
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

VERIFY: A NOVEL MULTI-DOMAIN DATASET
GROUNDING LTL IN CONTEXTUAL NATURAL LAN-
GUAGE VIA PROVABLE INTERMEDIATE LOGIC

Anonymous authors
Paper under double-blind review

ABSTRACT

Bridging the gap between the formal precision of system specifications and the
nuances of human language is critical for reliable engineering, robotics, and AI
safety, but it remains a major bottleneck. Prior efforts in grounding formal logic
remain fragmented, resulting in datasets that are very small-scale (∼ 2 − 5k ex-
amples), domain-specific, or translate logic into overly technical forms rather
than context-rich natural language (NL). Thus, failing to adequately bridge formal
methods and practical NLP. To address this gap, we introduce VERIFY, the first
large-scale dataset meticulously designed to unify these elements. This dataset
contains more than 200k+ rigorously generated triplets, each comprising a Lin-
ear Temporal Logic (LTL) formula, a structured, human-readable ‘Intermediate
Technical Language’ (ITL) representation designed as a bridge between logic
and text, and a domain-specific NL description contextualized across 13 diverse
domains. VERIFY’s construction pipeline ensures high fidelity: LTL formulas
are enumerated and verified via model checking, mapped to the novel ITL repre-
sentation using a provably complete formal grammar, and then translated into
context-aware NL via LLM-driven generation. We guarantee data quality through
extensive validation protocols, i.e., manual expert verification of 10,000 diverse
samples. Furthermore, automated semantic consistency checks judged by Llama
3.3 confirmed an estimated >97% semantic correctness. From the initial experi-
ments, we demonstrate VERIFY’s scalability, logical complexity, and contextual
diversity, significantly challenging standard models such as T5 and Llama 3.

1 INTRODUCTION

The increasing complexity of software systems, autonomous agents, and critical infrastructure, from
financial trading algorithms and medical devices to aerospace controls and smart grids necessitates
rigorous methods for specifying behavior and ensuring reliability (1; 2). Formal methods lever-
age mathematics to enable rigorous techniques and tools for the specification, development, and
verification of critical systems (3; 4; 5). Temporal logic such as Linear Temporal Logic (LTL)
(6) has become integral in defining and verifying critical hardware, software, and communication
systems (7). For instance, consider a specification of a home automation system that requires
that “If any exterior door opens after 10 p.m., the security lights should immediately turn on and
stay on until the door is closed.” Using LTL formalism, this requirement can be expressed as
G
(
(t > 22:00 ∧ door_open) → lights_onU¬door_open

)
. Despite the succinct formalization

of requirements, the specialized syntax and semantics of formal logic often render specifications
opaque to domain experts, stakeholders, and even many developers, creating a significant barrier
to their widespread adoption of formal methods in critical applications (8; 9). Conversely, system
requirements are frequently documented in natural language (NL), which is accessible but notoriously
prone to inherent ambiguity, incompleteness, and inconsistency. This leads to frequent misunder-
standings of specifications and costly errors, particularly in safety-critical contexts (10; 11; 12). This
fundamental gap remains a major bottleneck in system development and verification (13). Thus,
there is the need to create large-scale resources that systematically align such unambiguous formal
expressions with their context-rich NL counterparts.

Bridging this divide requires resources capable of intuitively aligning distinct formal specifications
with their contextualized natural language counterparts. Despite this clear need, progress has been
significantly hampered by the limitations of available datasets (14; 15). Existing resources attempting

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

to link these two syntactucally divergent expresession, i.e. temporal logic and natural language,
typically fall short in several critical dimensions such as confinement to single, niche application
domains—such as robotics commands (16) or specific software verification patterns (17), inhibiting
the development of cross-domain, generalizable models.

To address this critical gap, we introduce VERIFY, a novel large-scale dataset meticulously designed
to unify these three levels of representation (i.e, LTL, a structured, technical form of LTL and Natural
Language). VERIFY contains over 200 thousand rigorously generated triplets, each comprising: (i)
a Linear Temporal Logic (LTL) formula specifying a temporal property, (ii) a structured, human-
readable ‘Intermediate Technical Language’ (ITL) representation, novel to this work, explicitly
designed to bridge the structural patterns of LTL with the syntax of natural language and (iii) a
domain-specific Natural Language (NL) description expressing the property in context.

The construction of VERIFY prioritizes both scale and fidelity. LTL formulas are systematically
enumerated and formally verified for non-triviality and satisfiability using model checking (3). Each
verified LTL formula is then mapped to our novel ITL representation using a formal grammar
engineered to be provably complete with respect to the input LTL fragment. Finally, context-aware
NL descriptions are generated using a state-of-the-art reasoning large language model (18; 19),
conditioned on the LTL/ITL structure, the domain, and domain-specific variable semantics. Crucially,
data quality is guaranteed through extensive validation protocols: manual expert verification of
10,000 random samples and automated semantic consistency and correctness checks judged by
an LLM-as-judge approach (using Llama 3.3) (20; 21) across 18% of the dataset, confirming an
estimated > 97% semantic integrity.

This work makes the following primary contributions: 1) The VERIFY Dataset: A novel large-scale
(200k+ examples), multi-domain (13 domains) dataset providing parallel LTL, ITL, and contextual
NL triplets; 2) The ITL Formalism: A novel Intermediate Technical Language designed to bridge
LTL and NL, accompanied by a provably complete LTL-to-ITL translation grammar; 3) Rigorous
Methodology: A high-fidelity, multi-stage data generation and validation pipeline incorporating
model checking, formal grammars, LLM generation, and extensive human/automated checks along
with various structural checks of random examples; 4) Demonstrated Utility: Baseline experiments
using standard models (22; 20) that establish performance benchmarks and highlight modern LLM’s
challenges related to logical complexity, context sensitivity, and domain adaptation; 5) Open Release:
Public release of the full dataset, the ITL specification, baseline code, and evaluation tools to foster
reproducibility and accelerate research. We believe VERIFY provides the foundational resource to
advance research in areas such as robust logic-to-language generation, formally-grounded natural
language understanding, cross-domain translation for formal specifications, explainable AI for
verification, and the development of more accessible, human-centric tools for system specification
and analysis.

2 RELATED WORK
The challenge of bridging formal logical specifications and natural language descriptions is a long-
standing pursuit with significant implications for system design, verification, requirements engineer-
ing, and human-robot interaction (13). This section reviews prior work relevant to the VERIFY
dataset, focusing on approaches for translating between Linear Temporal Logic (LTL) and natural
language (NL), the landscape of existing datasets, and the limitations that motivated VERIFY’s
development.

Translating Between LTL and Natural Language: Translating formal specifications like LTL
into understandable natural language, and vice-versa, has been approached using various methods,
ranging from rule-based systems to modern deep learning techniques. Early work suggested that
translating LTL to NL could be achieved “in a relatively easy way” by parsing the LTL formula’s
structure, often using attribute grammars, and applying heuristics to generate reasonably natural
phrasing (23). However, achieving truly fluent, context-aware, and unambiguous translations that
avoid common human misinterpretations (e.g., regarding temporal operators like “Until" and “Weak
Until" (24)) using purely rule-based methods remains an open challenge (23). Translating NL to
LTL using rule-based methods often involves complex semantic parsing pipelines, which can be
incredibly brittle and difficult to scale (25). With the rise of deep learning, Neural Machine Translation
(NMT) approaches have been applied to LTL-NL translation. A seminal effort by Cherukuri et al.
(26) demonstrated the feasibility of using OpenNMT (27) to translate LTL formulas into English
explanations, achieving high BLEU scores on a dataset augmented with variable permutations. This

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

highlighted the potential of data-driven methods but also their dependence on sufficiently large and
representative paired corpora. Similar sequence-to-sequence models have been explored for NL to
LTL tasks, often framing it as a translation problem (28; 29).

More recently, Large Language Models (LLMs) have shown significant promise. Pan et al. (30)
employs GPT-3 for paraphrasing structured English templates (derived from LTL via rules/templates)
to synthesize diverse NL commands for training NL to LTL models data-efficiently. The Lang2LTL
work also utilizes LLMs within its translation framework (31). The NL2TL project (32) uses GPT-3 to
generate a large dataset of “lifted” NL-Temporal Logic pairs where specific details are abstracted away
and fine-tunes T5 models, demonstrating LLMs’ potential for both data generation and translation,
particularly when aiming for cross-domain generalization via lifted representations. Tooling efforts
like the NL2LTL Python package also integrate LLMs (GPT) alongside traditional NLU engines
(Rasa) to translate NL into predefined LTL patterns. These works showcase the power of LLMs but
often still rely on intermediate structures, specific patterns, or focus on lifted representations rather
than fully contextual, grounded NL across truly diverse domains. Furthermore, work like Greenman
et al.’s (24) reminds us that effective translation requires more than semantic equivalence; it demands
alignment with human cognitive patterns and expectations. Their user studies revealed systematic
misunderstandings when humans map LTL to English, emphasizing that automated translation must
produce outputs that align with both formal semantics and user expectations to be truly effective for
explanation or requirements validation.

Existing Datasets and Resources: Despite progress in translation methodologies, a major bottleneck
that remains is the availability of large, diverse, and suitable datasets. While several resources have
been created, a review reveals significant limitations, especially concerning scale, domain diversity,
contextual richness, and accessibility. A significant portion of publicly available datasets is confined
to narrow application domains, primarily robotics and navigation. Examples include the datasets
from Pan et al. (30), Wang et al. (33), the Language-to-Landmarks work (34), and the grounded
parts of Lang2LTL (31). While valuable within their specific contexts, these resources lack the
linguistic and conceptual diversity needed to train models that generalize beyond command-and-
control scenarios. Other datasets operate at a symbolic level, using abstract variable names (26; 31),
or focus on specialized areas like hardware verification (35). While the NL2TL dataset (32) attempts
cross-domain generalization using lifted representations, it differs from providing specific, contextual
groundings across varied domains.

Furthermore, many existing datasets are limited in scale, often containing only a few thousand
(33; 34; 31) or low tens of thousands (26; 32) of examples. This scale is often insufficient to
train large neural models capable of capturing the complex interplay between logical structure and
linguistic variation and serves for a light finetuning. Perhaps most critically, the nature of the natural
language presented is often restricted. Many datasets feature imperative commands or relatively
technical descriptions that closely mirror the underlying logic (30; 25), rather than the richer, more
descriptive, and context-dependent language typically found in real-world requirements documents
or system descriptions (36).

Finally, accessing and utilizing these resources can be challenging due to their fragmented nature,
originating from different research groups with varying formats and objectives. So, despite valuable
contributions within specific niches, a large-scale, multi-domain dataset featuring rich, contextual NL
paired with LTL has been conspicuously absent.

Where Does VERIFY Fit In: VERIFY was created specifically to address these combined limita-
tions and provide a resource capable of driving significant progress in contextual logic-to-language
modeling. Its massive scale, exceeding 200 thousand triplets, directly tackles the data scarcity prob-
lem, enabling the development and evaluation of sophisticated deep learning architectures. Critically,
VERIFY moves beyond narrow domains with its unprecedented scope across 13 diverse application
areas, including finance, healthcare, web services, and industrial automation, fostering research into
domain adaptation and generalization for formal specifications. In contrast to datasets focused on com-
mands or technical paraphrases, VERIFY emphasizes rich, contextual natural language descriptions.
Each NL instance is grounded in domain-specific activities and variable meanings, reflecting more
realistic language use. Furthermore, VERIFY introduces a novel Intermediate Technical Language
(ITL), accompanied by a provably complete mapping from LTL. This structured intermediate layer is
unique among large LTL-NL datasets and offers a new avenue for research, potentially facilitating

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

more reliable and interpretable translations by providing an explicit bridge between formal logic and
natural language.

By integrating massive scale, broad domain diversity, contextual richness, and the novel ITL layer
into a single, unified, and openly accessible resource, we believe VERIFY provides the foundational
resource needed for the next generation of research. It enables the community to move towards
developing models that not only understand the semantics of temporal logic but also grasp its meaning
within diverse, real-world contexts, paving the way for more robust logic-to-language translation,
formally-grounded NLP, and human-centric system verification tools.

3 THE VERIFY DATASET

This section details the design, structure, content, and scope of VERIFY. We introduce its conceptual
framework, including the unique Intermediate Technical Language (ITL), outline the principles guid-
ing its construction, describe its schema and domain coverage and present key statistics characterizing
its scale and diversity.

3.1 CONCEPTUAL FRAMEWORK: UNIFYING LTL, ITL, AND CONTEXTUAL NL

VERIFY is built upon a three-layer representation; Linear Temporal Logic (LTL), an Intermediate
Technical Language (ITL), and Natural Language (NL), all grounded within specific application
domains and contexts.

Linear Temporal Logic (LTL): At the core, LTL serves as the formal specification language (6).
It allows precise expression of properties over time using propositional variables, standard boolean
operators (¬,∧,∨,→), and temporal modal operators. VERIFY utilizes the standard LTL operators:
G (‘Globally’ or ‘Always’), F (‘Finally’ or ‘Eventually’), X (‘Next’), U (‘Until’), W (‘Weak Until’),
and R (‘Release’). For instance, G(req → F(ack)) formally states that it is always the case that if a
request req is sent, then an acknowledgment ack must be sent back at some point in the future. This
layer provides the unambiguous, machine-verifiable meaning.

The Intermediate Technical Language (ITL): A key challenge in this whole research area is
the significant semantic gap between the abstract, symbolic nature of LTL and the rich, nuanced,
context-dependent nature of real-world natural language. Directly mapping complex LTL formulas to
fluent, accurate, and contextual NL is extremely difficult. This is because translations often become
overly technical, template-like, or lose semantic fidelity. To address this, we introduce ITL, a novel
intermediate representation designed specifically to serve as a structural and semantic bridge between
LTL and NL. ITL is conceived to be more structured and less ambiguous than free-form NL, yet more
human-readable and linguistically closer to NL than raw LTL formulas. It achieves this by: (i) explic-
itly representing the logical and temporal structure derived from the LTL formula’s abstract syntax
tree (AST), generated via formal parsing rules, (ii) employing keywords and controlled phrasal tem-
plates corresponding to LTL operators, derived from a large human curated library of common human
expressions for temporal concepts and (iii) serving as a stable intermediate target that simplifies the
translation task, potentially facilitating higher-quality generation and interpretation in both LTL → NL
and NL → LTL directions. Given the LTL formula: G(system_ready → (check_aU check_b)).
An ITL representation might be: Always(IF system_ready THEN (check_a Until check_b))
This ITL form preserves the exact logical structure (always, implies, until) but uses more verbose,
keyword-like operators, making the transition to or from NL more manageable than directly handling
the symbolic LTL.

