

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 VERIFY: A NOVEL MULTI-DOMAIN DATASET GROUNDING LTL IN CONTEXTUAL NATURAL LAN- GUAGE VIA PROVABLE INTERMEDIATE LOGIC

Anonymous authors

Paper under double-blind review

ABSTRACT

Bridging the gap between the formal precision of system specifications and the nuances of human language is critical for reliable engineering, robotics, and AI safety, but it remains a major bottleneck. Prior efforts in grounding formal logic remain fragmented, resulting in datasets that are very small-scale ($\sim 2 - 5k$ examples), domain-specific, or translate logic into overly technical forms rather than context-rich natural language (NL). Thus, failing to adequately bridge formal methods and practical NLP. To address this gap, we introduce **VERIFY**, the first large-scale dataset meticulously designed to unify these elements. This dataset contains more than **200k+** rigorously generated triplets, each comprising a Linear Temporal Logic (LTL) formula, a structured, human-readable '**Intermediate Technical Language**' (ITL) representation designed as a bridge between logic and text, and a domain-specific NL description contextualized across **13 diverse domains**. **VERIFY**'s construction pipeline ensures high fidelity: LTL formulas are enumerated and verified via model checking, mapped to the novel ITL representation using a **provably complete** formal grammar, and then translated into context-aware NL via LLM-driven generation. We guarantee data quality through extensive validation protocols, i.e., manual expert verification of 10,000 diverse samples. Furthermore, automated semantic consistency checks judged by Llama 3.3 confirmed an estimated **>97% semantic correctness**. From the initial experiments, we demonstrate **VERIFY**'s scalability, logical complexity, and contextual diversity, significantly challenging standard models such as T5 and Llama 3.

1 INTRODUCTION

The increasing complexity of software systems, autonomous agents, and critical infrastructure, from financial trading algorithms and medical devices to aerospace controls and smart grids necessitates rigorous methods for specifying behavior and ensuring reliability (1; 2). Formal methods leverage mathematics to enable rigorous techniques and tools for the specification, development, and verification of critical systems (3; 4; 5). Temporal logic such as Linear Temporal Logic (LTL) (6) has become integral in defining and verifying critical hardware, software, and communication systems (7). For instance, consider a specification of a home automation system that requires that "*If any exterior door opens after 10 p.m., the security lights should immediately turn on and stay on until the door is closed.*" Using LTL formalism, this requirement can be expressed as $G((t > 22:00 \wedge door_open) \rightarrow lights_on \cup \neg door_open)$. Despite the succinct formalization of requirements, the specialized syntax and semantics of formal logic often render specifications opaque to domain experts, stakeholders, and even many developers, creating a significant barrier to their widespread adoption of formal methods in critical applications (8; 9). Conversely, system requirements are frequently documented in natural language (NL), which is accessible but notoriously prone to inherent ambiguity, incompleteness, and inconsistency. This leads to frequent misunderstandings of specifications and costly errors, particularly in safety-critical contexts (10; 11; 12). This fundamental gap remains a major bottleneck in system development and verification (13). Thus, there is the need to create large-scale resources that systematically align such unambiguous formal expressions with their context-rich NL counterparts.

Bridging this divide requires resources capable of intuitively aligning distinct formal specifications with their contextualized natural language counterparts. Despite this clear need, progress has been significantly hampered by the limitations of available datasets (14; 15). Existing resources attempting

054 to link these two syntactically divergent expressions, i.e. temporal logic and natural language,
 055 typically fall short in several critical dimensions such as confinement to single, niche application
 056 domains—such as robotics commands (16) or specific software verification patterns (17), inhibiting
 057 the development of cross-domain, generalizable models.

058 To address this critical gap, we introduce **VERIFY**, a novel large-scale dataset meticulously designed
 059 to unify these three levels of representation (i.e. LTL, a structured, technical form of LTL and Natural
 060 Language). VERIFY contains over 200 thousand rigorously generated triplets, each comprising: (i)
 061 a Linear Temporal Logic (LTL) formula specifying a temporal property, (ii) a structured, human-
 062 readable ‘Intermediate Technical Language’ (ITL) representation, novel to this work, explicitly
 063 designed to bridge the structural patterns of LTL with the syntax of natural language and (iii) a
 064 domain-specific Natural Language (NL) description expressing the property in context.

065 The construction of VERIFY prioritizes both scale and fidelity. LTL formulas are systematically
 066 enumerated and formally verified for non-triviality and satisfiability using model checking (3). Each
 067 verified LTL formula is then mapped to our novel ITL representation using a formal grammar
 068 engineered to be provably complete with respect to the input LTL fragment. Finally, context-aware
 069 NL descriptions are generated using a state-of-the-art reasoning large language model (18; 19),
 070 conditioned on the LTL/ITL structure, the domain, and domain-specific variable semantics. Crucially,
 071 data quality is guaranteed through extensive validation protocols: manual expert verification of
 072 10,000 random samples and automated semantic consistency and correctness checks judged by
 073 an LLM-as-judge approach (using Llama 3.3) (20; 21) across 18% of the dataset, confirming an
 074 estimated $> 97\%$ semantic integrity.

075 This work makes the following primary contributions: 1) *The VERIFY Dataset*: A novel large-scale
 076 (200k+ examples), multi-domain (13 domains) dataset providing parallel LTL, ITL, and contextual
 077 NL triplets; 2) *The ITL Formalism*: A novel Intermediate Technical Language designed to bridge
 078 LTL and NL, accompanied by a provably complete LTL-to-ITL translation grammar; 3) *Rigorous
 079 Methodology*: A high-fidelity, multi-stage data generation and validation pipeline incorporating
 080 model checking, formal grammars, LLM generation, and extensive human/automated checks along
 081 with various structural checks of random examples; 4) *Demonstrated Utility*: Baseline experiments
 082 using standard models (22; 20) that establish performance benchmarks and highlight modern LLM’s
 083 challenges related to logical complexity, context sensitivity, and domain adaptation; 5) *Open Release*:
 084 Public release of the full dataset, the ITL specification, baseline code, and evaluation tools to foster
 085 reproducibility and accelerate research. We believe VERIFY provides the foundational resource to
 086 advance research in areas such as robust logic-to-language generation, formally-grounded natural
 087 language understanding, cross-domain translation for formal specifications, explainable AI for
 088 verification, and the development of more accessible, human-centric tools for system specification
 089 and analysis.

090 2 RELATED WORK

091 The challenge of bridging formal logical specifications and natural language descriptions is a long-
 092 standing pursuit with significant implications for system design, verification, requirements engineering,
 093 and human-robot interaction (13). This section reviews prior work relevant to the VERIFY
 094 dataset, focusing on approaches for translating between Linear Temporal Logic (LTL) and natural
 095 language (NL), the landscape of existing datasets, and the limitations that motivated VERIFY’s
 096 development.

097 **Translating Between LTL and Natural Language:** Translating formal specifications like LTL
 098 into understandable natural language, and vice-versa, has been approached using various methods,
 099 ranging from rule-based systems to modern deep learning techniques. Early work suggested that
 100 translating LTL to NL could be achieved “in a relatively easy way” by parsing the LTL formula’s
 101 structure, often using attribute grammars, and applying heuristics to generate reasonably natural
 102 phrasing (23). However, achieving truly fluent, context-aware, and unambiguous translations that
 103 avoid common human misinterpretations (e.g., regarding temporal operators like “Until” and “Weak
 104 Until” (24)) using purely rule-based methods remains an open challenge (23). Translating NL to
 105 LTL using rule-based methods often involves complex semantic parsing pipelines, which can be
 106 incredibly brittle and difficult to scale (25). With the rise of deep learning, Neural Machine Translation
 107 (NMT) approaches have been applied to LTL-NL translation. A seminal effort by Cherukuri et al.
 108 (26) demonstrated the feasibility of using OpenNMT (27) to translate LTL formulas into English
 109 explanations, achieving high BLEU scores on a dataset augmented with variable permutations. This

108 highlighted the potential of data-driven methods but also their dependence on sufficiently large and
 109 representative paired corpora. Similar sequence-to-sequence models have been explored for NL to
 110 LTL tasks, often framing it as a translation problem (28; 29).

111 More recently, Large Language Models (LLMs) have shown significant promise. Pan et al. (30)
 112 employs GPT-3 for paraphrasing structured English templates (derived from LTL via rules/templates)
 113 to synthesize diverse NL commands for training NL to LTL models data-efficiently. The Lang2LTL
 114 work also utilizes LLMs within its translation framework (31). The NL2TL project (32) uses GPT-3 to
 115 generate a large dataset of “lifted” NL-Temporal Logic pairs where specific details are abstracted away
 116 and fine-tunes T5 models, demonstrating LLMs’ potential for both data generation and translation,
 117 particularly when aiming for cross-domain generalization via lifted representations. Tooling efforts
 118 like the NL2LTL Python package also integrate LLMs (GPT) alongside traditional NLU engines
 119 (Rasa) to translate NL into predefined LTL patterns. These works showcase the power of LLMs but
 120 often still rely on intermediate structures, specific patterns, or focus on lifted representations rather
 121 than fully contextual, grounded NL across truly diverse domains. Furthermore, work like Greenman
 122 et al.’s (24) reminds us that effective translation requires more than semantic equivalence; it demands
 123 alignment with human cognitive patterns and expectations. Their user studies revealed systematic
 124 misunderstandings when humans map LTL to English, emphasizing that automated translation must
 125 produce outputs that align with both formal semantics and user expectations to be truly effective for
 126 explanation or requirements validation.

