activation function that is required. The
convolutional autoencoder used the Conv1D function to
create a one-dimensional convolutional layer. It also used
the MaxPooling1D function to create pooling layers and
the UpSampling1D function to upsample the layers during
decoding. We based our training models on the guide found
on Keras’s blog [5].

5. Case Study: Website For Song Match-
ing

To test the ability of the model to be part of a production
system, we deployed it into a website. The web design
consists of two Node.js webpages, a Python script, and an
SQL database. First, the user uploads a WAV file to the
home page and clicks submit. Next, the song is uploaded
to the server and the Python script is called. The Python
script uses a saved learning model from a deep autoencoder
training session to create a representation of the uploaded
song in the form of two values, x and y. Using the Euclidean
distance (`2-norm), these values are compared to each of the
x and y values of the 20 songs in the database to determine
which song has values that are the closest to the inputted
song. The Euclidean distance formula [6] is given as:

d(q,p) =

√
(q1 − p1)

2
+ (q2 − p2)

2
+ · · ·+ (qn − pn)

2

=

√√√√ n∑
i=1

(qi − pi)
2 (1)



Fig. 7: An example of the result image given by our website.

where p and q are two dimensional vectors representing two
different song representations in the two-dimensional space
induced by the autoencoder.

When the script is finished, the name of the recommended
song is displayed on the second webpage along with a plot
of all of the songs, with a black dot representing each song, a
green circle representing the uploaded song, and a red circle
representing the song that was recommended. An example
of the resulting image that is displayed on the webpage is
depicted in Fig. 7. Also, for completeness, we include the
sequence diagram for the web design (Fig. 8). The model
is successfully implemented and it only takes a moment to
produce a result.

6. Conclusions
In our research, we examined three different varieties of

autoencoders that could be used to compare the sound of
songs and recommend similar sounding songs. We deter-
mined that a deep autoencoder with multiple hidden layers
produces results that are closest to the expectation, with
certain genres and artists being grouped together. Training
this model on 20 songs takes over an hour to complete 32
epochs, while the sparse and simple models take only 10
seconds per epoch. If this model was trained on a million
songs, it would require a lot of computing resources to
complete, but the finished model could be a useful basis
for music recommendation software like Spotify.

Further research includes using recurrent neural networks
to create session-based recommendations for music stream-
ing services. This is a potential solution to the problem of

Fig. 8: Sequence diagram for the web design.

giving users accurate recommendations based on very short
sessions of data [7]. A trained autoencoder that can process a
given song quickly into a general category for comparison to
other songs is a useful tool that can be integrated into a music
recommendation system. It is likely most effective to use an
autoencoder along with collaborative filtering to create the
most accurate and satisfying music recommendation system
for users.

The Python code for this project has been made available
at:

github.com/brandonlitwin/Honors-Thesis.git

The work is licensed under a Creative Com-
mons “Attribution - NonCommercial - ShareAlike 3.0 Un-
ported” license.

References
[1] Van den Oord, Aaron, Sander Dieleman, and Benjamin Schrauwen.

“Deep content-based music recommendation”. Ghent University (2013).
[2] Dertat, Arden. “Applied Deep Learning: Autoencoders”. Towards Data

Science (2017).
[3] Liang, Dawen, Minshu Zhan, and Daniel P.W. Ellis. “Content-

aware collaborative music recommendation using pre-trained neural
networks”. Columbia University (2015).

[4] Wang, Xinxi and Ye Wang. “Improving Content-based and Hybrid
Music Recommendation using Deep Learning”. National University of
Singapore (2014).

[5] Chollet, Francois. “Building Autoencoders in Keras”. The Keras Blog
(2016).

[6] Deza, Elena; Deza, Michel Marie. “Encyclopedia of Distances”. p. 94.
Springer (2009).

[7] Hidasi, Balazs et al. “Session-Based Recommendations With Recurrent
Neural Networks” (2016).