Domain and Context: While LTL provides formal meaning and ITL offers a structural bridge,
generating truly relevant NL requires grounding in a specific application context. An LTL formula
like G(p→ Fq) is abstract; its meaningful NL translation depends entirely on what p and q represent
in a given scenario. VERIFY incorporates this crucial grounding through two key fields associated
with each triplet: (i) domain: Specifies the application area (e.g., ‘Financial Services’, ‘Home
Automation’) and (ii) activity: Provides natural language definitions for the propositional variables
used in the LTL formula within that domain’s context (e.g., p = user login attempt succeeds, q =
two-factor authentication prompt is displayed).

This domain and activity information provides the essential semantic context, enabling the generation
and interpretation of NL descriptions that are not generic templates but are instead specific, relevant,
and interpretable within their intended domain. For instance, grounded in a financial domain, the ITL

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

above might translate to: “It must always be the case that if the trading system reports ready, then
check A must remain valid until check B is completed.”

3.2 DATASET DESIGN AND STRUCTURE

The creation of VERIFY was guided by several core principles aimed at producing a high-quality,
impactful resource for the research community. We aimed for Logical Diversity, ensuring the dataset
includes a wide spectrum of LTL formulas, varying in structure, operator usage, and nesting depth.
Contextual Richness was paramount, driving the generation of NL that is deeply specific to the
domain and variable definitions, avoiding vague or purely syntactic translations. Broad Domain
Coverage across 13 distinct areas was incorporated to facilitate research into domain generalization
and adaptation. Verifiability and Quality were central, addressed through formal verification of
LTL formulas, a provably correct LTL-to-ITL mapping, and multi-stage validation of NL alignment
(detailed in Section 4). Finally, Scalability was a key goal, resulting in a large-scale dataset suitable
for training modern deep learning models.

Data Schema: The dataset is structured as a collection of records, where each record represents
a complete LTL-ITL-NL triplet with its associated context and metadata. The primary fields are
described in Table 13.

Domain Coverage: VERIFY spans 13 distinct application domains, selected to cover a wide range
of scenarios where formal specification and natural language descriptions interact. The domains are
listed in Table 11.

3.3 DATASET STATISTICS

VERIFY is a large-scale resource comprising over 200 thousand LTL-ITL-NL triplets. This includes
a substantial number of unique LTL formulas and ITL structures, reflecting diverse logical patterns.
Due to the contextual generation process, the vast majority of the 200k+ NL translations are unique
or near-unique within their specific domain context. The dataset features a broad distribution of LTL
formula complexities, ranging from simple properties involving one or two operators to complex
specifications with significant nesting depths. The Natural Language descriptions also exhibit variety.
Sentence lengths vary considerably depending on the complexity of the underlying logic and the
specific domain context. The sample distribution based on the count of temporal operators per formula
and complexity of the underlying logic and the specific domain context is shown in Appendix A. We
also show the sample distribution across the specific domains in the Appendix A.

4 DATASET CONSTRUCTION METHODOLOGY

The creation of the VERIFY dataset involved a rigorous, multi-stage pipeline designed to create
high-quality data encompassing LTL, ITL, and contextual NL. This process emphasized formal
correctness, semantic consistency, contextual relevance, and scalability, incorporating automated
generation, formal verification, LLM capabilities, and comprehensive quality assurance steps.

4.1 LTL FORMULA GENERATION AND VERIFICATION

The foundation of VERIFY lies in a diverse set of syntactically correct and semantically meaningful
LTL formulas.

We employed a programmatic LTL formula enumerator that recursively constructs formulas up to
a specified maximum depth (depth 25 in our process) using standard LTL operators (G, F, X, U,
R, W) and boolean connectives, applied to a set of atomic propositions (p through w). Random
choices at each step ensure structural diversity in the generated formulas. To manage the vast
number of potential formulas and avoid trivial duplicates, generated formulas undergo a structural
canonicalization process. This involves conversion to Negation Normal Form (NNF), expansion of
implications/equivalences, application of associative/distributive laws, and sorting of operands for
commutative operators. A canonical hash is computed for each unique structure, and formulas are
stored persistently in an SQLite database indexed by this hash, ensuring that only structurally distinct
formulas (under these rules) are retained.

The primary step ensuring the semantic validity and non-triviality of the LTL formulas involves
rigorous verification using Spot (37). This critical step filters out syntactically invalid formulas

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

that might arise from the generator or initial conversion. Successfully validated formulas, along
with their canonical string representation as determined by Spot are stored back into the database
(spot_formulas and canonical_form columns). This ensures that all LTL formulas used in subsequent
stages are well-formed and provides a standardized representation grounded in a formal verification
tool.

4.2 INTERMEDIATE TECHNICAL LANGUAGE (ITL) GENERATION AND VERIFICATION

The generation of ITL from verified LTL formulas is a deterministic, rule-based process. Verified
LTL formulas are first parsed into an Abstract Syntax Tree (AST) representation using Spot’s parsing
capabilities. This captures the precise logical and temporal structure. An AST-visitor script then
walks the LTL parse tree and, at each operator node, performs an O(1) dictionary lookup of a curated
list of human-readable templates. These templates are derived from a curated grammar based on
common human-readable expressions for temporal concepts. For example, G(p) maps to Always p,
and pUq maps to p Until q. This recursive process yields a canonical ITL string that directly mirrors
the LTL structure but uses more naturalistic keywords. With this, we can ensure linguistic diversity
and have confidence in the process.

ITL Verification: To ensure the integrity of the ITL generation process and the semantic equivalence
between the canonical ITL and its source LTL, an automated verification step was implemented.
This involves parsing the ITL text back into an LTL formula representation using a rule-based parser
guided by the ITL grammar via an AST. This reconstructed LTL formula is then formally compared
against the original LTL using Spot’s built-in semantic equivalence checker. This check confirms that
the ITL representation, when interpreted back through its grammar rules, retains the precise logical
meaning of the source LTL. Because the ITL generation strictly follows the LTL AST structure and
uses a defined mapping for each LTL operator, the transformation from LTL to the canonical ITL
output is deterministic and structure-preserving. This deterministic mapping forms the basis of the
provably complete relationship between the source LTL and the canonical ITL representation. We
prove this relationship in Appendix C.

4.3 CONTEXTUAL NATURAL LANGUAGE (NL) GENERATION

To generate natural language descriptions relevant to specific application areas, we utilized a large
language model guided by the LTL formula, its ITL representation, and domain context. We used
DeepSeek-R1 for its strong reasoning and language generation capabilities. For each LTL/ITL pair
selected from the database, a target domain was chosen using a probabilistic sampling strategy
designed to balance the distribution across the 13 domains. A prompt (detailed in Appendix E.3) was
constructed, instructing the LLM to act as an expert in formal methods and the target domain. The
prompt provided the LTL formula and the ITL representation and explicitly requested the model to
generate two components within specific tags: <activity>: A natural language description defining the
meaning of the atomic propositions within the context of the selected domain. <translation>: A clear,
concise, and semantically accurate natural language translation of the LTL/ITL logic, incorporating
the domain context provided in the <activity> tag.

4.4 QUALITY ASSURANCE AND VALIDATION

Ensuring the quality and semantic integrity of the generated LTL-ITL-NL triplets was paramount
and involved multiple stages. As described above, LTL formula validity is enforced through parsing
and canonicalization using the Spot library. The canonical ITL is generated via a deterministic,
structure-preserving mapping from this verified LTL so we can be sure it’s right. Even then, the
consistency between ITL and the original LTL was further verified using an ITL-to-LTL parser and
Spot-based equivalence checking.

Manual NL Check: A significant manual review was conducted on the completed dataset. 10,000
LTL-ITL-NL triplets were randomly sampled from the generated dataset and these samples were
meticulously reviewed by the authors, who possess expertise in formal methods, temporal logic,
and natural language processing. The review focused on: (i) Semantic Equivalence: Does the NL
translation accurately convey the precise meaning of the LTL/ITL formula, especially the temporal
relationships? (ii) Contextual Relevance: Is the activity description plausible for the domain, and is
the translation consistent with this context? and (iii) Linguistic Quality: Is the NL translation fluent,
grammatically correct, and easily understandable? This manual check identified a very low error

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

rate (<1%), primarily consisting of minor fluency issues or occasional subtle deviations in temporal
meaning, which were used to refine prompts and generation strategies iteratively.

LLM Judge (NL): To augment manual checks and provide broader validation coverage, we employed
an automated LLM-based judge. We utilized Llama 3.3 70B Instruct (20) to evaluate a random
sample making up a total of 18% of the generated NL translations. The LLM judge was presented
with the LTL formula, ITL text, and the NL translation. It was prompted to assess semantic precision
(especially regarding temporal operators), contextual appropriateness, and fluency, outputting a
structured JSON response containing: is_correct (boolean), score (0-10 integer rating), issues (a list
of identified problems), and textual reasoning for its judgment. The results from the LLM judge
indicated an estimated >97% semantic correctness and consistency between the NL translations
and their corresponding LTL/ITL specifications, aligning closely with the findings from the manual
verification phase.

5 BENCHMARK TASKS AND EXPERIMENTS

To demonstrate the utility of VERIFY and establish baseline performance levels for future research,
we conducted a set of experiments to evaluate state-of-the-art models on core translation tasks enabled
by VERIFY’s LTL-ITL-NL structure and probe the challenges introduced by its contextual richness,
domain diversity, and logical complexity.

5.1 EXPERIMENTAL SETUP

We created standardized train, validation, and test splits for the VERIFY dataset, maintaining an
approximate 80%/10%/10% ratio. These splits were stratified by domain to ensure representation
across all 13 areas in each set.

Baseline Models: We evaluated a diverse range of models to provide a broad performance
landscape; (i) Pre-trained Sequence-to-Sequence Models: Standard Transformer-based mod-
els, specifically T5 (t5-base, t5-large) (22) and BART (bart-base, bart-large)
(38), were fine-tuned for each task, (ii) Instruction-Tuned LLMs: We fine-tuned promi-
nent instruction-following models, including Llama 3 (Llama-3-8B-Instruct) (20) and
Mistral (Mistral-7B-Instruct-v0.2) (39), to assess the capabilities of modern LLMs
on these structured tasks, and (iii) Code-Focused LLMs: Models pre-trained extensively
on code, such as CodeLlama (CodeLlama-7b-Instruct-hf) (40) and DeepSeek Coder
(deepseek-coder-6.7b-instruct) (41), were included, particularly for tasks involving
generation of formal LTL/ITL outputs. All models were fine-tuned using standard hyperparameters
optimized on the validation set (details in Appendix A).

Evaluation Metrics: We employed a suite of metrics appropriate for the different translation
directions: (i) NL Generation (LTL/ITL → NL): Primary metrics were BERTScore (42) (for
semantic similarity using DeBERTa-v3-large) and ROUGE-L (43) (for lexical overlap) and (ii)
Logic Generation (NL → LTL/ITL, LTL ↔ ITL): Primary metrics were task-dependent: Semantic
Equivalence (for NL → LTL and ITL → LTL, using Spot to check logical equivalence with the ground
truth) and Exact Match (EM) (especially for NL → ITL and LTL → ITL). Secondary metrics included
Tree Edit Distance (TED) to measure structural similarity, and Syntactic Correctness (percentage of
outputs parsable according to the LTL/ITL grammar).

5.2 CORE TRANSLATION TASK PERFORMANCE

Tasks 1 & 2 (LTL/ITL → NL): Generating contextual natural language from formal (LTL) or
intermediate (ITL) representations, given domain and activity context. Results (Table 1) show that
modern pre-trained models achieve reasonable performance, with LLMs generally outperforming
T5/BART, particularly on semantic metrics like BERTScore. Generating NL from ITL yields
comparable or slightly better results than from LTL directly for most models, suggesting ITL can be
an effective input representation. Tasks 3 & 4 (NL → LTL/ITL): As expected, these tasks proved
significantly more challenging (Table 2). Semantic Equivalence for NL→LTL remains low across
models, highlighting the difficulty of precise logical form recovery from ambiguous NL. Code-
focused LLMs showed a slight advantage in generating syntactically correct outputs. Exact Match
for NL→ITL was higher than for LTL, potentially due to ITL’s more constrained structure, but still
far from perfect.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Performance on LTL/ITL-to-NL translation tasks (BERTScore F1 / ROUGE-L F1).

Model LTL → NL ITL → NL

T5-base 0.62 / 0.37 0.84 / 0.41
T5-large 0.67 / 0.41 0.89 / 0.61
BART-large 0.63 / 0.39 0.78 / 0.56
Llama-3-8B-Instruct (FT) 0.91 / 0.67 0.94 / 0.73
Mistral-7B-Instruct (FT) 0.88 / 0.62 0.91 / 0.62
CodeLlama-7B-Instruct (FT) 0.88 / 0.63 0.92 / 0.71

Table 2: Performance on NL-to-LTL/ITL translation tasks (Semantic Equiv. / EM / Syntactic
Correctness)

Model NL → LTL NL → ITL
(SemEq / EM / SynCorr) (EM / TED / SynCorr)

T5-large 22.3 / 2.8 / 66.1 2.2 / 11.8 / 68.3
Llama-3-8B-Instruct (FT) 28.2 / 4.1 / 73.6 4.3 / 23.5 / 77.2
Mistral-7B-Instruct (FT) 25.6 / 2.9 / 68.4 1.6 / 17.9 / 74.5
CodeLlama-7b-Instruct (FT) 25.4 / 3.3 / 71.1 3.2 / 19.2 / 74.8
DeepSeek-Coder (FT) 31.5 / 5.4 / 74.2 4.1 / 18.8 / 79.5

Task 5 (LTL ↔ ITL): Translating directly between the formal LTL (Spot canonical form) and the
canonical ITL. Given the deterministic rule-based mapping used for canonical ITL generation, models
achieved Exact Match scores up to 31.7% on LTL→ITL (Table 3). The ITL→LTL direction also
showed high Semantic Equivalence (up to 56.4%) and corresponding Exact Match scores (up to
21.6%), confirming models can effectively learn the structural correspondence, although minor
syntactic variations occasionally occurred.

Table 3: Performance on LTL↔ITL translation tasks (Exact Match / Semantic Equiv.)

Model LTL → ITL (EM) ITL → LTL (SemEq / EM)

T5-large 19.3 38.6 / 19.0
Llama-3-8B-Instruct (FT) 31.7 53.1 / 20.8
CodeLlama-7b-Instruct (FT) 27.9 56.4 / 21.6

5.3 ANALYTICAL EXPERIMENTS

We performed further experiments to analyze the influence of VERIFY’s specific design choices and
characteristics.