127 **Existing Datasets and Resources:** Despite progress in translation methodologies, a major bottleneck
 128 that remains is the availability of large, diverse, and suitable datasets. While several resources have
 129 been created, a review reveals significant limitations, especially concerning scale, domain diversity,
 130 contextual richness, and accessibility. A significant portion of publicly available datasets is confined
 131 to narrow application domains, primarily robotics and navigation. Examples include the datasets
 132 from Pan et al. (30), Wang et al. (33), the Language-to-Landmarks work (34), and the grounded
 133 parts of Lang2LTL (31). While valuable within their specific contexts, these resources lack the
 134 linguistic and conceptual diversity needed to train models that generalize beyond command-and-
 135 control scenarios. Other datasets operate at a symbolic level, using abstract variable names (26; 31),
 136 or focus on specialized areas like hardware verification (35). While the NL2TL dataset (32) attempts
 137 cross-domain generalization using lifted representations, it differs from providing specific, contextual
 138 groundings across varied domains.

139 Furthermore, many existing datasets are limited in scale, often containing only a few thousand
 140 (33; 34; 31) or low tens of thousands (26; 32) of examples. This scale is often insufficient to
 141 train large neural models capable of capturing the complex interplay between logical structure and
 142 linguistic variation and serves for a light finetuning. Perhaps most critically, the nature of the natural
 143 language presented is often restricted. Many datasets feature imperative commands or relatively
 144 technical descriptions that closely mirror the underlying logic (30; 25), rather than the richer, more
 145 descriptive, and context-dependent language typically found in real-world requirements documents
 or system descriptions (36).

146 Finally, accessing and utilizing these resources can be challenging due to their fragmented nature,
 147 originating from different research groups with varying formats and objectives. So, despite valuable
 148 contributions within specific niches, a large-scale, multi-domain dataset featuring rich, contextual NL
 149 paired with LTL has been conspicuously absent.

150 **Where Does VERIFY Fit In:** VERIFY was created specifically to address these combined limita-
 151 tions and provide a resource capable of driving significant progress in contextual logic-to-language
 152 modeling. Its massive scale, exceeding 200 thousand triplets, directly tackles the data scarcity prob-
 153 lem, enabling the development and evaluation of sophisticated deep learning architectures. Critically,
 154 VERIFY moves beyond narrow domains with its unprecedented scope across 13 diverse application
 155 areas, including finance, healthcare, web services, and industrial automation, fostering research into
 156 domain adaptation and generalization for formal specifications. In contrast to datasets focused on
 157 commands or technical paraphrases, VERIFY emphasizes rich, contextual natural language descriptions.
 158 Each NL instance is grounded in domain-specific activities and variable meanings, reflecting more
 159 realistic language use. Furthermore, VERIFY introduces a novel Intermediate Technical Language
 160 (ITL), accompanied by a provably complete mapping from LTL. This structured intermediate layer is
 161 unique among large LTL-NL datasets and offers a new avenue for research, potentially facilitating

162 more reliable and interpretable translations by providing an explicit bridge between formal logic and
 163 natural language.

164 By integrating massive scale, broad domain diversity, contextual richness, and the novel ITL layer
 165 into a single, unified, and openly accessible resource, we believe VERIFY provides the foundational
 166 resource needed for the next generation of research. It enables the community to move towards
 167 developing models that not only understand the semantics of temporal logic but also grasp its meaning
 168 within diverse, real-world contexts, paving the way for more robust logic-to-language translation,
 169 formally-grounded NLP, and human-centric system verification tools.

171 3 THE VERIFY DATASET

172 This section details the design, structure, content, and scope of VERIFY. We introduce its conceptual
 173 framework, including the unique Intermediate Technical Language (ITL), outline the principles guid-
 174 ing its construction, describe its schema and domain coverage and present key statistics characterizing
 175 its scale and diversity.

177 3.1 CONCEPTUAL FRAMEWORK: UNIFYING LTL, ITL, AND CONTEXTUAL NL

179 VERIFY is built upon a three-layer representation; Linear Temporal Logic (LTL), an Intermediate
 180 Technical Language (ITL), and Natural Language (NL), all grounded within specific application
 181 domains and contexts.

182 **Linear Temporal Logic (LTL):** At the core, LTL serves as the formal specification language (6).
 183 It allows precise expression of properties over time using propositional variables, standard boolean
 184 operators ($\neg, \wedge, \vee, \rightarrow$), and temporal modal operators. VERIFY utilizes the standard LTL operators:
 185 \mathbf{G} ('Globally' or 'Always'), \mathbf{F} ('Finally' or 'Eventually'), \mathbf{X} ('Next'), \mathbf{U} ('Until'), \mathbf{W} ('Weak Until'),
 186 and \mathbf{R} ('Release'). For instance, $\mathbf{G}(req \rightarrow F(ack))$ formally states that it is always the case that if a
 187 request req is sent, then an acknowledgment ack must be sent back at some point in the future. This
 188 layer provides the unambiguous, machine-verifiable meaning.

189 **The Intermediate Technical Language (ITL):** A key challenge in this whole research area is
 190 the significant semantic gap between the abstract, symbolic nature of LTL and the rich, nuanced,
 191 context-dependent nature of real-world natural language. Directly mapping complex LTL formulas to
 192 fluent, accurate, and contextual NL is extremely difficult. This is because translations often become
 193 overly technical, template-like, or lose semantic fidelity. To address this, we introduce ITL, a novel
 194 intermediate representation designed specifically to serve as a structural and semantic bridge between
 195 LTL and NL. ITL is conceived to be more structured and less ambiguous than free-form NL, yet more
 196 human-readable and linguistically closer to NL than raw LTL formulas. It achieves this by: (i) explic-
 197 itely representing the logical and temporal structure derived from the LTL formula's abstract syntax
 198 tree (AST), generated via formal parsing rules, (ii) employing keywords and controlled phrasal tem-
 199 plates corresponding to LTL operators, derived from a large human curated library of common human
 200 expressions for temporal concepts and (iii) serving as a stable intermediate target that simplifies the
 201 translation task, potentially facilitating higher-quality generation and interpretation in both $LTL \rightarrow NL$
 202 and $NL \rightarrow LTL$ directions. Given the LTL formula: $\mathbf{G}(system_ready \rightarrow (check_a \mathbf{U} check_b))$.
 203 An ITL representation might be: **Always**(IF $system_ready$ THEN $(check_a \mathbf{Until} check_b)$)
 204 This ITL form preserves the exact logical structure (**always, implies, until**) but uses more verbose,
 205 keyword-like operators, making the transition to or from NL more manageable than directly handling
 206 the symbolic LTL.

207 **Domain and Context:** While LTL provides formal meaning and ITL offers a structural bridge,
 208 generating truly relevant NL requires grounding in a specific application context. An LTL formula
 209 like $\mathbf{G}(p \rightarrow Fq)$ is abstract; its meaningful NL translation depends entirely on what p and q represent
 210 in a given scenario. VERIFY incorporates this crucial grounding through two key fields associated
 211 with each triplet: (i) **domain**: Specifies the application area (e.g., 'Financial Services', 'Home
 212 Automation') and (ii) **activity**: Provides natural language definitions for the propositional variables
 213 used in the LTL formula within that domain's context (e.g., p = user login attempt succeeds, q =
 214 two-factor authentication prompt is displayed).

215 This domain and activity information provides the essential semantic context, enabling the generation
 216 and interpretation of NL descriptions that are not generic templates but are instead specific, relevant,
 217 and interpretable within their intended domain. For instance, grounded in a financial domain, the ITL

216 above might translate to: “It must always be the case that if the trading system reports ready, then
 217 check A must remain valid until check B is completed.”
 218

219 3.2 DATASET DESIGN AND STRUCTURE

220 The creation of VERIFY was guided by several core principles aimed at producing a high-quality,
 221 impactful resource for the research community. We aimed for Logical Diversity, ensuring the dataset
 222 includes a wide spectrum of LTL formulas, varying in structure, operator usage, and nesting depth.
 223 Contextual Richness was paramount, driving the generation of NL that is deeply specific to the
 224 domain and variable definitions, avoiding vague or purely syntactic translations. Broad Domain
 225 Coverage across 13 distinct areas was incorporated to facilitate research into domain generalization
 226 and adaptation. Verifiability and Quality were central, addressed through formal verification of
 227 LTL formulas, a provably correct LTL-to-ITL mapping, and multi-stage validation of NL alignment
 228 (detailed in Section 4). Finally, Scalability was a key goal, resulting in a large-scale dataset suitable
 229 for training modern deep learning models.