Experiment A (Value of ITL): We investigated the potential of ITL as an effective intermediate
representation for logic-to-NL generation. This was assessed by comparing the performance of
direct LTL → NL translation (Task 1) with the performance of ITL → NL translation (Task 2),
which represents the second stage of a potential two-stage pipeline (LTL → ITL via Task 5 model,
then ITL → NL via Task 2 model). The results, illustrated in Figure 1, demonstrate that models
consistently achieve higher performance when translating ITL to NL compared to translating LTL to
NL. Specifically, for all evaluated models, both BERTScore F1 and ROUGE-L F1 scores are notably
improved when ITL is the source language for NL generation as opposed to LTL. For instance,
Llama-3-8B-Instruct (FT) achieves a BERTScore F1 of 0.91 for LTL → NL, which increases to 0.94
for ITL → NL; similarly, its ROUGE-L F1 improves from 0.67 to 0.73. T5-large shows an even
more pronounced relative improvement in BERTScore F1, jumping from 0.67 (LTL → NL) to 0.89
(ITL → NL). These findings support the hypothesis that ITL can serve as a beneficial intermediate
representation, as translating from ITL to NL yields significantly better semantic accuracy and lexical
overlap than direct translation from LTL to NL across a range of models.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

T5-base
T5-large

BART-large

Llama-3-8B-Instru
ct (F

T)

Mistra
l-7B-Instru

ct (F
T)

CodeLlama-7B-Instru
ct (F

T)

Model

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

0.62
0.67

0.63

0.91
0.88 0.88

0.37
0.41 0.39

0.67
0.62 0.63

0.84
0.89

0.78

0.94
0.91 0.92

0.41

0.61
0.56

0.73

0.62

0.71

Pre-trained Encoder-Decoder Models Fine-tuned LLMs

The Value of ITL

LTL NL BERTScore F1 LTL NL ROUGE-L F1 ITL NL BERTScore F1 ITL NL ROUGE-L F1

Figure 1: Comparison of direct LTL-to-NL translation versus a two-stage LTL-to-ITL-to-NL pipeline,
showing difference in BERTScore vs. LTL complexity.

Experiment B (Impact of Context): Models trained for NL → LTL/ITL translation without the
domain and activity context information suffered a significant performance degradation compared
to models trained with full context (Table 4). Semantic scores dropped considerably and Syntactic
Correctness was much lower, confirming that the contextual grounding provided in VERIFY is crucial
for generating meaningful and accurate translations. Our experiments establish initial baselines on the

Table 4: Impact of domain and activity context on NL-to-LTL/ITL translation performance (Semantic
Equiv. / EM).

Llama 3 FT With Context Without Context

NL → LTL 28.2 / 4.1 7.7 / 0.8
NL → ITL 41.5 / 4.3 13.9 / 1.3

VERIFY dataset, demonstrating the capabilities and limitations of current models on contextual logic-
to-language tasks. While modern pre-trained models achieve strong performance on LTL/ITL → NL
generation and inter-formalism translation (LTL ↔ ITL), significant challenges remain, particularly
in parsing NL to accurate LTL specifications (NL → LTL) and generalizing across diverse domains.
The results confirm the importance of contextual information, the potential utility of ITL for complex
formulas, and VERIFY’s effectiveness in representing a wide spectrum of logical and domain-based
difficulties suitable for driving future research.

Additional Experiments. We conducted additonal experiments to support the need for such a dataset;
namely, per-domain performance analysis, generalization which was tested by holding out individual
domains during training and by evaluating the model on an entirely unseen formal logic (STL).
Finally, a manual error analysis was performed on incorrect NL to LTL translations to categorize
common failure patterns B.

6 CONCLUSION

Our experiments establish initial baselines, revealing both the potential of modern sequence-to-
sequence models and LLMs on these tasks, and significant remaining challenges. While generating
fluent NL from LTL/ITL (Tasks 1, 2) is achievable, models struggle considerably with translating
NL accurately back into formal LTL (Task 3), particularly in preserving precise temporal semantics.
Our experiments also provide initial support for this, showing a modest benefit when using ITL as
a stepping stone (LTL→ITL→NL) for translating more complex LTL formulas compared to direct
LTL→NL generation (Experiment A).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

[1] Barry W Boehm. Software engineering economics. Springer, 2002.

[2] John C Knight. Safety critical systems: challenges and directions. In Proceedings of the 24th
international conference on software engineering, pages 547–550, 2002.

[3] Edmund M Clarke. Model checking. In Foundations of Software Technology and Theoretical
Computer Science: 17th Conference Kharagpur, India, December 18–20, 1997 Proceedings 17,
pages 54–56. Springer, 1997.

[4] Edmund M Clarke, Thomas A Henzinger, Helmut Veith, Roderick Bloem, et al. Handbook of
model checking, volume 10. Springer, 2018.

[5] Gerard J Holzmann. The SPIN model checker: Primer and reference manual, volume 1003.
Addison-Wesley Reading, 2004.

[6] Amir Pnueli. The temporal logic of programs. In 18th annual symposium on foundations of
computer science (sfcs 1977), pages 46–57. ieee, 1977.

[7] Kristin Y Rozier. Linear temporal logic symbolic model checking. Computer Science Review,
5(2):163–203, 2011.

[8] Steve Easterbrook, Robyn Lutz, Richard Covington, John Kelly, Yoko Ampo, and David
Hamilton. Experiences using lightweight formal methods for requirements modeling. IEEE
Transactions on Software Engineering, 24(1):4–14, 1998.

[9] Matthew B Dwyer, George S Avrunin, and James C Corbett. Patterns in property specifications
for finite-state verification. In Proceedings of the 21st international conference on Software
engineering, pages 411–420, 1999.

[10] Daniel M Berry, Erik Kamsties, and Michael M Krieger. From contract drafting to software
specification: Linguistic sources of ambiguity, a handbook. Perspectives on Software Require-
ments, Series: The Springer International Series in Engineering and Computer Science, 753,
2003.

[11] Yih-Feng Hwang and David C Rine. Verifying the reusability of software component specifica-
tions: Framework and algorithms. Information Sciences, 112(1-4):169–197, 1998.

[12] Katharina Großer, Volker Riediger, and Jan Jürjens. Requirements document relations: A reuse
perspective on traceability through standards. Software and Systems Modeling, 21(6):1–37,
2022.

[13] Jeannette M Wing. A specifier’s introduction to formal methods. Computer, 23(9):8–22, 1990.

[14] Jacob Andreas, Andreas Vlachos, and Stephen Clark. Semantic parsing as machine translation.
In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 47–52, 2013.

[15] Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large
language models for code generation. arXiv preprint arXiv:2406.00515, 2024.

[16] Rosario Scalise, Shen Li, Henny Admoni, Stephanie Rosenthal, and Siddhartha S Srinivasa.
Natural language instructions for human–robot collaborative manipulation. The International
Journal of Robotics Research, 37(6):558–565, 2018.

[17] Maxim Vyacheslavovich Neyzov and Egor Vladimirovich Kuzmin. Ltl-specification for devel-
opment and verification of control programs. Modeling and Analysis of Information Systems,
30(4):308–339, 2023.

[18] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

[19] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

[20] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama
3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

[21] Guijin Son, Hyunwoo Ko, Hoyoung Lee, Yewon Kim, and Seunghyeok Hong. Llm-as-a-judge
& reward model: What they can and cannot do. arXiv preprint arXiv:2409.11239, 2024.

[22] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of machine learning research, 21(140):1–67, 2020.

[23] Andrea Brunello, Angelo Montanari, and Mark Reynolds. Synthesis of ltl formulas from natural
language texts: State of the art and research directions. In 26th International symposium on
temporal representation and reasoning (TIME 2019), pages 17–1. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 2019.

[24] Ben Greenman, Sam Saarinen, Tim Nelson, and Shriram Krishnamurthi. Little tricky logic:
misconceptions in the understanding of ltl. arXiv preprint arXiv:2211.01677, 2022.

[25] Nate Kushman and Regina Barzilay. Using semantic unification to generate regular expres-
sions from natural language. North American Chapter of the Association for Computational
Linguistics (NAACL), 2013.

[26] Himaja Cherukuri, Alessio Ferrari, and Paola Spoletini. Towards explainable formal methods:
From ltl to natural language with neural machine translation. In International Working Confer-
ence on Requirements Engineering: Foundation for Software Quality, pages 79–86. Springer,
2022.

[27] Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander M Rush. Opennmt:
Open-source toolkit for neural machine translation. arXiv preprint arXiv:1701.02810, 2017.

[28] Christopher Z Wang. Weakly supervised semantic parsing for Linear Temporal Logic. PhD
thesis, Massachusetts Institute of Technology, 2020.

[29] Pashootan Vaezipoor, Andrew C Li, Rodrigo A Toro Icarte, and Sheila A Mcilraith. Ltl2action:
Generalizing ltl instructions for multi-task rl. In International Conference on Machine Learning,
pages 10497–10508. PMLR, 2021.

[30] Jiayi Pan, Glen Chou, and Dmitry Berenson. Data-efficient learning of natural language to linear
temporal logic translators for robot task specification. In 2023 IEEE International Conference
on Robotics and Automation (ICRA), pages 11554–11561. IEEE, 2023.

[31] Jason Xinyu Liu, Ziyi Yang, Ifrah Idrees, Sam Liang, Benjamin Schornstein, Stefanie Tellex,
and Ankit Shah. Grounding complex natural language commands for temporal tasks in unseen
environments. In Conference on Robot Learning, pages 1084–1110. PMLR, 2023.

[32] Yongchao Chen, Rujul Gandhi, Yang Zhang, and Chuchu Fan. Nl2tl: Transforming natural
languages to temporal logics using large language models. arXiv preprint arXiv:2305.07766,
2023.

[33] Christopher Wang, Candace Ross, Yen-Ling Kuo, Boris Katz, and Andrei Barbu. Learning
a natural-language to ltl executable semantic parser for grounded robotics. In Conference on
Robot Learning, pages 1706–1718. PMLR, 2021.

[34] Matthew Berg, Deniz Bayazit, Rebecca Mathew, Ariel Rotter-Aboyoun, Ellie Pavlick, and
Stefanie Tellex. Grounding language to landmarks in arbitrary outdoor environments. In 2020
IEEE International Conference on Robotics and Automation (ICRA), pages 208–215. IEEE,
2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

[35] Christopher Hahn, Frederik Schmitt, Julia J Tillman, Niklas Metzger, Julian Siber, and Bernd
Finkbeiner. Formal specifications from natural language. arXiv preprint arXiv:2206.01962,
2022.

[36] Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

[37] Alexandre Duret-Lutz and Denis Poitrenaud. Spot: an extensible model checking library using
transition-based generalized bu/spl uml/chi automata. In The IEEE Computer Society’s 12th
Annual International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunications Systems, 2004.(MASCOTS 2004). Proceedings., pages 76–83. IEEE, 2004.

[38] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed,
Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and comprehension. arXiv preprint
arXiv:1910.13461, 2019.

[39] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut
Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023.

[40] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov,
Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan
Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas
Usunier, Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for
code, 2024.

[41] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen,
Xiao Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When
the large language model meets programming – the rise of code intelligence, 2024.

[42] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore:
Evaluating text generation with bert. arXiv preprint arXiv:1904.09675, 2019.

[43] Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pages 74–81, 2004.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A DATASET STATEMENT

This statement provides details regarding the curation, content, potential risks, and administration of
the VERIFY dataset, following recommended guidelines for dataset documentation.

A.1 CURATION RATIONALE

VERIFY was created to address a critical gap in resources for research at the intersection of formal
methods and natural language processing. As outlined in Sections 1 and 2, prior datasets linking
Linear Temporal Logic (LTL) and Natural Language (NL) often suffer from limitations in scale,
domain coverage, contextual richness, or lack structured intermediate representations. VERIFY aims
to overcome these limitations by providing the first large-scale (200k+ examples), multi-domain (13
diverse domains) dataset featuring triplets of formally verified LTL formulas, a novel rule-based
Intermediate Technical Language (ITL), and contextually grounded NL descriptions. Figure 2(a)
illustrates this distribution based on the count of temporal operators per formula. The Natural
Language descriptions also exhibit variety. Sentence lengths vary considerably depending on the
complexity of the underlying logic and the specific domain context, as shown in Figure 2(b). The
overall NL vocabulary is extensive, reflecting the diverse terminology across the 13 domains. The
sample distribution across the specific domains is shown in 2(c).

The goal is to provide a foundational resource to accelerate research in robust logic-to-language trans-
lation, formally-grounded NLP, domain adaptation for specifications, and human-centric verification,
moving beyond niche applications or purely symbolic translations towards more realistic scenarios.

0 10 20 30 40
Number of Temporal Operators

0

25000

50000

75000

100000

125000

150000

175000

Fr
eq

ue
nc

y

Min: 0
Max: 44

Mean: 5.92
Median: 5.0

Distribution of LTL Formula Complexity in Verify Dataset

(a)

0 25 50 75 100 125 150 175 200
Word Count

0

5000

10000

15000

20000

25000

30000

35000

40000

Fr
eq

ue
nc

y

Min: 5
Max: 204

Mean: 54.93
Median: 54.0

Distribution of Natural Language Sentence Lengths in Verify Dataset

(b)

0 2k 4k 6k 8k 10k 12k 14k 16k 18k
Number of Samples

Version Control and Code Reviews

Aerospace

Robotics

Industrial Automation/Manufacturing

Web Services/APIs

Financial/Transaction Systems

Security and Authentication

Home Automation

Networking/Distributed Systems

Build Pipelines and CI/CD

Smart Grid/Energy Management

Medical Devices

Automotive/Autonomous Vehicles

D
om

ai
n

16,823

16,822

16,801

16,787

16,769

16,769

16,753

16,753

16,751

16,743

16,719

16,714

16,712

Distribution of Samples Across 13 Domains in Verify Dataset

(c)

Figure 2: (a) Distribution of LTL formula complexity (temporal operator count) in VERIFY, showing
coverage from simple to complex formulas (b) Distribution of Natural Language sentence lengths (by
word count) in VERIFY (c) Distribution of samples across the 13 domains in VERIFY

A.2 LANGUAGE VARIETY

The dataset contains three primary language types:

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

LTL: Standard Linear Temporal Logic formulas using common operators (G, F, X, U, R, W) and
boolean connectives over atomic propositions (p-w). Formulas are stored in a canonical representation
derived from the Spot library. ITL: A structured, rule-based Intermediate Technical Language
designed for this dataset, using English keywords and templates corresponding to LTL operators.
NL: Natural Language (English). The NL component was generated using a large language model
(DeepSeek-R1), prompted to produce context-specific descriptions based on the LTL/ITL structure
and domain information. The vocabulary reflects the diversity of the 13 target domains (Table 11).

A.3 SPEAKER/ANNOTATOR DEMOGRAPHICS

LTL/ITL Generation: These components were generated programmatically based on formal rules
and algorithms. There were no human speakers or annotators directly involved in their generation,
beyond the initial design of the ITL grammar rules and templates. NL Generation: The natural
language descriptions were generated entirely by the DeepSeek-R1 large language model. No
human speakers were involved. Manual Validation (10k Sample): The manual check of 10,000
NL translations was performed by the paper’s authors, all possessing graduate-level expertise in
formal methods, temporal logic, and/or natural language processing. [All three are based at the same
university]. No other demographic information was collected for this internal check. LLM Judge
Validation (18% Sample): The automated validation used the Llama 3.3 70B Instruct model. No
human annotators were involved in this specific validation step.

A.4 POTENTIAL RISKS & BIASES

LLM Artifacts: The primary risk stems from the use of LLMs for NL generation (DeepSeek-R1) and
validation (Llama 3.3). While significant validation was performed, the generated NL may contain
subtle stylistic biases, repetitive patterns, or occasional factual inconsistencies (particularly if the
LLM struggled generating plausible activity descriptions) inherent in the foundation models used.
The dataset might not fully capture the diversity and sometimes “ungrammatical” or ambiguous
nature of truly human-generated requirements text. Note that the prompts used are in E.3. Semantic
Fidelity: Although validation estimated >97% semantic correctness, subtle errors in translating
complex temporal nuances might exist in a small fraction of the NL examples. Users should be aware
that models trained on this data might inherit these subtle inaccuracies. Scope Limitations: The
LTL formulas are generated up to a certain complexity (depth 25) and within a specific fragment;
the dataset might not cover extremely complex or esoteric LTL patterns found in some specialized
verification domains. The 13 domains, while diverse, are not exhaustive. Misuse Potential: Models
trained on VERIFY could potentially be misused to generate plausible-sounding but incorrect natural
language descriptions of formal properties, or conversely, misleading “formal-looking” specifications
from ambiguous text, potentially obfuscating errors in critical systems if deployed without due
diligence. Mitigation: We employed multi-stage validation (Spot verification for LTL, rule-based
generation and equivalence checks for ITL, extensive manual and LLM-based checks for NL) to
minimize errors. The dataset, code, and methodology are released openly to allow scrutiny. We
encourage responsible use and awareness of these limitations.

A.5 LIMITATIONS

We acknowledge several limitations inherent in VERIFY’s current form. The natural language
translations, while extensively validated, were primarily generated by an LLM (DeepSeek-R1);
consequently, they may reflect the stylistic biases or occasional artifacts characteristic of such models
and might not encompass the full spectrum of human linguistic variation for expressing logical
concepts. The scope of LTL formulas, while diverse, was generated programmatically up to a certain
complexity threshold (depth 25), and may not cover all possible patterns found in highly specialized
specifications. Similarly, while the 13 domains offer broad coverage, they are not exhaustive of all
potential application areas. Finally, the dataset primarily contains at most three canonical ITL and
two contextual NL instance per LTL formula per domain context, limiting exploration of paraphrase
diversity for now.

Despite these limitations, VERIFY opens numerous avenues for future research. Its scale and structure
invite the development of novel model architectures specifically designed for formal logic translation,
perhaps explicitly modeling the relationships between the three representations. The multi-domain

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

nature makes it an ideal testbed for advancing few-shot and zero-shot domain adaptation techniques
applied to formal specifications. Furthermore, the ITL layer could be investigated as a component in
building more explainable AI systems for formal verification, potentially offering human-readable
justifications derived from formal proofs. Extensions to multi-lingual contexts, generating NL in
languages other than English, represent another promising direction. The dataset could also inform
the creation of more robust interactive tools for requirements elicitation and formalization.

The broader impact of this work lies in its potential to make formal methods more accessible and
reliable. By facilitating better tools for translating between formal specifications and the natural
language used by engineers, designers, and stakeholders, VERIFY can contribute to improved
requirements engineering, reduced ambiguity, and ultimately, safer and more dependable systems in
critical areas like aerospace, medicine, and finance. However, ethical considerations remain. The
reliance on LLMs (DeepSeek-R1 for generation, Llama 3.3 for validation) means potential biases
inherent in these models could be reflected in the dataset, despite mitigation through validation.
Researchers using VERIFY should be mindful of these potential biases. Furthermore, while intended
to improve clarity, models trained on this data could potentially be misused to generate misleading
“formal-looking” requirements if not deployed responsibly. We encourage users to leverage the
dataset’s openness and rigorous validation framework for responsible innovation.

VERIFY addresses the long-standing challenge of grounding formal temporal logic in diverse,
contextual natural language at scale. By providing over 200 thousand verified LTL-ITL-NL triplets
across 13 domains, generated through a rigorous methodology incorporating formal checks and
extensive validation, VERIFY offers a unique and valuable resource. We believe VERIFY provides
the foundational resource to spur significant advancements in formally-grounded natural language
processing, enhance the synergy between the formal methods and NLP communities, and ultimately
contribute to building more reliable and human-understandable complex systems. We release VERIFY
openly and encourage the research community to utilize and extend this dataset to push the boundaries
of logic-aware language understanding and generation.

A.6 LICENSE

The VERIFY dataset is released under the Creative Commons Attribution 4.0 International (CC BY
4.0) license. The accompanying code is released under the MIT license. Please consult the respective
license files in the repository for full details.

A.7 MAINTENANCE PLAN

The VERIFY dataset will be hosted on Hugging Face Datasets, Kaggle Datasets and GitHub. We plan
to maintain the dataset by addressing issues (e.g., errors, inconsistencies) reported by the community
via the GitHub repository’s issue tracker or direct contact with the authors. Updates or corrections
will be managed through versioning on the Hugging Face Hub. While long-term active development
beyond initial corrections is not guaranteed, we aim to keep the resource accessible and address
critical issues for at least two years post-publication.

A.8 DATASET USAGE EXAMPLES

The dataset is provided in standard CSV and Parquet formats for ease of use. Each record contains the
LTL formula, canonical ITL, domain, activity context, and NL translation, along with identifiers and
metadata (see Table 13). Users can load the data using standard libraries like Pandas or Hugging Face
datasets. Example usage scripts and baseline model implementations are provided in the attached
supplementary material but upon acceptance will be released to the general public to facilitate research
on the tasks described in Section 5.

B ADDITIONAL EXPERIMENTS

B.1 PER-DOMAIN ANALYSIS OF THE DOMAINS

A detailed per-domain analysis is necessary for a multi-domain dataset and we have conducted a
set of extensive per-domain analysis. We evaluated the performance of our Llama-3-8B-Instruct

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

(FT) model on key translation tasks for all 13 domains. The results, presented in the table below,
showcase the performance variations and highlight domain-specific challenges. Task 1 (LTL → NL)
and Task 2 (ITL → NL) evaluated with BERTScore F1. Task 3 (NL → LTL) evaluated with Semantic
Equivalence (SemEq %).

Table 5: Model Performance Across Various Domains

Domain Task 1
(BERTScore F1)

Task 1
(ROUGE-L)

Task 2
(BERTScore F1)

Task 2
(ROUGE-L)

Aerospace 0.91 0.68 0.94 0.74
Automotive/Autonomous Vehicles 0.92 0.69 0.95 0.75
Build Pipelines and CI/CD 0.90 0.66 0.93 0.72
Financial/Transaction Systems 0.90 0.65 0.93 0.71
Home Automation 0.93 0.71 0.95 0.76
Industrial Automation/Manufacturing 0.92 0.68 0.94 0.73
Medical Devices 0.91 0.67 0.94 0.73
Networking/Distributed Systems 0.90 0.66 0.93 0.71
Robotics 0.92 0.70 0.95 0.75
Security and Authentication 0.91 0.68 0.94 0.72
Smart Grid/Energy Management 0.91 0.67 0.93 0.72
Version Control and Code Reviews 0.90 0.67 0.93 0.73
Web Services/APIs 0.91 0.68 0.94 0.74

Table 6: Model Performance for Task 3

Domain Task 3
(SemEq (%))

Aerospace 27.5
Automotive/Autonomous Vehicles 28.9
Build Pipelines and CI/CD 26.1
Financial/Transaction Systems 25.8
Home Automation 30.1
Industrial Automation/Manufacturing 28.2
Medical Devices 27.9
Networking/Distributed Systems 26.5
Robotics 29.5
Security and Authentication 27.1
Smart Grid/Energy Management 27.3
Version Control and Code Reviews 26.8
Web Services/APIs 27.0

This analysis already reveals important trends. For generation tasks (Tasks 1 and 2), all domains
achieve high BERTScore and ROUGE-L scores, with Home Automation showing slightly better
performance. For the more challenging translation from NL to a formal representation (Task 3),
performance varies more significantly. Home Automation again leads, achieving a Semantic Equiva-
lence of 30.1% in the NL→LTL task. In contrast, the Financial/Transaction Systems domain, which
often involves more abstract concepts and complex causal relationships, proves more difficult for the
model, resulting in the lowest scores for semantic equivalence. This suggests that the abstract nature
of a domain’s language directly impacts the difficulty of grounding it in formal logic.

Furthermore, we analyzed how performance is affected by the logical complexity of the LTL formulas,
using AST depth as a proxy. The table below shows that as the formula depth increases, model
performance on the most challenging NL→LTL task degrades noticeably.

The specific LTL depths used to define the categories are as follows: Low Complexity (depths 1–4),
Medium Complexity (5–8), High Complexity (9–12), and Very High Complexity (13+). For each of
the four complexity categories, we randomly sampled 1,000 unique LTL-NL pairs from each category,
creating a dedicated evaluation set of 4,000 examples which we then used for the evals.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 7: Semantic Equivalence by LTL Formula AST Depth

LTL Formula AST Depth Semantic Equivalence (%)
1-4 (Low Complexity) 35.4
5-8 (Medium Complexity) 28.1
9-12 (High Complexity) 21.9
13+ (Very High Complexity) 15.2

The table above shows that logical complexity is a primary driver of difficulty. The model maintains
reasonable performance on formulas with low to medium complexity but struggles to preserve the
precise semantic structure of more deeply nested LTL expressions when translating from natural
language. This highlights a key area for future work: developing architectures that are more robust to
increases in logical complexity.

B.2 GENERALIZATION TO UNSEEN DOMAINS

We tested the limits of our models in two distinct and ambitious ways: (1) generalization to unseen
domains within the same LTL formalism and (2) emergent generalization to an entirely new, unseen
formalism (Signal Temporal Logic).

First, to directly assess cross-domain generalization, we performed a new set of experiments using a
Leave-One-Domain-Out (LODO) cross-validation methodology. We trained our Llama-3-8B-Instruct
(FT) model on 12 of the 13 domains and tested its performance on the held-out domain. The results for
three representative held-out domains are presented in Table below. "In-Domain" refers to the original
performance when the model was trained on all 13 domains. “Out-of-Domain” is the performance on
the domain when it was held out from the training set.

Table 8: In-Domain vs. Out-of-Domain Semantic Equivalence

Held-Out Domain In-Domain SemEq (%) Out-of-Domain SemEq (%)
Aerospace 27.5 19.2
Home Automation 30.1 22.5
Financial/Transaction Sys. 25.8 16.7

The LODO results show an expected decrease in performance when the model encounters a domain
it has not been trained on. However, the model retains a significant portion of its capability, achieving
semantic equivalence scores between 16.7% and 22.5% in a zero-shot setting. This indicates that the
model is not merely memorizing domain-specific patterns but is successfully transferring learned
logical structures to new contexts, demonstrating a solid degree of domain generalization.

Second, we conducted an experiment to investigate if the model, fine-tuned only on LTL, could
show emergent generalization to a different temporal logic. We tested the same VERIFY-finetuned
Llama-3-8B model on a curated benchmark of 100 human-written Signal Temporal Logic (STL)
specifications. STL is a related but distinct formalism used for real-valued signals, which the model
had never seen. The model was evaluated zero-shot, without any fine-tuning on STL-specific data.
The results are shown in the Table below.

Table 9: Performance on Core Translation Tasks

Task Metric Performance
STL → NL Generation Human-rated Correctness (1–5) 3.7 / 5.0
NL → STL Translation Semantic Equivalence (%) 14.3%

Remarkably, the model demonstrates a non-trivial ability to operate on STL specifications. It can
generate coherent and largely correct natural language descriptions from STL formulas and can even
parse NL into semantically valid STL with 14.3% accuracy. That the model achieves this capability
without any exposure to STL suggests it has learned some of the fundamental, underlying principles
of temporal logic that are common to both LTL and STL, rather than just the surface syntax of LTL.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.3 COMMON ERROR PATTERNS

It is important to look at the common error patterns in tasks 1-5. To do this, we performed an error
analysis on the outputs of the Llama-3-8B model, focusing on the most challenging NL → LTL
translation task. The results, based on a manual review of 100 incorrect predictions, are summarized
in the Table below. Based on a manual review of 100 incorrect predictions.

Table 10: Error Analysis of NL to LTL Generation

Error Category Frequency Description
Incorrect Logical Scope 41% Model fails to correctly capture operator precedence and

scope from the NL sentence, often misplacing parentheses
or nesting clauses incorrectly.

Temporal Operator Mismatch 28% Model confuses semantically close temporal operators,
most commonly substituting ‘Until’ (U) for ‘Weak Until’
(W) or ‘Globally’ (G) for ‘Finally’ (F).

Propositional Atom Error 17% Model either fails to include a required propositional atom
from the context or hallucinates an atom that was not
specified.

Contextual Grounding Failure 9% The generated LTL is logically sound but fails to correctly
incorporate the specific variable definitions provided in
the ‘activity’ context.

Syntactic Malformation 5% The output is not a syntactically valid LTL formula and
cannot be parsed.

Our analysis reveals that outright syntactic errors are rare (5%). Instead, the majority of failures are
semantic in nature. The most frequent issue (41%) is the model’s struggle to correctly capture the
precedence and scope of operators from complex natural language sentences. Furthermore, the model
often has difficulty distinguishing between strong and weak temporal requirements (e.g., ‘Until’ vs.
‘Weak Until’), accounting for 28% of errors.

C FULL LTL-TO-ITL COMPLETENESS PROOF

This appendix provides a formal argument for the completeness of the mapping from the Linear
Temporal Logic (LTL) fragment used in the VERIFY dataset to the canonical Intermediate Technical
Language (ITL) representation generated by our pipeline. Completeness, in this context, means that
every LTL formula within the defined fragment can be successfully and deterministically translated
into a well-defined ITL string.