230 **Data Schema:** The dataset is structured as a collection of records, where each record represents
 231 a complete LTL-ITL-NL triplet with its associated context and metadata. The primary fields are
 232 described in Table 13.

233 **Domain Coverage:** VERIFY spans 13 distinct application domains, selected to cover a wide range
 234 of scenarios where formal specification and natural language descriptions interact. The domains are
 235 listed in Table 11.

237 3.3 DATASET STATISTICS

238 VERIFY is a large-scale resource comprising over 200 thousand LTL-ITL-NL triplets. This includes
 239 a substantial number of unique LTL formulas and ITL structures, reflecting diverse logical patterns.
 240 Due to the contextual generation process, the vast majority of the 200k+ NL translations are unique
 241 or near-unique within their specific domain context. The dataset features a broad distribution of LTL
 242 formula complexities, ranging from simple properties involving one or two operators to complex
 243 specifications with significant nesting depths. The Natural Language descriptions also exhibit variety.
 244 Sentence lengths vary considerably depending on the complexity of the underlying logic and the
 245 specific domain context. The sample distribution based on the count of temporal operators per formula
 246 and complexity of the underlying logic and the specific domain context is shown in Appendix A. We
 247 also show the sample distribution across the specific domains in the Appendix A.

249 4 DATASET CONSTRUCTION METHODOLOGY

250 The creation of the VERIFY dataset involved a rigorous, multi-stage pipeline designed to create
 251 high-quality data encompassing LTL, ITL, and contextual NL. This process emphasized formal
 252 correctness, semantic consistency, contextual relevance, and scalability, incorporating automated
 253 generation, formal verification, LLM capabilities, and comprehensive quality assurance steps.

255 4.1 LTL FORMULA GENERATION AND VERIFICATION

256 The foundation of VERIFY lies in a diverse set of syntactically correct and semantically meaningful
 257 LTL formulas.

258 We employed a programmatic LTL formula enumerator that recursively constructs formulas up to
 259 a specified maximum depth (depth 25 in our process) using standard LTL operators (**G**, **F**, **X**, **U**,
 260 **R**, **W**) and boolean connectives, applied to a set of atomic propositions (*p* through *w*). Random
 261 choices at each step ensure structural diversity in the generated formulas. To manage the vast
 262 number of potential formulas and avoid trivial duplicates, generated formulas undergo a structural
 263 canonicalization process. This involves conversion to Negation Normal Form (NNF), expansion of
 264 implications/equivalences, application of associative/distributive laws, and sorting of operands for
 265 commutative operators. A canonical hash is computed for each unique structure, and formulas are
 266 stored persistently in an SQLite database indexed by this hash, ensuring that only structurally distinct
 267 formulas (under these rules) are retained.

268 The primary step ensuring the semantic validity and non-triviality of the LTL formulas involves
 269 rigorous verification using Spot (37). This critical step filters out syntactically invalid formulas

270 that might arise from the generator or initial conversion. Successfully validated formulas, along
 271 with their canonical string representation as determined by Spot are stored back into the database
 272 (spot_formulas and canonical_form columns). This ensures that all LTL formulas used in subsequent
 273 stages are well-formed and provides a standardized representation grounded in a formal verification
 274 tool.

275 4.2 INTERMEDIATE TECHNICAL LANGUAGE (ITL) GENERATION AND VERIFICATION

277 The generation of ITL from verified LTL formulas is a deterministic, rule-based process. Verified
 278 LTL formulas are first parsed into an Abstract Syntax Tree (AST) representation using Spot’s parsing
 279 capabilities. This captures the precise logical and temporal structure. An AST-visitor script then
 280 walks the LTL parse tree and, at each operator node, performs an $O(1)$ dictionary lookup of a curated
 281 list of human-readable templates. These templates are derived from a curated grammar based on
 282 common human-readable expressions for temporal concepts. For example, $G(p)$ maps to Always p ,
 283 and pUq maps to p Until q . This recursive process yields a canonical ITL string that directly mirrors
 284 the LTL structure but uses more naturalistic keywords. With this, we can ensure linguistic diversity
 285 and have confidence in the process.

286 **ITL Verification:** To ensure the integrity of the ITL generation process and the semantic equivalence
 287 between the canonical ITL and its source LTL, an automated verification step was implemented.
 288 This involves parsing the ITL text back into an LTL formula representation using a rule-based parser
 289 guided by the ITL grammar via an AST. This reconstructed LTL formula is then formally compared
 290 against the original LTL using Spot’s built-in semantic equivalence checker. This check confirms that
 291 the ITL representation, when interpreted back through its grammar rules, retains the precise logical
 292 meaning of the source LTL. Because the ITL generation strictly follows the LTL AST structure and
 293 uses a defined mapping for each LTL operator, the transformation from LTL to the canonical ITL
 294 output is deterministic and structure-preserving. This deterministic mapping forms the basis of the
 295 provably complete relationship between the source LTL and the canonical ITL representation. We
 296 prove this relationship in Appendix C.

297 4.3 CONTEXTUAL NATURAL LANGUAGE (NL) GENERATION

298 To generate natural language descriptions relevant to specific application areas, we utilized a large
 299 language model guided by the LTL formula, its ITL representation, and domain context. We used
 300 DeepSeek-R1 for its strong reasoning and language generation capabilities. For each LTL/ITL pair
 301 selected from the database, a target domain was chosen using a probabilistic sampling strategy
 302 designed to balance the distribution across the 13 domains. A prompt (detailed in Appendix E.3) was
 303 constructed, instructing the LLM to act as an expert in formal methods and the target domain. The
 304 prompt provided the LTL formula and the ITL representation and explicitly requested the model to
 305 generate two components within specific tags: **<activity>**: A natural language description defining the
 306 meaning of the atomic propositions within the context of the selected domain. **<translation>**: A clear,
 307 concise, and semantically accurate natural language translation of the LTL/ITL logic, incorporating
 308 the domain context provided in the **<activity>** tag.

309 4.4 QUALITY ASSURANCE AND VALIDATION

310 Ensuring the quality and semantic integrity of the generated LTL-ITL-NL triplets was paramount
 311 and involved multiple stages. As described above, LTL formula validity is enforced through parsing
 312 and canonicalization using the Spot library. The canonical ITL is generated via a deterministic,
 313 structure-preserving mapping from this verified LTL so we can be sure it’s right. Even then, the
 314 consistency between ITL and the original LTL was further verified using an ITL-to-LTL parser and
 315 Spot-based equivalence checking.

316 **Manual NL Check:** A significant manual review was conducted on the completed dataset. 10,000
 317 LTL-ITL-NL triplets were randomly sampled from the generated dataset and these samples were
 318 meticulously reviewed by the authors, who possess expertise in formal methods, temporal logic,
 319 and natural language processing. The review focused on: (i) Semantic Equivalence: Does the NL
 320 translation accurately convey the precise meaning of the LTL/ITL formula, especially the temporal
 321 relationships? (ii) Contextual Relevance: Is the activity description plausible for the domain, and is
 322 the translation consistent with this context? and (iii) Linguistic Quality: Is the NL translation fluent,
 323 grammatically correct, and easily understandable? This manual check identified a very low error

324 rate (<1%), primarily consisting of minor fluency issues or occasional subtle deviations in temporal
 325 meaning, which were used to refine prompts and generation strategies iteratively.
 326

327 **LLM Judge (NL):** To augment manual checks and provide broader validation coverage, we employed
 328 an automated LLM-based judge. We utilized Llama 3.3 70B Instruct (20) to evaluate a random
 329 sample making up a total of 18% of the generated NL translations. The LLM judge was presented
 330 with the LTL formula, ITL text, and the NL translation. It was prompted to assess semantic precision
 331 (especially regarding temporal operators), contextual appropriateness, and fluency, outputting a
 332 structured JSON response containing: is_correct (boolean), score (0-10 integer rating), issues (a list
 333 of identified problems), and textual reasoning for its judgment. The results from the LLM judge
 334 indicated an estimated >97% semantic correctness and consistency between the NL translations
 335 and their corresponding LTL/ITL specifications, aligning closely with the findings from the manual
 336 verification phase.

337 5 BENCHMARK TASKS AND EXPERIMENTS

339 To demonstrate the utility of VERIFY and establish baseline performance levels for future research,
 340 we conducted a set of experiments to evaluate state-of-the-art models on core translation tasks enabled
 341 by VERIFY’s LTL-ITL-NL structure and probe the challenges introduced by its contextual richness,
 342 domain diversity, and logical complexity.

343 5.1 EXPERIMENTAL SETUP

345 We created standardized train, validation, and test splits for the VERIFY dataset, maintaining an
 346 approximate 80%/10%/10% ratio. These splits were stratified by domain to ensure representation
 347 across all 13 areas in each set.

348 **Baseline Models:** We evaluated a diverse range of models to provide a broad performance
 349 landscape; (i) **Pre-trained Sequence-to-Sequence Models:** Standard Transformer-based mod-
 350 els, specifically T5 (t5-base, t5-large) (22) and BART (bart-base, bart-large)
 351 (38), were fine-tuned for each task, (ii) **Instruction-Tuned LLMs:** We fine-tuned promi-
 352 nent instruction-following models, including Llama 3 (Llama-3-8B-Instruct) (20) and
 353 Mistral (Mistral-7B-Instruct-v0.2) (39), to assess the capabilities of modern LLMs
 354 on these structured tasks, and (iii) **Code-Focused LLMs:** Models pre-trained extensively
 355 on code, such as CodeLlama (CodeLlama-7b-Instruct-hf) (40) and DeepSeek Coder
 356 (deepseek-coder-6.7b-instruct) (41), were included, particularly for tasks involving
 357 generation of formal LTL/ITL outputs. All models were fine-tuned using standard hyperparameters
 358 optimized on the validation set (details in Appendix A).

359 **Evaluation Metrics:** We employed a suite of metrics appropriate for the different translation
 360 directions: (i) **NL Generation (LTL/ITL → NL):** Primary metrics were BERTScore (42) (for
 361 semantic similarity using DeBERTa-v3-large) and ROUGE-L (43) (for lexical overlap) and (ii)
 362 **Logic Generation (NL → LTL/ITL, LTL ↔ ITL):** Primary metrics were task-dependent: Semantic
 363 Equivalence (for NL → LTL and ITL → LTL, using Spot to check logical equivalence with the ground
 364 truth) and Exact Match (EM) (especially for NL → ITL and LTL → ITL). Secondary metrics included
 365 Tree Edit Distance (TED) to measure structural similarity, and Syntactic Correctness (percentage of
 366 outputs parsable according to the LTL/ITL grammar).

367 5.2 CORE TRANSLATION TASK PERFORMANCE

368 Tasks 1 & 2 (LTL/ITL → NL): Generating contextual natural language from formal (LTL) or
 369 intermediate (ITL) representations, given domain and activity context. Results (Table 1) show that
 370 modern pre-trained models achieve reasonable performance, with LLMs generally outperforming
 371 T5/BART, particularly on semantic metrics like BERTScore. Generating NL from ITL yields
 372 comparable or slightly better results than from LTL directly for most models, suggesting ITL can be
 373 an effective input representation. Tasks 3 & 4 (NL → LTL/ITL): As expected, these tasks proved
 374 significantly more challenging (Table 2). Semantic Equivalence for NL→LTL remains low across
 375 models, highlighting the difficulty of precise logical form recovery from ambiguous NL. Code-
 376 focused LLMs showed a slight advantage in generating syntactically correct outputs. Exact Match
 377 for NL→ITL was higher than for LTL, potentially due to ITL’s more constrained structure, but still
 378 far from perfect.

378
379

Table 1: Performance on LTL/ITL-to-NL translation tasks (BERTScore F1 / ROUGE-L F1).

380
381
382
383
384
385
386
387

Model	LTL → NL	ITL → NL
T5-base	0.62 / 0.37	0.84 / 0.41
T5-large	0.67 / 0.41	0.89 / 0.61
BART-large	0.63 / 0.39	0.78 / 0.56
Llama-3-8B-Instruct (FT)	0.91 / 0.67	0.94 / 0.73
Mistral-7B-Instruct (FT)	0.88 / 0.62	0.91 / 0.62
CodeLlama-7B-Instruct (FT)	0.88 / 0.63	0.92 / 0.71

388
389
390

Table 2: Performance on NL-to-LTL/ITL translation tasks (Semantic Equiv. / EM / Syntactic Correctness)

391
392
393
394
395
396
397
398

Model	NL → LTL	NL → ITL
	(SemEq / EM / SynCorr)	(EM / TED / SynCorr)
T5-large	22.3 / 2.8 / 66.1	2.2 / 11.8 / 68.3
Llama-3-8B-Instruct (FT)	28.2 / 4.1 / 73.6	4.3 / 23.5 / 77.2
Mistral-7B-Instruct (FT)	25.6 / 2.9 / 68.4	1.6 / 17.9 / 74.5
CodeLlama-7b-Instruct (FT)	25.4 / 3.3 / 71.1	3.2 / 19.2 / 74.8
DeepSeek-Coder (FT)	31.5 / 5.4 / 74.2	4.1 / 18.8 / 79.5

399
400
401
402
403
404
405
406

Task 5 (LTL \leftrightarrow ITL): Translating directly between the formal LTL (Spot canonical form) and the canonical ITL. Given the deterministic rule-based mapping used for canonical ITL generation, models achieved Exact Match scores up to 31.7% on LTL \rightarrow ITL (Table 3). The ITL \rightarrow LTL direction also showed high Semantic Equivalence (up to 56.4%) and corresponding Exact Match scores (up to 21.6%), confirming models can effectively learn the structural correspondence, although minor syntactic variations occasionally occurred.

407
408Table 3: Performance on LTL \leftrightarrow ITL translation tasks (Exact Match / Semantic Equiv.)409
410
411
412
413

Model	LTL → ITL (EM)	ITL → LTL (SemEq / EM)
T5-large	19.3	38.6 / 19.0
Llama-3-8B-Instruct (FT)	31.7	53.1 / 20.8
CodeLlama-7b-Instruct (FT)	27.9	56.4 / 21.6

414
415
416

5.3 ANALYTICAL EXPERIMENTS

417
418
419

We performed further experiments to analyze the influence of VERIFY’s specific design choices and characteristics.

420
421
422
423
424
425
426
427
428
429
430
431

Experiment A (Value of ITL): We investigated the potential of ITL as an effective intermediate representation for logic-to-NL generation. This was assessed by comparing the performance of direct LTL \rightarrow NL translation (Task 1) with the performance of ITL \rightarrow NL translation (Task 2), which represents the second stage of a potential two-stage pipeline (LTL \rightarrow ITL via Task 5 model, then ITL \rightarrow NL via Task 2 model). The results, illustrated in Figure 1, demonstrate that models consistently achieve higher performance when translating ITL to NL compared to translating LTL to NL. Specifically, for all evaluated models, both BERTScore F1 and ROUGE-L F1 scores are notably improved when ITL is the source language for NL generation as opposed to LTL. For instance, Llama-3-8B-Instruct (FT) achieves a BERTScore F1 of 0.91 for LTL \rightarrow NL, which increases to 0.94 for ITL \rightarrow NL; similarly, its ROUGE-L F1 improves from 0.67 to 0.73. T5-large shows an even more pronounced relative improvement in BERTScore F1, jumping from 0.67 (LTL \rightarrow NL) to 0.89 (ITL \rightarrow NL). These findings support the hypothesis that ITL can serve as a beneficial intermediate representation, as translating from ITL to NL yields significantly better semantic accuracy and lexical overlap than direct translation from LTL to NL across a range of models.

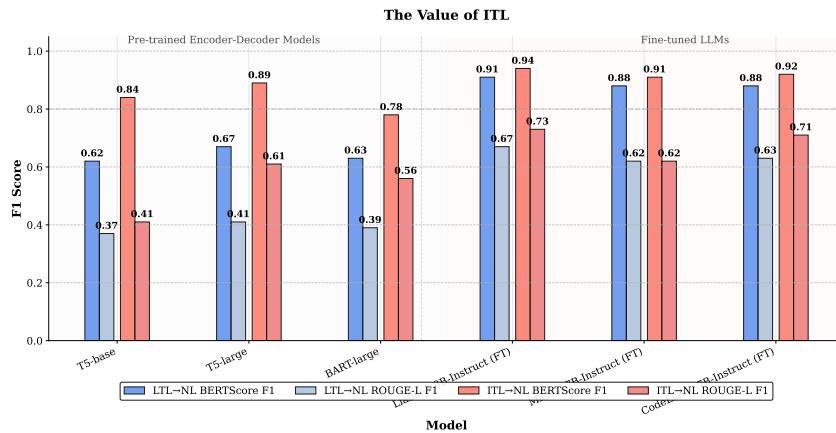


Figure 1: Comparison of direct LTL-to-NL translation versus a two-stage LTL-to-ITL-to-NL pipeline, showing difference in BERTScore vs. LTL complexity.

Experiment B (Impact of Context): Models trained for NL \rightarrow LTL/ITL translation without the domain and activity context information suffered a significant performance degradation compared to models trained with full context (Table 4). Semantic scores dropped considerably and Syntactic Correctness was much lower, confirming that the contextual grounding provided in VERIFY is crucial for generating meaningful and accurate translations. Our experiments establish initial baselines on the

Table 4: Impact of domain and activity context on NL-to-LTL/ITL translation performance (Semantic Equiv. / EM).