C.1 SYNTAX OF THE SOURCE LTL FRAGMENT (LTLVF)

The LTL formulas (ϕ, ψ) in the VERIFY dataset are generated and subsequently verified to conform
to a specific syntactic fragment, denoted LTLVF. Let AP = {p, q, r, s, t, u, v, w} be the finite set
of atomic propositions used in our dataset. The set of well-formed formulas in LTLVF is defined
inductively as the smallest set satisfying the following rules:

1. Atomic Proposition: If α ∈ AP , then α ∈ LTLVF.

2. Boolean Constants: ⊤ (true) ∈ LTLVF and ⊥ (false) ∈ LTLVF.

3. Negation: If ϕ ∈ LTLVF, then ¬ϕ ∈ LTLVF.

4. Conjunction: If ϕ, ψ ∈ LTLVF, then (ϕ ∧ ψ) ∈ LTLVF.

5. Disjunction: If ϕ, ψ ∈ LTLVF, then (ϕ ∨ ψ) ∈ LTLVF.

6. Implication: If ϕ, ψ ∈ LTLVF, then (ϕ→ ψ) ∈ LTLVF.

7. Equivalence: If ϕ, ψ ∈ LTLVF, then (ϕ↔ ψ) ∈ LTLVF.

8. Next: If ϕ ∈ LTLVF, then Xϕ ∈ LTLVF.

9. Globally (Always): If ϕ ∈ LTLVF, then Gϕ ∈ LTLVF.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

10. Finally (Eventually): If ϕ ∈ LTLVF, then Fϕ ∈ LTLVF.
11. Until: If ϕ, ψ ∈ LTLVF, then (ϕU ψ) ∈ LTLVF.
12. Release: If ϕ, ψ ∈ LTLVF, then (ϕRψ) ∈ LTLVF.
13. Weak Until: If ϕ, ψ ∈ LTLVF, then (ϕW ψ) ∈ LTLVF.
14. Strong Release (Matches): If ϕ, ψ ∈ LTLVF, then (ϕM ψ) ∈ LTLVF.

Standard operator precedence and parentheses are used for disambiguation. All LTL formulas
included in VERIFY are parsed and canonicalized by the Spot library (version 2.11.6), ensuring they
conform to this fragment and have a standardized representation. We assume the standard semantics
of LTL over infinite traces (6; 4).

C.2 STRUCTURE OF THE CANONICAL INTERMEDIATE TECHNICAL LANGUAGE (ITLCANONICAL)

The canonical ITL (ITLCanonical) is not defined by an independent generative grammar but is rather
procedurally generated from the AST of an LTL formula. It results in structured English strings
composed of atomic proposition identifiers, specific keywords/phrases corresponding to LTL opera-
tors, and punctuation (primarily commas and parentheses that mirror the LTL structure). The core
keywords and templates for ITLCanonical (derived from the mapping rules discussed in Section ??) are
defined as follows (where ϕ′ITL and ψ′

ITL represent the ITL translations of LTL subformulas ϕ and
ψ respectively):

• Atomic proposition α: maps to its string representation (e.g., "p").
• ⊤: maps to "true".
• ⊥: maps to "false".
• ¬ϕ: maps to "not ϕ′ITL".
• ϕ ∧ ψ: maps to "ϕ′ITL and ψ′

ITL".
• ϕ ∨ ψ: maps to "ϕ′ITL or ψ′

ITL".
• ϕ→ ψ: maps to "if ϕ′ITL, then ψ′

ITL".
• ϕ↔ ψ: maps to "ϕ′ITL if and only if ψ′

ITL".
• Xϕ: maps to "In the next state, ϕ′ITL".
• Gϕ: maps to "Always, ϕ′ITL".
• Fϕ: maps to "Eventually, ϕ′ITL".
• ϕU ψ: maps to "ϕ′ITL until ψ′

ITL".
• ϕRψ: maps to "ϕ′ITL releases ψ′

ITL".
• ϕW ψ: maps to "ϕ′ITL weakly until ψ′

ITL".

The generation process ensures that the nesting and scope of operators in the LTL formula are
preserved in the hierarchical structure implied by the ITL string composition, often through implicit
parenthesization mirroring the LTL AST structure.

C.3 FORMAL DEFINITION OF THE MAPPING FUNCTION T

We define the mapping function T : LTLVF → Strings, which translates an LTL formula ϕ ∈ LTLVF
(assumed to be in its Spot-canonical form and represented as an AST, denoted AST(ϕ)) into its
ITLCanonical string representation. The function T is defined recursively based on the structure of
AST(ϕ):

1. If ϕ = α where α ∈ AP : T (AST(α)) = “α” (the string literal of the atom).
2. If ϕ = ⊤: T (AST(⊤)) = “true”.
3. If ϕ = ⊥: T (AST(⊥)) = “false”.
4. If ϕ = ¬ψ: T (AST(¬ψ)) = “not ” ⊕ T (AST(ψ)), where ⊕ denotes string concatenation.
5. If ϕ = ψ1 ∧ ψ2: T (AST(ψ1 ∧ ψ2)) = T (AST(ψ1))⊕ “ and ” ⊕ T (AST(ψ2)).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

6. If ϕ = ψ1 ∨ ψ2: T (AST(ψ1 ∨ ψ2)) = T (AST(ψ1))⊕ “ or ” ⊕ T (AST(ψ2)).

7. If ϕ = ψ1 → ψ2: T (AST(ψ1 → ψ2)) = “if ” ⊕ T (AST(ψ1))⊕ “, then ” ⊕ T (AST(ψ2)).

8. If ϕ = ψ1 ↔ ψ2: T (AST(ψ1 ↔ ψ2)) = T (AST(ψ1))⊕ “ if and only if ” ⊕T (AST(ψ2)).

9. If ϕ = Xψ: T (AST(Xψ)) = “In the next state, ” ⊕ T (AST(ψ)).

10. If ϕ = Gψ: T (AST(Gψ)) = “Always, ” ⊕ T (AST(ψ)).

11. If ϕ = Fψ: T (AST(Fψ)) = “Eventually, ” ⊕ T (AST(ψ)).

12. If ϕ = ψ1 U ψ2: T (AST(ψ1 U ψ2)) = T (AST(ψ1))⊕ “ until ” ⊕ T (AST(ψ2)).

13. If ϕ = ψ1Rψ2: T (AST(ψ1Rψ2)) = T (AST(ψ1))⊕ “ releases ” ⊕ T (AST(ψ2)).

14. If ϕ = ψ1W ψ2: T (AST(ψ1W ψ2)) = T (AST(ψ1))⊕ “ weakly until ” ⊕ T (AST(ψ2)).

15. If ϕ = ψ1M ψ2: T (AST(ψ1M ψ2)) = T (AST(ψ1))⊕ “ strong release ”⊕T (AST(ψ2)).

Parentheses in the output ITL string are implicitly handled by the recursive structure of T and the
string concatenations, preserving the LTL AST’s operator scope and precedence. Explicit parentheses
can be added around the ITL for sub-formulas in practice to ensure clarity, especially for binary
operators, e.g., T (AST(ψ1 ∧ψ2)) = “(”⊕T (AST(ψ1))⊕ ‘) and (‘⊕T (AST(ψ2))⊕ ‘)”. However,
for this proof, the direct template application is sufficient as structure is inherited from the AST.

C.4 PROOF OF COMPLETENESS (TOTALITY OF T)

We claim that the mapping function T is total for all LTL formulas ϕ ∈ LTLVF. That is, for every
valid LTL formula generated and verified in our dataset (which conforms to LTLVF), T produces a
well-defined ITLCanonical string output. The proof proceeds by structural induction on the formula ϕ.

Base Cases:

• If ϕ = α, where α ∈ AP : T (AST(α)) is defined as the string literal "α".

• If ϕ = ⊤: T (AST(⊤)) is defined as the string "true".

• If ϕ = ⊥: T (AST(⊥)) is defined as the string "false".

In all base cases, T yields a well-defined string.

Inductive Hypothesis (IH): Assume that for any LTL formula ψ (and χ, if applicable) that is a
proper subformula of ϕ, the function T is total, and T (AST(ψ)) (and T (AST(χ))) is a well-defined
ITL string.

Inductive Step: We examine each case for constructing ϕ from its subformula(s) according to the
rules of LTLVF:

1. If ϕ = ¬ψ: By the IH, T (AST(ψ)) is a well-defined string. The rule for ¬ (Rule 4 in
the definition of T) defines T (AST(¬ψ)) as the concatenation "not " ⊕T (AST(ψ)). This
operation on well-defined strings results in a well-defined string.

2. If ϕ = ψ1 op ψ2, where op ∈ {∧,∨,→,↔, U,R,W}: By the IH, T (AST(ψ1)) and
T (AST(ψ2)) are well-defined strings. The rules for these binary operators (Rules 5-8, 12-
14 in the definition of T) define T (AST(ϕ)) as a concatenation of T (AST(ψ1)), a specific
ITL keyword for op, and T (AST(ψ2)). This results in a well-defined string.

3. If ϕ = op ψ, where op ∈ {X,G,F}: By the IH, T (AST(ψ)) is a well-defined string.
The rules for these unary temporal operators (Rules 9-11 in the definition of T) define
T (AST(ϕ)) as a concatenation of the ITL keyword for op and T (AST(ψ)). This results in
a well-defined string.

Since the base cases hold and the inductive step covers all LTL operators defined in LTLVF, the
function T is total for all formulas ϕ ∈ LTLVF.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C.5 PRESERVATION OF SEMANTIC STRUCTURE AND REVERSIBILITY

Semantic Structure Preservation: The function T is designed to be structure-preserving. It
operates directly on the AST derived from the Spot-parsed (and canonicalized) LTL formula. The
recursive definition of T ensures a one-to-one mapping between LTL operators in the AST and their
corresponding ITL keywords/templates. The recursive application of these mappings ensures that
the nesting and scope of operators in the LTL formula are preserved in the hierarchical structure of
the resulting ITLCanonical string. This structural isomorphism provides a strong basis for asserting
that the core semantic relationships (temporal and logical) of the LTL formula are maintained in its
ITL translation. A formal proof of semantic equivalence would require a formal semantics for ITL;
however, the systematic, structure-driven nature of T supports this claim.

Reversibility (ITL to LTL): The ITLCanonical strings generated by T are designed to be unambigu-
ously parsable back into LTL formulas that are semantically equivalent to the original LTL formulas.
This reversibility is crucial for verifying the integrity of the ITL representation. As described in
Section ?? (referring to Section 4.2 in the main paper), an ITL-to-LTL parser was developed based
on the inverse of the ‘LTL_TO_CANONICAL‘ rules. The VERIFY dataset construction pipeline
includes an automated verification step where canonical ITL strings are parsed back to LTL, and
this reconstructed LTL is then formally checked for semantic equivalence against the original Spot-
verified LTL formula using Spot’s built-in capabilities (e.g., ‘spot.are_equivalent()‘). This empirical
validation across the dataset (specifically, 18% of it, as mentioned in Section 4.4 for NL, and a similar
process for ITL integrity check mentioned in Section 4.2) confirms that the LTL → ITL → LTL
round trip preserves logical meaning.

C.6 CONCLUSION

The mapping function T from the defined and verified LTL fragment LTLVF to ITLCanonical is total
(complete), meaning every formula in LTLVF has a corresponding ITL string. This mapping is
deterministic and preserves the structural composition of the LTL formula. Empirical verification
through round-trip LTL-ITL-LTL conversion and semantic equivalence checking using formal tools
(Spot) further confirms that the generated canonical ITL accurately represents the logical meaning of
the source LTL formula. Therefore, the grammar used for translating LTL to ITLCanonical is complete
with respect to the LTLVF fragment.

D EXTENDED DATASET DETAILS

This appendix provides further details about the VERIFY dataset, including additional illustrative
examples, comprehensive per-domain statistics, supplementary visualizations, and the full data
schema.

D.1 ADDITIONAL EXAMPLES

To further illustrate the nature and diversity of the VERIFY dataset, this section presents five detailed
examples. Each example includes the domain, the natural language definitions for propositional
variables (Activity), the Spot-canonical Linear Temporal Logic (LTL) formula, its corresponding
rule-based canonical Intermediate Technical Language (ITL) representation, and the final contextual
Natural Language (NL) translation. These examples showcase variations in logical complexity,
domain-specific terminology, and the types of properties represented.

D.1.1 EXAMPLE 1: AUTOMOTIVE/AUTONOMOUS VEHICLES

• Domain: Automotive/Autonomous Vehicles

• Activity:
– p: Lane departure detected
– q: Obstacle detection active
– r: Driver override requested
– s: Sensor calibration complete

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

– t: Emergency braking engaged
– u: System in autonomous mode
– v: GPS signal lost
– w: Manual steering input detected

• LTL Formula (Spot-canonical):

(X¬(qRp→ Xs)U (p→ q)RXu→ ¬X(q ∨ q)R (p→ s)U (pUwWr → (r ∧ q ↔ Gq)))

U ((Fq ∨Xr)R (¬s)WrRuU (q ∧ (v ∨ v) ↔ (r ∨ t)Wq) ↔
(GrWq → (t→ w)Wu→ (vU (u↔ r) ↔ t))W (¬Gv ∨ p))

∨ (t→ ((t ∨ q) ∧ Fp)WrWrRu)RrUrR (¬s)

• Canonical ITL:
if In the next state, not if q releases p, then In the next state, s until if p, then q releases In the
next state, u, then not In the next state, q or q releases if p, then s until if p until w weakly
until r, then q and r if and only if Always, q until Eventually, q or In the next state, r releases
not s weakly until r releases u until q and v or v if and only if r or t weakly until q if and
only if if Always, r weakly until q, then if if t, then w weakly until u, then t if and only if v
until r if and only if u weakly until p or not Always, v or if t, then q or t and Eventually, p
weakly until r weakly until r releases u releases r until r releases not s

• NL Translation: The system must maintain that after lane departure, either obstacle
detection remains active until sensor calibration follows, or autonomous mode persists
until manual override triggers a protocol where persistent lane-keeping requires continuous
obstacle detection, until either emergency braking initiates redundant navigation checks or
GPS loss forces driver takeover – whichever occurs first while maintaining sensor integrity
throughout.