	Llama 3 FT	With Context	Without Context
NL \rightarrow LTL	28.2 / 4.1	7.7 / 0.8	
NL \rightarrow ITL	41.5 / 4.3	13.9 / 1.3	

VERIFY dataset, demonstrating the capabilities and limitations of current models on contextual logic-to-language tasks. While modern pre-trained models achieve strong performance on LTL/ITL \rightarrow NL generation and inter-formalism translation (LTL \leftrightarrow ITL), significant challenges remain, particularly in parsing NL to accurate LTL specifications (NL \rightarrow LTL) and generalizing across diverse domains. The results confirm the importance of contextual information, the potential utility of ITL for complex formulas, and VERIFY’s effectiveness in representing a wide spectrum of logical and domain-based difficulties suitable for driving future research.

Additional Experiments. We conducted additional experiments to support the need for such a dataset; namely, per-domain performance analysis, generalization which was tested by holding out individual domains during training and by evaluating the model on an entirely unseen formal logic (STL). Finally, a manual error analysis was performed on incorrect NL to LTL translations to categorize common failure patterns B.

6 CONCLUSION

Our experiments establish initial baselines, revealing both the potential of modern sequence-to-sequence models and LLMs on these tasks, and significant remaining challenges. While generating fluent NL from LTL/ITL (Tasks 1, 2) is achievable, models struggle considerably with translating NL accurately back into formal LTL (Task 3), particularly in preserving precise temporal semantics. Our experiments also provide initial support for this, showing a modest benefit when using ITL as a stepping stone (LTL \rightarrow ITL \rightarrow NL) for translating more complex LTL formulas compared to direct LTL \rightarrow NL generation (Experiment A).

486 REFERENCES
487

488 [1] Barry W Boehm. *Software engineering economics*. Springer, 2002.

489 [2] John C Knight. Safety critical systems: challenges and directions. In *Proceedings of the 24th*
490 *international conference on software engineering*, pages 547–550, 2002.

491

492 [3] Edmund M Clarke. Model checking. In *Foundations of Software Technology and Theoretical*
493 *Computer Science: 17th Conference Kharagpur, India, December 18–20, 1997 Proceedings 17*,
494 *pages 54–56*. Springer, 1997.

495 [4] Edmund M Clarke, Thomas A Henzinger, Helmut Veith, Roderick Bloem, et al. *Handbook of*
496 *model checking*, volume 10. Springer, 2018.

497

498 [5] Gerard J Holzmann. *The SPIN model checker: Primer and reference manual*, volume 1003.
499 Addison-Wesley Reading, 2004.

500

501 [6] Amir Pnueli. The temporal logic of programs. In *18th annual symposium on foundations of*
502 *computer science (sfcs 1977)*, pages 46–57. ieee, 1977.

503

504 [7] Kristin Y Rozier. Linear temporal logic symbolic model checking. *Computer Science Review*,
505 5(2):163–203, 2011.

506

507 [8] Steve Easterbrook, Robyn Lutz, Richard Covington, John Kelly, Yoko Ampo, and David
508 Hamilton. Experiences using lightweight formal methods for requirements modeling. *IEEE*
509 *Transactions on Software Engineering*, 24(1):4–14, 1998.

510

511 [9] Matthew B Dwyer, George S Avrunin, and James C Corbett. Patterns in property specifications
512 for finite-state verification. In *Proceedings of the 21st international conference on Software*
513 *engineering*, pages 411–420, 1999.

514

515 [10] Daniel M Berry, Erik Kamsties, and Michael M Krieger. From contract drafting to software
516 specification: Linguistic sources of ambiguity, a handbook. *Perspectives on Software Requirements*,
517 *Series: The Springer International Series in Engineering and Computer Science*, 753,
518 2003.

519

520 [11] Yih-Feng Hwang and David C Rine. Verifying the reusability of software component specifications:
521 *Framework and algorithms*. *Information Sciences*, 112(1-4):169–197, 1998.

522

523 [12] Katharina Großer, Volker Riediger, and Jan Jürjens. Requirements document relations: A reuse
524 perspective on traceability through standards. *Software and Systems Modeling*, 21(6):1–37,
525 2022.

526

527 [13] Jeannette M Wing. A specifier’s introduction to formal methods. *Computer*, 23(9):8–22, 1990.

528

529 [14] Jacob Andreas, Andreas Vlachos, and Stephen Clark. Semantic parsing as machine translation.
530 In *Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics*
531 *(Volume 2: Short Papers)*, pages 47–52, 2013.

532

533 [15] Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large
534 language models for code generation. *arXiv preprint arXiv:2406.00515*, 2024.

535

536 [16] Rosario Scalise, Shen Li, Henny Admoni, Stephanie Rosenthal, and Siddhartha S Srinivasa.
537 Natural language instructions for human–robot collaborative manipulation. *The International*
538 *Journal of Robotics Research*, 37(6):558–565, 2018.

539

540 [17] Maxim Vyacheslavovich Neyzov and Egor Vladimirovich Kuzmin. Ltl-specification for devel-
541 opment and verification of control programs. *Modeling and Analysis of Information Systems*,
542 30(4):308–339, 2023.

543

544 [18] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
545 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
546 *arXiv:2412.19437*, 2024.

540 [19] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 541 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in
 542 llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

543 [20] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
 544 Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama
 545 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024.

546 [21] Guijin Son, Hyunwoo Ko, Hoyoung Lee, Yewon Kim, and Seunghyeok Hong. Llm-as-a-judge
 547 & reward model: What they can and cannot do. *arXiv preprint arXiv:2409.11239*, 2024.

548 [22] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
 549 Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
 550 text-to-text transformer. *Journal of machine learning research*, 21(140):1–67, 2020.

551 [23] Andrea Brunello, Angelo Montanari, and Mark Reynolds. Synthesis of ltl formulas from natural
 552 language texts: State of the art and research directions. In *26th International symposium on
 553 temporal representation and reasoning (TIME 2019)*, pages 17–1. Schloss Dagstuhl–Leibniz-
 554 Zentrum für Informatik, 2019.

555 [24] Ben Greenman, Sam Saarinen, Tim Nelson, and Shriram Krishnamurthi. Little tricky logic:
 556 misconceptions in the understanding of ltl. *arXiv preprint arXiv:2211.01677*, 2022.

557 [25] Nate Kushman and Regina Barzilay. Using semantic unification to generate regular expres-
 558 sions from natural language. North American Chapter of the Association for Computational
 559 Linguistics (NAACL), 2013.

560 [26] Himaja Cherukuri, Alessio Ferrari, and Paola Spoletini. Towards explainable formal methods:
 561 From ltl to natural language with neural machine translation. In *International Working Confer-
 562 ence on Requirements Engineering: Foundation for Software Quality*, pages 79–86. Springer,
 563 2022.

564 [27] Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander M Rush. Opennmt:
 565 Open-source toolkit for neural machine translation. *arXiv preprint arXiv:1701.02810*, 2017.

566 [28] Christopher Z Wang. *Weakly supervised semantic parsing for Linear Temporal Logic*. PhD
 567 thesis, Massachusetts Institute of Technology, 2020.

568 [29] Pashootan Vaezipoor, Andrew C Li, Rodrigo A Toro Icarte, and Sheila A Mcilraith. Ltl2action:
 569 Generalizing ltl instructions for multi-task rl. In *International Conference on Machine Learning*,
 570 pages 10497–10508. PMLR, 2021.

571 [30] Jiayi Pan, Glen Chou, and Dmitry Berenson. Data-efficient learning of natural language to linear
 572 temporal logic translators for robot task specification. In *2023 IEEE International Conference
 573 on Robotics and Automation (ICRA)*, pages 11554–11561. IEEE, 2023.

574 [31] Jason Xinyu Liu, Ziyi Yang, Ifrah Idrees, Sam Liang, Benjamin Schornstein, Stefanie Tellex,
 575 and Ankit Shah. Grounding complex natural language commands for temporal tasks in unseen
 576 environments. In *Conference on Robot Learning*, pages 1084–1110. PMLR, 2023.

577 [32] Yongchao Chen, Rujul Gandhi, Yang Zhang, and Chuchu Fan. Nl2tl: Transforming natural
 578 languages to temporal logics using large language models. *arXiv preprint arXiv:2305.07766*,
 579 2023.

580 [33] Christopher Wang, Candace Ross, Yen-Ling Kuo, Boris Katz, and Andrei Barbu. Learning
 581 a natural-language to ltl executable semantic parser for grounded robotics. In *Conference on
 582 Robot Learning*, pages 1706–1718. PMLR, 2021.

583 [34] Matthew Berg, Deniz Bayazit, Rebecca Mathew, Ariel Rotter-Aboyoun, Ellie Pavlick, and
 584 Stefanie Tellex. Grounding language to landmarks in arbitrary outdoor environments. In *2020
 585 IEEE International Conference on Robotics and Automation (ICRA)*, pages 208–215. IEEE,
 586 2020.

587 [35] Matthew Berg, Deniz Bayazit, Rebecca Mathew, Ariel Rotter-Aboyoun, Ellie Pavlick, and
 588 Stefanie Tellex. Grounding language to landmarks in arbitrary outdoor environments. In *2020
 589 IEEE International Conference on Robotics and Automation (ICRA)*, pages 208–215. IEEE,
 590 2020.

594 [35] Christopher Hahn, Frederik Schmitt, Julia J Tillman, Niklas Metzger, Julian Siber, and Bernd
 595 Finkbeiner. Formal specifications from natural language. *arXiv preprint arXiv:2206.01962*,
 596 2022.

597 [36] Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
 598 *arXiv preprint arXiv:2004.05150*, 2020.

600 [37] Alexandre Duret-Lutz and Denis Poitrenaud. Spot: an extensible model checking library using
 601 transition-based generalized bu/spl uml/chi automata. In *The IEEE Computer Society's 12th*
 602 *Annual International Symposium on Modeling, Analysis, and Simulation of Computer and*
 603 *Telecommunications Systems, 2004.(MASCOTS 2004). Proceedings.*, pages 76–83. IEEE, 2004.

604 [38] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed,
 605 Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence
 606 pre-training for natural language generation, translation, and comprehension. *arXiv preprint*
 607 *arXiv:1910.13461*, 2019.

608 [39] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
 609 Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
 610 Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut
 611 Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023.

612 [40] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
 613 Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémie Rapin, Artyom Kozhevnikov,
 614 Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan
 615 Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas
 616 Usunier, Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for
 617 code, 2024.

618 [41] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen,
 619 Xiao Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When
 620 the large language model meets programming – the rise of code intelligence, 2024.

621 [42] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore:
 622 Evaluating text generation with bert. *arXiv preprint arXiv:1904.09675*, 2019.

623 [43] Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In *Text summarization*
 624 *branches out*, pages 74–81, 2004.

625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647

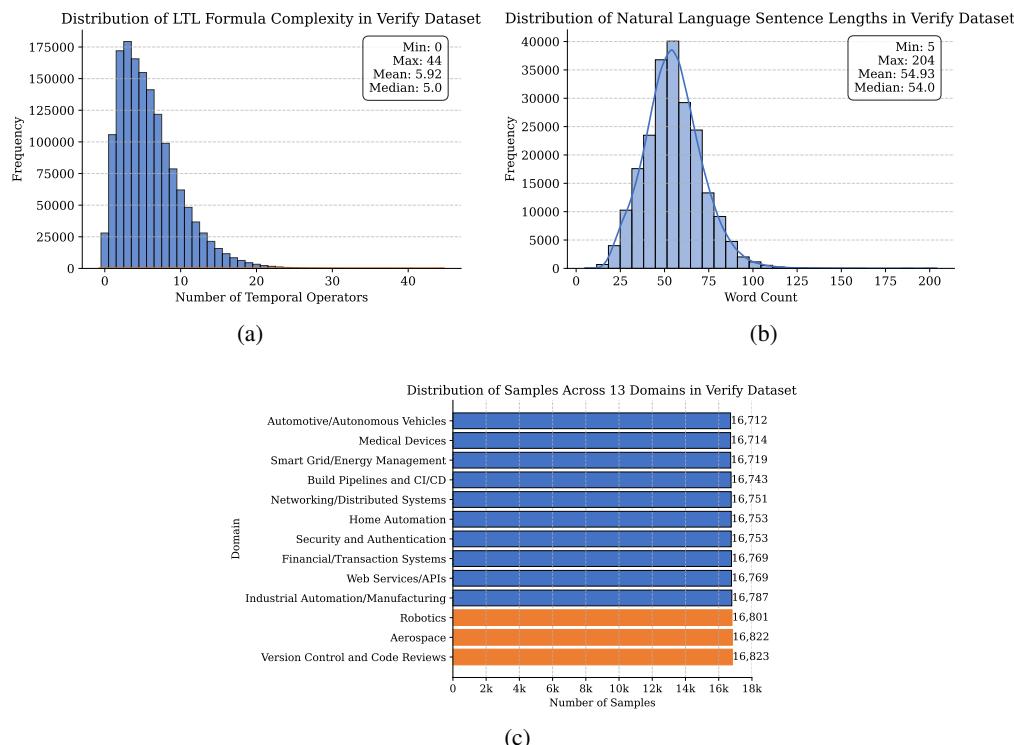
648 A DATASET STATEMENT

650 This statement provides details regarding the curation, content, potential risks, and administration of
 651 the VERIFY dataset, following recommended guidelines for dataset documentation.
 652

653 A.1 CURATION RATIONALE

655 VERIFY was created to address a critical gap in resources for research at the intersection of formal
 656 methods and natural language processing. As outlined in Sections 1 and 2, prior datasets linking
 657 Linear Temporal Logic (LTL) and Natural Language (NL) often suffer from limitations in scale,
 658 domain coverage, contextual richness, or lack structured intermediate representations. VERIFY aims
 659 to overcome these limitations by providing the first large-scale (200k+ examples), multi-domain (13
 660 diverse domains) dataset featuring triplets of formally verified LTL formulas, a novel rule-based
 661 Intermediate Technical Language (ITL), and contextually grounded NL descriptions. Figure 2(a)
 662 illustrates this distribution based on the count of temporal operators per formula. The Natural
 663 Language descriptions also exhibit variety. Sentence lengths vary considerably depending on the
 664 complexity of the underlying logic and the specific domain context, as shown in Figure 2(b). The
 665 overall NL vocabulary is extensive, reflecting the diverse terminology across the 13 domains. The
 666 sample distribution across the specific domains is shown in 2(c).

667 The goal is to provide a foundational resource to accelerate research in robust logic-to-language trans-
 668 lation, formally-grounded NLP, domain adaptation for specifications, and human-centric verification,
 669 moving beyond niche applications or purely symbolic translations towards more realistic scenarios.
 670



696 Figure 2: (a) Distribution of LTL formula complexity (temporal operator count) in VERIFY, showing
 697 coverage from simple to complex formulas (b) Distribution of Natural Language sentence lengths (by
 698 word count) in VERIFY (c) Distribution of samples across the 13 domains in VERIFY
 699

700 A.2 LANGUAGE VARIETY

701 The dataset contains three primary language types:

702 **LTL**: Standard Linear Temporal Logic formulas using common operators (G, F, X, U, R, W) and
 703 boolean connectives over atomic propositions (p-w). Formulas are stored in a canonical representation
 704 derived from the Spot library. **ITL**: A structured, rule-based Intermediate Technical Language
 705 designed for this dataset, using English keywords and templates corresponding to LTL operators.
 706 **NL**: Natural Language (English). The NL component was generated using a large language model
 707 (DeepSeek-R1), prompted to produce context-specific descriptions based on the LTL/ITL structure
 708 and domain information. The vocabulary reflects the diversity of the 13 target domains (Table 11).

709
 710 **A.3 SPEAKER/ANNOTATOR DEMOGRAPHICS**

711 **LTL/ITL Generation**: These components were generated programmatically based on formal rules
 712 and algorithms. There were no human speakers or annotators directly involved in their generation,
 713 beyond the initial design of the ITL grammar rules and templates. **NL Generation**: The natural
 714 language descriptions were generated entirely by the DeepSeek-R1 large language model. No
 715 human speakers were involved. **Manual Validation (10k Sample)**: The manual check of 10,000
 716 NL translations was performed by the paper’s authors, all possessing graduate-level expertise in
 717 formal methods, temporal logic, and/or natural language processing. [All three are based at the same
 718 university]. No other demographic information was collected for this internal check. **LLM Judge**
 719 **Validation (18% Sample)**: The automated validation used the Llama 3.3 70B Instruct model. No
 720 human annotators were involved in this specific validation step.