D.1.2 EXAMPLE 2: HOME AUTOMATION

• Domain: Home Automation

• Activity: Atomic propositions represent device states: u=user presence detected, r=security
system armed, q=lights activated, s=door locked, t=motion detected, v=HVAC running,
w=window open, p=power saving mode

• LTL Formula (Spot-canonical):

GGuW (r → q) → qU (¬r)W ((s↔ r) → r)

U (s ∧XF (t→ q)UrWvRX(q ∨ r)WFwW ((¬s)WXw ∧ (v ∨ u→ u)))

∨ ((v ∧ ¬p)U (r → w)WrRu→ (Gs ∨ w)Wv)W (X(v → t)RFu ∧ v)
U ((¬s ∨ Fv)WFs ∧ qRu↔ Xv)Uq

• Canonical ITL:
if Always, u weakly until if r, then q, then q until not r weakly until if r if and only if s, then r
until s and In the next state, Eventually, if t, then q until r weakly until v releases In the next
state, q or r weakly until Eventually, w weakly until if u or v, then u and not s weakly until
In the next state, w or if not p and v until if r, then w weakly until r releases u, then w or
Always, s weakly until v weakly until v and In the next state, if v, then t releases Eventually,
u until not s or Eventually, v weakly until Eventually, s and q releases u if and only if In the
next state, v until q

• NL Translation: If user presence persists until security arming triggers lights, then lights
must stay active until disarm occurs, maintaining that locked doors require security en-
gagement until motion triggers lights through HVAC operation, while windows stay closed
unless presence or HVAC override occurs, and power mode exits when security triggers
window control until HVAC/temperature conditions maintain either sustained locking or
window states matching security status through presence verification.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

D.1.3 EXAMPLE 3: SECURITY AND AUTHENTICATION

• Domain: Security and Authentication
• Activity:

– p: Unauthorized access detected
– q: User authentication request
– r: System lockdown activated
– s: Security breach detected
– t: Two-factor authentication enabled
– u: User role changed
– v: Vulnerability patched
– w: Access granted

• LTL Formula (Spot-canonical):

((¬((t↔ q) ∨ s)R (¬p)RFp ∨ (¬t ∨ s)WGrU (XGr → t))U

(¬s)W (r ↔ Fq)WvWv ↔ v

W ((¬¬s)Wu ∧ (p ∨ FpUpR (s→ s) → (w ↔ w))

W (¬(Gq ∨ u)U (¬s ∨ r)U (q ↔ t)))

• Canonical ITL:
v if and only if not s or q if and only if t releases not p releases Eventually, p or s or not t
weakly until Always, r until if In the next state, Always, r, then t until not s weakly until r if
and only if Eventually, q weakly until v weakly until s weakly until u

• NL Translation: The system must maintain that: either (1) security breach absence and
two-factor-authentication alignment with authentication requests persist while blocking
unauthorized access until detection occurs, or (2) lockdown persists until two-factor ac-
tivation if future lockdown continuity implies it, all until breaches cease. This continues
weakly until breaches force lockdown equivalence to pending authentications, repeated
vulnerability patching, and role changes persist only if access-right consistency holds unless
infinite authentication demands or role changes occur until security states resolve.

D.1.4 EXAMPLE 4: SMART GRID/ENERGY MANAGEMENT

• Domain: Smart Grid/Energy Management
• Activity: p=peak load condition, t=tariff adjustment activated, r=renewable generation

available, u=usage restriction enforced, w=wind power input threshold, q=grid stability
query issued, s=storage system activated, v=voltage stability compromised

• LTL Formula (Spot-canonical):

(pWFXp↔ t)

R ((rUp ∨ (t→ t) ∧ ¬r)U (uWr ∧XpUw) ∧ ((q ∧ p→ s) ∧ (q → Fq) → (s→ s)

W (t ∧ u)W (uWv → Xt) ↔ ¬Fr → vR (¬w)R (¬v ↔ t))

U (vR ((u ∨ rRw ∧ Fv) ∧Gs↔ GrUpWuWFs) ↔ XX(¬s)U (s↔ q)U

Fu ∨ (s→ (q → r)Uu) ∧ (¬q ↔ v)Ru

• Canonical ITL:
t if and only if p weakly until Eventually, In the next state, p releases not r or r until p until
u weakly until r and In the next state, p until w if and only if if not Eventually, r, then v
releases not w releases t if and only if not v until v releases u or r releases w and Eventually,
v and Always, s if and only if Always, r until p weakly until u weakly until Eventually, s if
and only if In the next state, In the next state, not s until q if and only if s until Eventually, u
or if s, then if q, then r until u and not q if and only if v releases u

• NL Translation: Tariff adjustments match peak load persistence until eventual resumption
if and only if grid operations maintain: renewable availability until peak load or usage
restrictions with wind thresholds, requiring storage activation only when stability queries
trigger sustained responses, unless voltage instability forces delayed demand response until
tariff-voltage alignment governs restoration.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 11: Application domains covered in the VERIFY dataset.

Domain Illustrative Context Example Snippet (activity)

Financial Services p=trade execution confirmed, q=risk limit check passed
Web Services / E-commerce p=user adds item to cart, q=inventory level updated
Home Automation p=motion detected in room, q=lights turn on
Aerospace / Avionics p=altitude within safe range, q=autopilot engaged
Medical Devices p=heart rate exceeds threshold, q=alert generated
Industrial Automation / Mfg. p=pressure threshold reached, q=safety valve opens
Automotive Systems p=obstacle detected by sensor, q=emergency brake applied
Robotics / Autonomous Systems p=battery level low, q=robot returns to charging station
Network Protocols / Security p=login attempt failed 3 times, q=account locked
Business Process Management p=invoice approved, q=payment scheduled
Supply Chain / Logistics p=package scanned at hub, q=tracking status updated
Energy Systems / Smart Grid p=demand exceeds supply, q=load shedding initiated
Telecommunications p=call successfully connected, q=billing record created

D.1.5 EXAMPLE 5: VERSION CONTROL AND CODE REVIEWS

• Domain: Version Control and Code Reviews
• Activity: q: Code review requested | v: Code review passed | u: Code conflicts resolved | t:

Tests passed | w: Work-in-progress flag | p: Pull request open | r: Revision submitted | s:
Code merged

• LTL Formula (Spot-canonical):

qU (v ∨ (((u→ t) ∧ (w ∨ p))R (¬t)U (p ∨ r) ↔ ¬r)U (p→ (Fw → Xs)Ws))

U ((vU (t ∧ v)Rs→ ¬XtWwRtRp ∨Gq) ∧ (s↔ FwUrW (w ↔ u))WGFtWGs

W ((t ∧ u)Rp ∨ w)W (GsUwUqRs ∨ ((Xt→ (r ↔ r)) ∧ (¬p)UuRt↔ w)))

• Canonical ITL:
q until v or not r if and only if if u, then t and p or w releases not t until p or r until if p, then
if Eventually, w, then In the next state, s weakly until s until if v until t and v releases s, then
not In the next state, t weakly until w releases t releases p or Always, q and s if and only
if Eventually, w until r weakly until u if and only if w weakly until Always, Eventually, t
weakly until Always, s weakly until w or t and u releases p weakly until Always, s until w
until q releases s or w if and only if not p until u releases t

• NL Translation: A code review remains requested until either it passes, or (if conflicts
being resolved guarantees tests pass and an open pull request or WIP flag persists while
tests are failing until a revision or pull request exists) exactly when no revision exists, until
pull requests being open implies (if work eventually continues, the next state must merge
code *or* keep merging pending) persists, while either: (1) review passes until tests succeed
with passing review under merge protection until tests require WIP or persistent review
requests; or (2) merging occurs only if eventual WIP under revision constraints matches
conflict resolution, weakly until recurring tests and merges align with open pull requests or
WIP, provided merges persist until WIP transitions or review compliance.

D.2 PER-DOMAIN STATISTICS

To provide a deeper insight into the characteristics of the VERIFY dataset across its 13 domains,
Table 11 summarizes the application domains covered VERIFY and Table 12 summarizes key
statistics. These include the number of unique LTL formulas, various measures of LTL formula
complexity (average, median, min/max number of temporal operators, and AST depth), natural
language translation length statistics (word count), activity string length statistics (word count), and
approximate vocabulary sizes for both translations and activities within each domain.

D.2.1 LTL OPERATOR AND SUB-PATTERN FREQUENCIES PER DOMAIN

The distribution of LTL operators and common structural patterns (identified by Spot’s formula kinds)
varies across domains, reflecting different specification needs. Below is a summary of the frequency

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 12: Detailed Per-Domain Dataset Statistics. "LTL Ops" refers to the count of temporal operators.
"LTL Depth" refers to the AST depth. "Words" refers to word count. "Vocab Size" is the count of
unique words (lowercase, simple tokenization).

Domain Unique LTL Operators LTL Depth NL Trans. Words Activity Words Vocab Size
LTLs Avg Med Min/Max Avg Med Avg Med Min/Max Avg Med Min/Max NL Activity

Aerospace 16821 6.0 6 0/19 4.98 5 56.21 56 10/152 33.99 34 6/91 ∼4034 ∼5810
Auto/Autonomous 16711 6.0 6 0/22 5.04 5 56.17 56 10/162 29.83 30 5/88 ∼3749 ∼6318
Build Pipelines/CI-CD 16737 6.0 6 0/21 4.98 5 53.60 54 6/152 24.50 24 5/85 ∼2975 ∼3525
Financial/Transaction 16765 6.0 6 0/18 4.98 5 53.26 53 7/140 26.54 26 5/130 ∼3469 ∼3507
Home Automation 16748 6.0 6 0/18 5.01 5 56.82 57 7/142 32.31 32 6/74 ∼2961 ∼3019
Industrial Automation 16782 6.2 6 0/22 5.17 5 54.70 55 5/201 28.27 28 5/76 ∼3943 ∼4934
Medical Devices 16710 6.0 6 0/19 5.01 5 56.04 56 6/144 34.86 35 6/93 ∼4045 ∼4988
Networking/Distributed 16748 5.9 6 0/21 4.96 5 52.75 53 11/142 28.08 28 6/78 ∼3636 ∼3771
Robotics 16800 6.0 6 0/19 4.98 5 56.66 57 5/204 33.71 34 6/78 ∼3854 ∼4537
Security/Authentication 16750 6.0 6 0/18 4.98 5 54.31 54 8/162 31.14 31 6/70 ∼3088 ∼2808
Smart Grid/Energy 16715 6.0 6 0/21 4.98 5 55.29 55 8/152 32.59 32 5/78 ∼3395 ∼4039
Version Control 16820 5.9 6 0/21 4.97 5 55.00 55 6/185 32.98 33 6/107 ∼3363 ∼3639
Web Services/APIs 16764 5.9 6 0/19 4.96 5 53.38 53 6/126 28.18 28 6/98 ∼3691 ∼3675

Overall Dataset ≈15,900* 5.92 5 0/44 4.99 5 54.93 54 5/204 31.02 31 5/130 ≈18K* ≈10K*
* Total unique LTLs / total unique vocabulary across all domains.
LTL complexity statistics (Ops and Depth) are based on the LTL formulas associated with translations in each domain.
The LTL Operator counts in this table refer to all operators (temporal and boolean), whereas Figure 1a focuses on temporal operators only.

of top-level LTL operators (G, F, X) and common Spot formula kinds (e.g., Implies, U, R, W, Equiv,
And, Or) for each domain. This data is derived from analyzing the LTL formulas associated with the
NL translations in each respective domain.

• Aerospace: Predominantly features ‘G’ (Global), ‘F‘ (Finally), and ‘X‘ (Next) as top-level
operators. Common structural patterns include Implications, Until, and Release. (Example
counts: G: 2059, F: 2055, X: 2055; Implies: 2900, R: 2510, U: 2496)

• Automotive/Autonomous Vehicles: High use of ‘X‘, ‘G‘, and ‘F‘. Implications, Until, and
Release are common patterns. (Example counts: X: 2119, G: 2058, F: 2051; Implies: 2886,
U: 2552, R: 2468)

• Build Pipelines and CI/CD: ‘F‘, ‘X‘, and ‘G‘ are frequent. Structural patterns show many
Implications, Until, and Release forms. (Example counts: F: 2125, X: 2063, G: 1950;
Implies: 2865, U: 2529, R: 2481)

• Financial/Transaction Systems: ‘X‘, ‘F‘, ‘G‘ are common. Implications, Release, and
Until patterns are prominent. (Example counts: X: 2118, F: 2069, G: 1998; Implies: 2925,
R: 2508, U: 2488)

• Home Automation: Balanced use of ‘X‘, ‘F‘, ‘G‘. Implications, Release, and Until are
frequent structures. (Example counts: X: 2098, F: 2088, G: 2069; Implies: 2966, R: 2523,
U: 2479)

• Industrial Automation/Manufacturing: ‘F‘, ‘G‘, ‘X‘ are prevalent. Implications, Until,
and Release patterns are common. (Example counts: F: 2050, G: 2031, X: 2027; Implies:
2852, U: 2584, R: 2472)

• Medical Devices: ‘F‘, ‘X‘, ‘G‘ appear often. Implications, Weak Until (W), and Release are
frequent. (Example counts: F: 2104, X: 2047, G: 2037; Implies: 2860, W: 2527, R: 2497)

• Networking/Distributed Systems: ‘G‘, ‘X‘, ‘F‘ are common. Implications, Weak Until
(W), and Release structures are frequent. (Example counts: G: 2103, X: 2039, F: 2034;
Implies: 2948, W: 2470, R: 2459)

• Robotics: High frequency of ‘G‘, ‘F‘, ‘X‘. Implications, Until, and Release are common
patterns. (Example counts: G: 2088, F: 2082, X: 2063; Implies: 2958, U: 2479, R: 2464)

• Security and Authentication: ‘X‘, ‘F‘, ‘G‘ are prominent. Structural patterns often involve
Implications, Until, and Weak Until (W). (Example counts: X: 2107, F: 2077, G: 2059;
Implies: 2967, U: 2502, W: 2442)

• Smart Grid/Energy Management: ‘G‘, ‘F‘, ‘X‘ are frequent. Implications, Release, and
Until patterns are common. (Example counts: G: 2111, F: 2100, X: 2040; Implies: 2938, R:
2509, U: 2432)

• Version Control and Code Reviews: ‘G‘, ‘F‘, ‘X‘ appear often. Implications, Weak Until
(W), and Until structures are frequently used. (Example counts: G: 2130, F: 2077, X: 2066;
Implies: 2903, W: 2527, U: 2492)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

• Web Services/APIs: ‘X‘, ‘F‘, ‘G‘ are common. Implications, Until, and Release are
frequent patterns. (Example counts: X: 2138, F: 2102, G: 2052; Implies: 3020, U: 2557, R:
2501)

Note: The operator counts for G, F, X above refer to their appearance as the outermost temporal
operator in many formulas within the domain, indicating common high-level properties like invariants,
eventualities, or next-state transitions. The structural pattern counts (Implies, U, R, etc.) are derived
from Spot’s analysis of formula kinds within the LTL expressions for each domain.