721
 722 **A.4 POTENTIAL RISKS & BIASES**

723 **LLM Artifacts**: The primary risk stems from the use of LLMs for NL generation (DeepSeek-R1) and
 724 validation (Llama 3.3). While significant validation was performed, the generated NL may contain
 725 subtle stylistic biases, repetitive patterns, or occasional factual inconsistencies (particularly if the
 726 LLM struggled generating plausible activity descriptions) inherent in the foundation models used.
 727 The dataset might not fully capture the diversity and sometimes “ungrammatical” or ambiguous
 728 nature of truly human-generated requirements text. Note that the prompts used are in E.3. **Semantic**
 729 **Fidelity**: Although validation estimated >97% semantic correctness, subtle errors in translating
 730 complex temporal nuances might exist in a small fraction of the NL examples. Users should be aware
 731 that models trained on this data might inherit these subtle inaccuracies. **Scope Limitations**: The
 732 LTL formulas are generated up to a certain complexity (depth 25) and within a specific fragment;
 733 the dataset might not cover extremely complex or esoteric LTL patterns found in some specialized
 734 verification domains. The 13 domains, while diverse, are not exhaustive. **Misuse Potential**: Models
 735 trained on VERIFY could potentially be misused to generate plausible-sounding but incorrect natural
 736 language descriptions of formal properties, or conversely, misleading “formal-looking” specifications
 737 from ambiguous text, potentially obfuscating errors in critical systems if deployed without due
 738 diligence. **Mitigation**: We employed multi-stage validation (Spot verification for LTL, rule-based
 739 generation and equivalence checks for ITL, extensive manual and LLM-based checks for NL) to
 740 minimize errors. The dataset, code, and methodology are released openly to allow scrutiny. We
 741 encourage responsible use and awareness of these limitations.

742
 743 **A.5 LIMITATIONS**

744 We acknowledge several limitations inherent in VERIFY’s current form. The natural language
 745 translations, while extensively validated, were primarily generated by an LLM (DeepSeek-R1);
 746 consequently, they may reflect the stylistic biases or occasional artifacts characteristic of such models
 747 and might not encompass the full spectrum of human linguistic variation for expressing logical
 748 concepts. The scope of LTL formulas, while diverse, was generated programmatically up to a certain
 749 complexity threshold (depth 25), and may not cover all possible patterns found in highly specialized
 750 specifications. Similarly, while the 13 domains offer broad coverage, they are not exhaustive of all
 751 potential application areas. Finally, the dataset primarily contains at most three canonical ITL and
 752 two contextual NL instance per LTL formula per domain context, limiting exploration of paraphrase
 753 diversity for now.

754 Despite these limitations, VERIFY opens numerous avenues for future research. Its scale and structure
 755 invite the development of novel model architectures specifically designed for formal logic translation,
 perhaps explicitly modeling the relationships between the three representations. The multi-domain

756 nature makes it an ideal testbed for advancing few-shot and zero-shot domain adaptation techniques
 757 applied to formal specifications. Furthermore, the ITL layer could be investigated as a component in
 758 building more explainable AI systems for formal verification, potentially offering human-readable
 759 justifications derived from formal proofs. Extensions to multi-lingual contexts, generating NL in
 760 languages other than English, represent another promising direction. The dataset could also inform
 761 the creation of more robust interactive tools for requirements elicitation and formalization.

762 The broader impact of this work lies in its potential to make formal methods more accessible and
 763 reliable. By facilitating better tools for translating between formal specifications and the natural
 764 language used by engineers, designers, and stakeholders, VERIFY can contribute to improved
 765 requirements engineering, reduced ambiguity, and ultimately, safer and more dependable systems in
 766 critical areas like aerospace, medicine, and finance. However, ethical considerations remain. The
 767 reliance on LLMs (DeepSeek-R1 for generation, Llama 3.3 for validation) means potential biases
 768 inherent in these models could be reflected in the dataset, despite mitigation through validation.
 769 Researchers using VERIFY should be mindful of these potential biases. Furthermore, while intended
 770 to improve clarity, models trained on this data could potentially be misused to generate misleading
 771 “formal-looking” requirements if not deployed responsibly. We encourage users to leverage the
 772 dataset’s openness and rigorous validation framework for responsible innovation.

773 VERIFY addresses the long-standing challenge of grounding formal temporal logic in diverse,
 774 contextual natural language at scale. By providing over 200 thousand verified LTL-ITL-NL triplets
 775 across 13 domains, generated through a rigorous methodology incorporating formal checks and
 776 extensive validation, VERIFY offers a unique and valuable resource. We believe VERIFY provides
 777 the foundational resource to spur significant advancements in formally-grounded natural language
 778 processing, enhance the synergy between the formal methods and NLP communities, and ultimately
 779 contribute to building more reliable and human-understandable complex systems. We release VERIFY
 780 openly and encourage the research community to utilize and extend this dataset to push the boundaries
 781 of logic-aware language understanding and generation.

782 A.6 LICENSE

783 The VERIFY dataset is released under the Creative Commons Attribution 4.0 International (CC BY
 784 4.0) license. The accompanying code is released under the MIT license. Please consult the respective
 785 license files in the repository for full details.

786 A.7 MAINTENANCE PLAN

787 The VERIFY dataset will be hosted on Hugging Face Datasets, Kaggle Datasets and GitHub. We plan
 788 to maintain the dataset by addressing issues (e.g., errors, inconsistencies) reported by the community
 789 via the GitHub repository’s issue tracker or direct contact with the authors. Updates or corrections
 790 will be managed through versioning on the Hugging Face Hub. While long-term active development
 791 beyond initial corrections is not guaranteed, we aim to keep the resource accessible and address
 792 critical issues for at least two years post-publication.

793 A.8 DATASET USAGE EXAMPLES

794 The dataset is provided in standard CSV and Parquet formats for ease of use. Each record contains the
 795 LTL formula, canonical ITL, domain, activity context, and NL translation, along with identifiers and
 796 metadata (see Table 13). Users can load the data using standard libraries like Pandas or Hugging Face
 797 datasets. Example usage scripts and baseline model implementations are provided in the attached
 798 supplementary material but upon acceptance will be released to the general public to facilitate research
 799 on the tasks described in Section 5.

800 B ADDITIONAL EXPERIMENTS

801 B.1 PER-DOMAIN ANALYSIS OF THE DOMAINS

802 A detailed per-domain analysis is necessary for a multi-domain dataset and we have conducted a
 803 set of extensive per-domain analysis. We evaluated the performance of our Llama-3-8B-Instruct

(FT) model on key translation tasks for all 13 domains. The results, presented in the table below, showcase the performance variations and highlight domain-specific challenges. Task 1 (LTL \rightarrow NL) and Task 2 (ITL \rightarrow NL) evaluated with BERTScore F1. Task 3 (NL \rightarrow LTL) evaluated with Semantic Equivalence (SemEq %).

Table 5: Model Performance Across Various Domains

Domain	Task 1 (BERTScore F1)	Task 1 (ROUGE-L)	Task 2 (BERTScore F1)	Task 2 (ROUGE-L)
Aerospace	0.91	0.68	0.94	0.74
Automotive/Autonomous Vehicles	0.92	0.69	0.95	0.75
Build Pipelines and CI/CD	0.90	0.66	0.93	0.72
Financial/Transaction Systems	0.90	0.65	0.93	0.71
Home Automation	0.93	0.71	0.95	0.76
Industrial Automation/Manufacturing	0.92	0.68	0.94	0.73
Medical Devices	0.91	0.67	0.94	0.73
Networking/Distributed Systems	0.90	0.66	0.93	0.71
Robotics	0.92	0.70	0.95	0.75
Security and Authentication	0.91	0.68	0.94	0.72
Smart Grid/Energy Management	0.91	0.67	0.93	0.72
Version Control and Code Reviews	0.90	0.67	0.93	0.73
Web Services/APIs	0.91	0.68	0.94	0.74

Table 6: Model Performance for Task 3

Domain	Task 3 (SemEq (%))
Aerospace	27.5
Automotive/Autonomous Vehicles	28.9
Build Pipelines and CI/CD	26.1
Financial/Transaction Systems	25.8
Home Automation	30.1
Industrial Automation/Manufacturing	28.2
Medical Devices	27.9
Networking/Distributed Systems	26.5
Robotics	29.5
Security and Authentication	27.1
Smart Grid/Energy Management	27.3
Version Control and Code Reviews	26.8
Web Services/APIs	27.0

This analysis already reveals important trends. For generation tasks (Tasks 1 and 2), all domains achieve high BERTScore and ROUGE-L scores, with Home Automation showing slightly better performance. For the more challenging translation from NL to a formal representation (Task 3), performance varies more significantly. Home Automation again leads, achieving a Semantic Equivalence of 30.1% in the NL \rightarrow LTL task. In contrast, the Financial/Transaction Systems domain, which often involves more abstract concepts and complex causal relationships, proves more difficult for the model, resulting in the lowest scores for semantic equivalence. This suggests that the abstract nature of a domain’s language directly impacts the difficulty of grounding it in formal logic.

Furthermore, we analyzed how performance is affected by the logical complexity of the LTL formulas, using AST depth as a proxy. The table below shows that as the formula depth increases, model performance on the most challenging NL \rightarrow LTL task degrades noticeably.

The specific LTL depths used to define the categories are as follows: Low Complexity (depths 1–4), Medium Complexity (5–8), High Complexity (9–12), and Very High Complexity (13+). For each of the four complexity categories, we randomly sampled 1,000 unique LTL-NL pairs from each category, creating a dedicated evaluation set of 4,000 examples which we then used for the evals.