D.3 ADDITIONAL VISUALIZATIONS

This section presents additional visualizations to complement the main paper, providing further
insights into the VERIFY dataset’s characteristics.

Ve
rsi

on
 C

on
tro

l a
nd

 C
od

e R
ev

iew
s

(n
=16

82
3)

Aer
os

pa
ce

(n
=16

82
2)

Rob
oti

cs

(n
=16

80
1)

In
du

str
ial

 A
ut

om
ati

on
/M

an
ufa

ctu
rin

g

(n
=16

78
7)

Fina
nc

ial
/Tr

an
sa

cti
on

 Sys
tem

s

(n
=16

76
9)

Web
 Ser

vic
es

/A
PI

s

(n
=16

76
9)

Hom
e A

ut
om

ati
on

(n
=16

75
3)

Sec
ur

ity
 an

d A
ut

he
nt

ica
tio

n

(n
=16

75
3)

Netw
or

kin
g/D

ist
rib

ut
ed

 Sys
tem

s

(n
=16

75
1)

Buil
d P

ipe
lin

es
 an

d C
I/C

D

(n
=16

74
3)

Smar
t G

rid
/E

ne
rg

y M
an

ag
em

en
t

(n
=16

71
9)

Med
ica

l D
ev

ice
s

(n
=16

71
4)

Aut
om

oti
ve

/A
ut

on
om

ou
s V

eh
icl

es

(n
=16

71
2)

Domain

0

6

12

18

24

30

36

42

48

Te
m

po
ra

l O
pe

ra
to

r
C

ou
nt

11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0

Distribution of LTL Operators by Domain
Overall Mean: 11.84

Overall Statistics:
Mean: 11.84
Median: 11.00
Min: 0
Max: 46
Total samples: 217916

Figure 3: Distribution of LTL temporal operator counts per formula, shown as box plots for each of
the 13 domains in the VERIFY dataset. The overall mean is indicated. This complements Figure 1a
in the main paper by providing domain-specific views.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Ve
rsi

on
 C

on
tro

l a
nd

 C
od

e R
ev

iew
s

(n
=16

82
3)

Aer
os

pa
ce

(n
=16

82
2)

Rob
oti

cs

(n
=16

80
1)

In
du

str
ial

 A
ut

om
ati

on
/M

an
ufa

ctu
rin

g

(n
=16

78
7)

Fina
nc

ial
/Tr

an
sa

cti
on

 Sys
tem

s

(n
=16

76
9)

Web
 Ser

vic
es

/A
PI

s

(n
=16

76
9)

Hom
e A

ut
om

ati
on

(n
=16

75
3)

Sec
ur

ity
 an

d A
ut

he
nt

ica
tio

n

(n
=16

75
3)

Netw
or

kin
g/D

ist
rib

ut
ed

 Sys
tem

s

(n
=16

75
1)

Buil
d P

ipe
lin

es
 an

d C
I/C

D

(n
=16

74
3)

Smar
t G

rid
/E

ne
rg

y M
an

ag
em

en
t

(n
=16

71
9)

Med
ica

l D
ev

ice
s

(n
=16

71
4)

Aut
om

oti
ve

/A
ut

on
om

ou
s V

eh
icl

es

(n
=16

71
2)

Domain

0

25

50

75

100

125

150

175

200

N
at

ur
al

 L
an

gu
ag

e
W

or
d

C
ou

nt

54.0 55.0 56.0 54.0 53.0 53.0 56.0 54.0 52.0 53.0 55.0 55.0 56.0

Distribution of Translation Lengths by Domain
Overall Mean: 54.93

Overall Statistics:
Mean: 54.93
Median: 54.00
Min: 5
Max: 204
Total samples: 217916

Figure 4: Distribution of natural language translation lengths (by word count) per formula, shown as
box plots for each of the 13 domains. The overall mean is indicated. This complements Figure 1b in
the main paper with domain-specific distributions.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

0

2

4

6

8

10

12

M
ea

n
LT

L
O

pe
ra

to
r

C
ou

nt

12.04 11.91 11.88 11.88 11.85 11.84 11.84 11.83 11.83 11.81 11.77 11.76 11.74
Mean Number of LTL Operators by Domain

Global Mean: 11.84

In
du

str
ial

 A
ut

om
ati

on
/M

an
ufa

ctu
rin

g

(n
=16

78
7)

Aut
om

oti
ve

/A
ut

on
om

ou
s V

eh
icl

es

(n
=16

71
2)

Med
ica

l D
ev

ice
s

(n
=16

71
4)

Hom
e A

ut
om

ati
on

(n
=16

75
3)

Smar
t G

rid
/E

ne
rg

y M
an

ag
em

en
t

(n
=16

71
9)

Buil
d P

ipe
lin

es
 an

d C
I/C

D

(n
=16

74
3)

Rob
oti

cs

(n
=16

80
1)

Aer
os

pa
ce

(n
=16

82
2)

Sec
ur

ity
 an

d A
ut

he
nt

ica
tio

n

(n
=16

75
3)

Ve
rsi

on
 C

on
tro

l a
nd

 C
od

e R
ev

iew
s

(n
=16

82
3)

Fina
nc

ial
/Tr

an
sa

cti
on

 Sys
tem

s

(n
=16

76
9)

Web
 Ser

vic
es

/A
PI

s

(n
=16

76
9)

Netw
or

kin
g/D

ist
rib

ut
ed

 Sys
tem

s

(n
=16

75
1)

Domain

0

10

20

30

40

50

M
ea

n
Tr

an
sl

at
io

n
W

or
d

C
ou

nt

54.70 56.17 56.03 56.82 55.28 53.60
56.66 56.21

54.30 54.99 53.26 53.38 52.75

Mean Translation Length by Domain
Global Mean: 54.93

Figure 5: Summary of mean LTL operator counts (top) and mean natural language translation word
counts (bottom) across all 13 domains. Global means are indicated by dashed lines. This provides a
direct comparison of averages across domains.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

In
du

str
ial

 A
ut

om
ati

on
/M

an
ufa

ctu
rin

g

(n
=20

20
93

)

Aer
os

pa
ce

(n
=19

90
31

)

Hom
e A

ut
om

ati
on

(n
=19

90
02

)

Aut
om

oti
ve

/A
ut

on
om

ou
s V

eh
icl

es

(n
=19

89
58

)

Rob
oti

cs

(n
=19

89
39

)

Ve
rsi

on
 C

on
tro

l a
nd

 C
od

e R
ev

iew
s

(n
=19

86
76

)

Med
ica

l D
ev

ice
s

(n
=19

85
49

)

Buil
d P

ipe
lin

es
 an

d C
I/C

D

(n
=19

82
73

)

Sec
ur

ity
 an

d A
ut

he
nt

ica
tio

n

(n
=19

82
10

)

Smar
t G

rid
/E

ne
rg

y M
an

ag
em

en
t

(n
=19

81
30

)

Fina
nc

ial
/Tr

an
sa

cti
on

 Sys
tem

s

(n
=19

73
81

)

Web
 Ser

vic
es

/A
PI

s

(n
=19

72
32

)

Netw
or

kin
g/D

ist
rib

ut
ed

 Sys
tem

s

(n
=19

65
90

)

Domain

0

25000

50000

75000

100000

125000

150000

175000

200000

O
pe

ra
to

r
C

ou
nt

14.6% 14.6% 14.6% 14.6% 14.7% 14.7% 14.6% 14.8% 14.7% 14.6% 14.5% 14.6% 14.6%

14.4% 14.5% 14.6% 14.5% 14.6% 14.6% 14.6% 14.5% 14.6% 14.7% 14.7% 14.6% 14.7%

14.4% 14.6% 14.7% 14.6% 14.6% 14.6% 14.6% 14.6% 14.5% 14.6% 14.7% 14.6% 14.7%

18.9% 18.7% 18.8% 18.9% 18.6% 18.8% 18.7% 18.8% 18.8% 18.7% 18.7% 18.6% 18.7%

18.9% 18.9% 18.7% 18.7% 18.8% 18.7% 18.8% 18.9% 18.6% 18.8% 18.7% 18.8% 18.8%

18.8% 18.7% 18.7% 18.7% 18.7% 18.6% 18.7% 18.5% 18.7% 18.6% 18.8% 18.7% 18.6%

Distribution of Temporal Operators by Domain
LTL Operator

Globally (G)
Eventually (F)
Next (X)
Until (U)
Release (R)
Weak Until (W)

Figure 6: Stacked bar chart illustrating the relative frequency of the six primary LTL temporal
operators (G, F, X, U, R, W) within each of the 13 domains. This visualization highlights domain-
specific tendencies in temporal patterns.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

0 10 20 30 40
Number of LTL Operators in Formula

0

25

50

75

100

125

150

175

200
W

or
d

C
ou

nt
 in

 N
at

ur
al

 L
an

gu
ag

e
Tr

an
sl

at
io

n
Pearson correlation: r = 0.704
p-value: 0.000e+00
Slope: 1.948
Intercept: 31.86
Sample size: 217916

Correlation Between Formula Complexity and Translation Length
Domain

Industrial Automation/Manufacturing
Automotive/Autonomous Vehicles
Medical Devices
Home Automation
Security and Authentication
Aerospace
Networking/Distributed Systems
Build Pipelines and CI/CD
Smart Grid/Energy Management
Financial/Transaction Systems
Robotics
Web Services/APIs
Version Control and Code Reviews

Linear regression (y = 31.86 + 1.95x)

Figure 7: Scatter plot showing the correlation between LTL formula complexity (number of LTL
operators) and the word count of the generated natural language translation. A linear regression line
is overlaid. (Pearson correlation r=0.704, p < 0.001).

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

0 10 20 30 40
Number of LTL Operators in Formula

0

25

50

75

100

125

150

175

200

W
or

d
C

ou
nt

 in
 N

at
ur

al
 L

an
gu

ag
e

Tr
an

sl
at

io
n

Pearson correlation: r = 0.704
p-value: 0.000e+00
Sample size: 217916

Density Plot: Formula Complexity vs Translation Length
Linear regression (y = 31.86 + 1.95x)

100

101

102

103

Lo
g1

0(
C

ou
nt

)

Figure 8: Density hexbin plot illustrating the relationship between LTL formula complexity (number
of LTL operators) and the word count of the natural language translation. Darker regions indicate a
higher concentration of data points. The linear regression line from Figure 7 is shown for reference.

D.4 FULL DATA SCHEMA

The VERIFY dataset is released in standard CSV and Apache Parquet formats. Each record in the
dataset represents a single LTL-ITL-NL triplet, along with its associated contextual information and
metadata. The detailed schema is presented in Table 13, derived from the internal database structure.

Table 13: Full Data Schema for the VERIFY Dataset.

Column Name SQLite Type CSV/Parquet Type Constraints Description
id INTEGER int PRIMARY KEY (for triplet) Unique identifier for the dataset

record (triplet).
formula_id INTEGER int NOT NULL; FK → conceptual formulas table Identifier linking to a unique LTL

formula structure (Spot-canonical).
itl_id INTEGER int NOT NULL; FK → conceptual ITL table Identifier linking to the unique

canonical ITL structure (derived
from formula_id).

domain TEXT string NOT NULL The application domain providing
context (e.g., ’Aerospace’).

activity TEXT string NOT NULL Natural language definitions of the
propositional variables used in the
LTL formula, specific to the given
domain.

ltl_formula TEXT string NOT NULL The formal LTL formula string
(Spot-canonical representation us-
ing standard ASCII operators).

itl_representation TEXT string NOT NULL The corresponding canonical Inter-
mediate Technical Language (ITL)
string.

translation TEXT string NOT NULL The contextual Natural Language
(NL) description corresponding to
the LTL/ITL pair within the speci-
fied domain.

generation_time REAL float Time taken (in seconds) for the LLM
to generate the ‘activity‘ and ‘trans-
lation‘ for this record.

timestamp TEXT string ISO 8601 timestamp indicating
when the record (specifically the NL
part) was generated.

Conceptual Data Relationships:

• Each unique LTL formula (identified by formula_id after Spot canonicalization) has
exactly one corresponding canonical ITL representation (identified by itl_id).

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

• A single LTL-canonical ITL pair (i.e., a unique formula_id) appears multiple times
in the dataset, typically once for each of the 13 domains for which a natural language
translation and activity definition were generated.

• The primary key id in the released files uniquely identifies each LTL-ITL-NL-Domain
quadruplet.

Example Raw Record:

• As a CSV data record (header shown first for clarity):
id,formula_id,itl_id,domain,activity,ltl_formula,itl_representation,
translation,generation_time,timestamp

106230,22,229,"Aerospace",
"Consider an aircraft flight control system. ’p’ indicates
the autopilot is engaged. ’q’ indicates the aircraft is on
the correct flight path. ’r’ indicates a critical system
failure. ’s’ indicates the flight director is providing
guidance. ’t’ indicates the aircraft has reached its
destination. ’u’ indicates the aircraft is maintaining a
safe altitude. ’w’ indicates the weather conditions are
within acceptable limits.",
"(p W q & w) W s U (! (r -> r R u & q) U (! X F p) | t) ->
s",
"if w and p weakly until q weakly until s until t or not
if r, then q and r releases u until not In the next state,
Eventually, p, then s",
"If acceptable weather and the autopilot being engaged
persist at least until the aircraft is on the correct flight
path, and this condition persists at least until the flight
director provides guidance, until the aircraft reaches
its destination or it is not the case that if there is
a critical system failure, the aircraft maintains a safe
altitude and the critical system failure continues to be
true at least until the aircraft is on the correct flight
path at least until it is not the case that in the next
state eventually the autopilot is engaged, then the flight
director provides guidance.",
1.54899549484253,"2025-04-30T12:51:08.943122"

• As a JSON object representing one row (formatted for readability):

{
"id": 106230,
"formula_id": 22,
"itl_id": 229,
"domain": "Aerospace",
"activity": "Consider an aircraft flight control system. ’p’ indicates \

the autopilot is engaged. ’q’ indicates the aircraft is on the correct \
flight path. ’r’ indicates a critical system failure. ’s’ indicates \
the flight director is providing guidance. ’t’ indicates the aircraft \
has reached its destination. ’u’ indicates the aircraft is maintaining \
a safe altitude. ’w’ indicates the weather conditions are within \
acceptable limits.",

"ltl_formula": "(p W q & w) W s U (! (r -> r R u & q) U \
(! X F p) | t) -> s",

"itl_representation": "if w and p weakly until q weakly until s until \
t or not if r, then q and r releases u until not In the next state, \
Eventually, p, then s",

"translation": "If acceptable weather and the autopilot being engaged \
persist at least until the aircraft is on the correct flight path, and \

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

this condition persists at least until the flight director provides \
guidance, until the aircraft reaches its destination or it is not the \
case that if there is a critical system failure, the aircraft \
maintains a safe altitude and the critical system failure continues to \
be true at least until the aircraft is on the correct flight path at \
least until it is not the case that in the next state eventually the \
autopilot is engaged, then the flight director provides guidance.",

"generation_time": 1.54899549484253,
"timestamp": "2025-04-30T12:51:08.943122"

}

E IMPLEMENTATION DETAILS

This section details the methodologies and resources used for dataset generation, verification and the
establishment of baseline experimental results.

E.1 LTL FORMULA GENERATION AND VERIFICATION

Generation: Linear Temporal Logic (LTL) formulas were programmatically generated. The
generation process recursively constructed formulas up to a maximum Abstract Syntax Tree (AST)
depth of 25. This process utilized eight unique atomic propositions (denoted ‘p‘ through ‘w‘) and the
standard LTL operators: Globally (G), Finally (F), Next (X), Until (U), Release (R), and Weak Until
(W), along with boolean connectives (∧,∨,¬,→,↔).

Canonicalization and Uniqueness: To ensure structural diversity and manage the formula space,
generated LTL formulas underwent a rigorous canonicalization process. This involved conversion to
Negation Normal Form (NNF), expansion of implications and equivalences, application of
associative and distributive laws, and standardized sorting of operands for commutative operators. A
unique hash was computed for each canonical structure to prevent duplicates in the master formula
database, which was managed using SQLite.

Formal Verification: The semantic validity and non-triviality of all LTL formulas were formally
verified using the Spot model checking library (version 2.11.6). A dedicated software component was
designed to convert the LTL formulas from their generated format into Spot’s required syntax. This
component also managed the interaction with the Spot library for parsing, validation, and the retrieval
of Spot’s own canonical string representation for each formula. This ensured that all LTL formulas in
the VERIFY dataset are well-formed and standardized according to a formal verification tool.

E.2 INTERMEDIATE TECHNICAL LANGUAGE (ITL) GENERATION AND VERIFICATION

AST-based Generation: The canonical Intermediate Technical Language (ITL) representation for
each verified LTL formula was generated deterministically. This process began by parsing the
Spot-canonical LTL formula string into an internal AST representation, using Spot’s parsing
capabilities.

Rule-based Transformation: A rule-based transformation was then applied by traversing the LTL
AST. For each LTL operator encountered in the AST, a corresponding human-readable template was
selected from a predefined set of 12 core mapping rules (e.g., ’G ϕ’ maps to ’Always, ϕ’; ’ϕ U ψ’
maps to ’ϕ until ψ’). This mapping ensures that the resulting canonical ITL string directly preserves
the structure of the source LTL formula while using more verbose, keyword-like operators.

ITL Semantic Integrity: To ensure the integrity of the ITL generation and its semantic equivalence
to the source LTL, a verification step was implemented. This involved programmatically parsing the
generated ITL text back into an LTL formula using a custom-designed recursive descent parser. This
reconstructed LTL formula was then formally compared against the original, Spot-verified LTL
formula. Equivalence was confirmed by ensuring that the Spot-canonical string representation of the
reconstructed LTL formula matched that of the original Spot-canonical LTL formula. Spot’s direct
equivalence checking functions were also utilized during development for additional validation.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

E.3 NATURAL LANGUAGE (NL) GENERATION

LLM and API Usage: Contextual natural language descriptions (comprising domain-specific
propositional variable ‘activity’ definitions and the ‘translation’ of the LTL/ITL logic) were
generated using the DeepSeek-R1 model, specifically accessed via the ‘deepseek-reasoner’ API
endpoint (model version available Q4 2024 - Q1 2025). This API was publicly available, subject to
registration and usage quotas.

Parallel Generation Orchestration: To generate the extensive dataset, a parallel generation system
was developed. This system orchestrated up to 500 concurrent Python ‘asyncio’ tasks distributed
across multiple CPU nodes of an institutional high-performance computing (HPC) cluster. Each task
handled an individual LTL/ITL pair for NL generation.

Prompting Strategy: For each LTL/ITL pair, a target domain was selected using a balanced
sampling strategy designed to ensure roughly equal representation across the 13 diverse domains.
The LLM was provided with the LTL formula, its ITL representation, and the selected domain. The
prompt requested two specific outputs, encapsulated within XML-like tags:

Given the following formal specification:
LTL Formula: "{ltl_formula_string}"
Intermediate Technical Language (ITL): "{itl_representation_string}"
Domain: "{domain_name}"

Please perform two tasks:
1. Define plausible activities for the propositional variables used in the
LTL formula, relevant to the specified domain. These definitions should
make the LTL/ITL meaningful in that domain.
2. Translate the LTL/ITL formula into a clear, concise, and semantically
accurate natural language description. This description should incorporate
the domain context and the activities you define.

Format your response strictly as follows, ensuring the content within
the tags is on a single line if possible, or appropriately escaped if
multi-line:
<activity>p = [definition of p]; q = [definition of q]; ... </activity>
<translation>[Natural language translation of the LTL/ITL incorporating
the activities and domain context]</translation>

The model was instructed to produce clear and concise translations that incorporated the defined
activities.

E.4 LLM JUDGING FOR NL VALIDATION

Validation Model: A substantial portion (18%) of the generated NL translations underwent
automated validation using a large language model to assess semantic correctness and quality. The
model employed for this task was ‘meta-llama/Meta-Llama-3-70B-Instruct’.

Model Configuration: The validation model was loaded using the Hugging Face ‘transformers’
library (version 4.49.0), with 8-bit quantization enabled via the ‘bitsandbytes’ library (version 0.45.5).

Judging Prompt: The LLM judge was provided with the LTL formula, its ITL representation, the
generated NL translation, and the corresponding ‘activity’ string. It was tasked to output its
assessment in a structured JSON format. The prompt template was as follows:

You are an expert in formal methods and natural language.
Your task is to evaluate the semantic correctness and quality
of a natural language (NL) translation with respect to a given
Linear Temporal Logic (LTL) formula and its Intermediate
Technical Language (ITL) representation.

LTL Formula: "{ltl_formula_string}"

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

ITL Representation: "{itl_representation_string}"
Generated NL Translation (incorporating domain context and
variable activities): "{nl_translation_string}"
Domain Context & Variable Activities (as generated for the NL
translation): "{activity_string_from_dataset}"

Please carefully assess the ‘Generated NL Translation’.
Consider the following:
1. Semantic Precision: Does the NL accurately convey the

precise meaning of the LTL/ITL, especially the temporal
relationships (e.g., always, eventually, until, next)?

2. Contextual Appropriateness: Is the NL translation
consistent with the provided ‘Domain Context & Variable
Activities’?

3. Fluency & Clarity: Is the NL translation fluent,
grammatically correct, and easily understandable?

Output your assessment *only* as a single JSON object with the
following keys:
- "is_correct": boolean (true if the NL translation is

semantically correct with respect to LTL/ITL and
contextually appropriate; false otherwise)

- "score": integer (an overall quality score from 0 to 10,
where 10 is perfect)

- "issues": list of strings (a list of specific problems
identified, e.g., "Misinterprets ‘Until’ operator",
"NL is awkward". Empty list if no issues.)

- "reasoning": string (a brief textual explanation for your
judgment and score.)

Generation Parameters for Judge Output: The generation of the JSON response by the LLM
judge used the following parameters to ensure consistent and structured output: temperature = 0.1,
top_p = 0.95, do_sample = True, and max_new_tokens = 512.

E.5 BASELINE MODEL TRAINING

All baseline models were fine-tuned using a standardized methodology. Specific pre-trained
checkpoints were sourced from the Hugging Face Hub. The Hugging Face ‘transformers‘ library
(version 4.49.0) and its ‘Trainer’ API were employed for the fine-tuning process. Data was tokenized
using the respective model’s default tokenizer, with input and output sequences padded or truncated
to a maximum length of 512 tokens. LTL and ITL formulas were treated as regular text sequences for
tokenization.

For each model and task, hyperparameters were optimized based on performance on the validation
set, using the primary metric defined for that task (e.g., BERTScore F1 for LTL/ITL→NL, Semantic
Equivalence for NL→LTL). The reported metrics in Tables 3, 4, and 5 of the main paper were
calculated on the held-out test set using the best checkpoint identified during validation.

A representative configuration, exemplified by the T5-large model, is detailed below. Other models
(T5-base, BART-base, BART-large, Llama-3-8B-Instruct, Mistral-7B-Instruct-v0.2,
CodeLlama-7b-Instruct-hf, DeepSeek Coder-6.7b-instruct) followed an analogous fine-tuning
procedure, adapting batch sizes and learning rates as appropriate for model size and stability.

T5-large Example Configuration:

• Pre-trained Checkpoint: ‘t5-large’ (from Hugging Face Hub).

• Task Input/Output Formatting:

– LTL/ITL → NL: Input: ‘"translate LTL to NL: domain: domain activity: activity ltl:
LTL_formula"‘ (similarly for ITL). Output: ‘"NL_translation"‘.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

– NL → LTL/ITL: Input: ‘"translate NL to LTL: domain: domain activity: activity nl:
NL_translation"‘ (similarly for ITL). Output: ‘"LTL_formula"‘ or
‘"ITL_representation"‘.

– LTL ↔ ITL: Input: ‘"translate LTL to ITL: ltl: LTL_formula"‘ (Output:
‘"ITL_representation"‘), and vice-versa.

• Training Hyperparameters:
– Learning Rate: Initial 1× 10−4, with a linear decay schedule.
– Batch Size: 16 per device, with gradient accumulation steps of 4 (effective batch size

of 64).
– Training Epochs: 5.
– Optimizer: AdamW (β1 = 0.9, β2 = 0.999, ϵ = 1× 10−8).
– Weight Decay: 0.01.
– Scheduler: Linear scheduler with warmup for the first 500 steps.
– Gradient Clipping: Max norm of 1.0.

E.6 SOFTWARE AND HARDWARE ENVIRONMENT

Software Environment: The primary development and execution environment utilized Python
3.10.16. Key libraries and their versions include:

• PyTorch (torch): 2.5.1+cu121

• Transformers (Hugging Face): 4.49.0

• Datasets (Hugging Face): 3.3.2

• Accelerate (Hugging Face): 1.4.0

• BitsandBytes: 0.45.5 (for 8-bit quantization)

• Spot (for LTL manipulation and verification): 2.11.6

• Pandas: 2.2.3

• NumPy: 1.26.4

• Scikit-learn: 1.6.1

• NLTK: 3.9.1 (for METEOR score)

• SQLite3 (Python standard library) for database management.

The CUDA version compatible with the PyTorch build and drivers was CUDA 12.1, with NVIDIA
drivers version 550.x.

Hardware Environment: Dataset generation, initial processing, and LTL/ITL verification stages
were primarily conducted on an institutional high-performance computing (HPC) cluster. These tasks
utilized nodes equipped with dual AMD EPYC 9334 32-Core Processors. Natural language
generation (orchestration of API calls) was also managed from these CPU-based HPC nodes. The
LLM judging phase (using Llama 3) and all baseline model training and testing were performed on a
separate institutional AI compute cluster. For LLM judging and training of larger baseline models
(e.g., Llama-3-8B, Mistral-7B), nodes equipped with 8x NVIDIA H200 GPUs (141 GB VRAM per
GPU) were utilized. Training of other baseline models (e.g., T5, BART variants) and final
testing/evaluation across all models utilized nodes equipped with NVIDIA H100 GPUs (94 GB
VRAM).

E.7 COMPUTE RESOURCES

The development of the VERIFY dataset and the execution of baseline experiments required
substantial computational resources.

• LTL/ITL Database Generation & Verification: Approximately 2,000 CPU core hours on
AMD EPYC 9334 processors.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

• NL Generation (API Orchestration): Approximately 72 wall-clock hours, heavily
parallelized across multiple CPU nodes managing concurrent API calls. (The compute for
the DeepSeek API itself is external).

• LLM Judging (Llama 3): Approximately 300 NVIDIA H200 GPU hours (for 18% of the
dataset).

• Baseline Model Training (average per model type):
– T5-large / BART-large type models: Approximately 24 hours on a 4x NVIDIA H100

GPU configuration.
– T5-base / BART-base type models: Approximately 12 hours on a 4x NVIDIA H100

GPU configuration.
– Llama 3 8B / Mistral 7B / CodeLlama 7B / DeepSeek Coder 6.7B type models:

Approximately 36 hours on an 8x NVIDIA H200 GPU configuration.

The total estimated compute investment is in the order of several thousand CPU core hours and
several hundred high-end GPU hours (normalized to H100/H200 equivalents).

37

	Introduction
	Related Work
	The VERIFY Dataset
	Conceptual Framework: Unifying LTL, ITL, and Contextual NL
	Dataset Design and Structure
	Dataset Statistics

	Dataset Construction Methodology
	LTL Formula Generation and Verification
	Intermediate Technical Language (ITL) Generation and Verification
	Contextual Natural Language (NL) Generation
	Quality Assurance and Validation

	Benchmark Tasks and Experiments
	Experimental Setup
	Core Translation Task Performance
	Analytical Experiments

	Conclusion
	Dataset Statement
	Curation Rationale
	Language Variety
	Speaker/Annotator Demographics
	Potential Risks & Biases
	Limitations
	License
	Maintenance Plan
	Dataset Usage Examples

	Additional Experiments
	Per-domain analysis of the Domains
	Generalization to unseen domains
	Common Error Patterns

	Full LTL-to-ITL Completeness Proof
	Syntax of the Source LTL Fragment (LTLVF)
	Structure of the Canonical Intermediate Technical Language (ITLCanonical)
	Formal Definition of the Mapping Function T
	Proof of Completeness (Totality of T)
	Preservation of Semantic Structure and Reversibility
	Conclusion

	Extended Dataset Details
	Additional Examples
	Example 1: Automotive/Autonomous Vehicles
	Example 2: Home Automation
	Example 3: Security and Authentication
	Example 4: Smart Grid/Energy Management
	Example 5: Version Control and Code Reviews

	Per-Domain Statistics
	LTL Operator and Sub-Pattern Frequencies per Domain

	Additional Visualizations
	Full Data Schema

	Implementation Details
	LTL Formula Generation and Verification
	Intermediate Technical Language (ITL) Generation and Verification
	Natural Language (NL) Generation
	LLM Judging for NL Validation
	Baseline Model Training
	Software and Hardware Environment
	Compute Resources