864

Table 7: Semantic Equivalence by LTL Formula AST Depth

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

The table above shows that logical complexity is a primary driver of difficulty. The model maintains reasonable performance on formulas with low to medium complexity but struggles to preserve the precise semantic structure of more deeply nested LTL expressions when translating from natural language. This highlights a key area for future work: developing architectures that are more robust to increases in logical complexity.

B.2 GENERALIZATION TO UNSEEN DOMAINS

We tested the limits of our models in two distinct and ambitious ways: (1) generalization to unseen domains within the same LTL formalism and (2) emergent generalization to an entirely new, unseen formalism (Signal Temporal Logic).

First, to directly assess cross-domain generalization, we performed a new set of experiments using a Leave-One-Domain-Out (LODO) cross-validation methodology. We trained our Llama-3-8B-Instruct (FT) model on 12 of the 13 domains and tested its performance on the held-out domain. The results for three representative held-out domains are presented in Table below. "In-Domain" refers to the original performance when the model was trained on all 13 domains. "Out-of-Domain" is the performance on the domain when it was held out from the training set.

Table 8: In-Domain vs. Out-of-Domain Semantic Equivalence

Held-Out Domain	In-Domain SemEq (%)	Out-of-Domain SemEq (%)
Aerospace	27.5	19.2
Home Automation	30.1	22.5
Financial/Transaction Sys.	25.8	16.7

The LODO results show an expected decrease in performance when the model encounters a domain it has not been trained on. However, the model retains a significant portion of its capability, achieving semantic equivalence scores between 16.7% and 22.5% in a zero-shot setting. This indicates that the model is not merely memorizing domain-specific patterns but is successfully transferring learned logical structures to new contexts, demonstrating a solid degree of domain generalization.

Second, we conducted an experiment to investigate if the model, fine-tuned only on LTL, could show emergent generalization to a different temporal logic. We tested the same VERIFY-finetuned Llama-3-8B model on a curated benchmark of 100 human-written Signal Temporal Logic (STL) specifications. STL is a related but distinct formalism used for real-valued signals, which the model had never seen. The model was evaluated zero-shot, without any fine-tuning on STL-specific data. The results are shown in the Table below.

Table 9: Performance on Core Translation Tasks

Task	Metric	Performance
STL → NL Generation	Human-rated Correctness (1–5)	3.7 / 5.0
NL → STL Translation	Semantic Equivalence (%)	14.3%

Remarkably, the model demonstrates a non-trivial ability to operate on STL specifications. It can generate coherent and largely correct natural language descriptions from STL formulas and can even parse NL into semantically valid STL with 14.3% accuracy. That the model achieves this capability without any exposure to STL suggests it has learned some of the fundamental, underlying principles of temporal logic that are common to both LTL and STL, rather than just the surface syntax of LTL.

918 B.3 COMMON ERROR PATTERNS
919920 It is important to look at the common error patterns in tasks 1-5. To do this, we performed an error
921 analysis on the outputs of the Llama-3-8B model, focusing on the most challenging $NL \rightarrow LTL$
922 translation task. The results, based on a manual review of 100 incorrect predictions, are summarized
923 in the Table below. Based on a manual review of 100 incorrect predictions.924
925 Table 10: Error Analysis of NL to LTL Generation

926 Error Category	927 Frequency	928 Description
929 Incorrect Logical Scope	930 41%	931 Model fails to correctly capture operator precedence and 932 scope from the NL sentence, often misplacing parentheses 933 or nesting clauses incorrectly.
934 Temporal Operator Mismatch	935 28%	936 Model confuses semantically close temporal operators, 937 most commonly substituting ‘Until’ (U) for ‘Weak Until’ 938 (W) or ‘Globally’ (G) for ‘Finally’ (F).
939 Propositional Atom Error	940 17%	941 Model either fails to include a required propositional atom 942 from the context or hallucinates an atom that was not 943 specified.
944 Contextual Grounding Failure	945 9%	946 The generated LTL is logically sound but fails to correctly 947 incorporate the specific variable definitions provided in 948 the ‘activity’ context.
949 Syntactic Malformation	950 5%	951 The output is not a syntactically valid LTL formula and 952 cannot be parsed.

952 Our analysis reveals that outright syntactic errors are rare (5%). Instead, the majority of failures are
953 semantic in nature. The most frequent issue (41%) is the model’s struggle to correctly capture the
954 precedence and scope of operators from complex natural language sentences. Furthermore, the model
955 often has difficulty distinguishing between strong and weak temporal requirements (e.g., ‘Until’ vs.
956 ‘Weak Until’), accounting for 28% of errors.957 C FULL LTL-TO-ITL COMPLETENESS PROOF
958959 This appendix provides a formal argument for the completeness of the mapping from the Linear
960 Temporal Logic (LTL) fragment used in the VERIFY dataset to the canonical Intermediate Technical
961 Language (ITL) representation generated by our pipeline. Completeness, in this context, means that
962 every LTL formula within the defined fragment can be successfully and deterministically translated
963 into a well-defined ITL string.964 C.1 SYNTAX OF THE SOURCE LTL FRAGMENT (LTL_{VF})965 The LTL formulas (ϕ, ψ) in the VERIFY dataset are generated and subsequently verified to conform
966 to a specific syntactic fragment, denoted LTL_{VF} . Let $AP = \{p, q, r, s, t, u, v, w\}$ be the finite set
967 of atomic propositions used in our dataset. The set of well-formed formulas in LTL_{VF} is defined
968 inductively as the smallest set satisfying the following rules:

- 969 **Atomic Proposition:** If $\alpha \in AP$, then $\alpha \in LTL_{VF}$.
- 970 **Boolean Constants:** \top (true) $\in LTL_{VF}$ and \perp (false) $\in LTL_{VF}$.
- 971 **Negation:** If $\phi \in LTL_{VF}$, then $\neg\phi \in LTL_{VF}$.
- 972 **Conjunction:** If $\phi, \psi \in LTL_{VF}$, then $(\phi \wedge \psi) \in LTL_{VF}$.
- 973 **Disjunction:** If $\phi, \psi \in LTL_{VF}$, then $(\phi \vee \psi) \in LTL_{VF}$.
- 974 **Implication:** If $\phi, \psi \in LTL_{VF}$, then $(\phi \rightarrow \psi) \in LTL_{VF}$.
- 975 **Equivalence:** If $\phi, \psi \in LTL_{VF}$, then $(\phi \leftrightarrow \psi) \in LTL_{VF}$.
- 976 **Next:** If $\phi \in LTL_{VF}$, then $X\phi \in LTL_{VF}$.
- 977 **Globally (Always):** If $\phi \in LTL_{VF}$, then $G\phi \in LTL_{VF}$.

972 10. **Finally (Eventually):** If $\phi \in \text{LTL}_{\text{VF}}$, then $F\phi \in \text{LTL}_{\text{VF}}$.
 973 11. **Until:** If $\phi, \psi \in \text{LTL}_{\text{VF}}$, then $(\phi U \psi) \in \text{LTL}_{\text{VF}}$.
 974 12. **Release:** If $\phi, \psi \in \text{LTL}_{\text{VF}}$, then $(\phi R \psi) \in \text{LTL}_{\text{VF}}$.
 975 13. **Weak Until:** If $\phi, \psi \in \text{LTL}_{\text{VF}}$, then $(\phi W \psi) \in \text{LTL}_{\text{VF}}$.
 976 14. **Strong Release (Matches):** If $\phi, \psi \in \text{LTL}_{\text{VF}}$, then $(\phi M \psi) \in \text{LTL}_{\text{VF}}$.
 977

979 Standard operator precedence and parentheses are used for disambiguation. All LTL formulas
 980 included in VERIFY are parsed and canonicalized by the Spot library (version 2.11.6), ensuring they
 981 conform to this fragment and have a standardized representation. We assume the standard semantics
 982 of LTL over infinite traces (6; 4).

983 C.2 STRUCTURE OF THE CANONICAL INTERMEDIATE TECHNICAL LANGUAGE ($\text{ITL}_{\text{CANONICAL}}$)

985 The canonical ITL ($\text{ITL}_{\text{CANONICAL}}$) is not defined by an independent generative grammar but is rather
 986 procedurally generated from the AST of an LTL formula. It results in structured English strings
 987 composed of atomic proposition identifiers, specific keywords/phrases corresponding to LTL opera-
 988 tors, and punctuation (primarily commas and parentheses that mirror the LTL structure). The core
 989 keywords and templates for $\text{ITL}_{\text{CANONICAL}}$ (derived from the mapping rules discussed in Section ??) are
 990 defined as follows (where ϕ'_{ITL} and ψ'_{ITL} represent the ITL translations of LTL subformulas ϕ and
 991 ψ respectively):

992 • Atomic proposition α : maps to its string representation (e.g., "p").
 993 • \top : maps to "true".
 994 • \perp : maps to "false".
 995 • $\neg\phi$: maps to "not ϕ'_{ITL} ".
 996 • $\phi \wedge \psi$: maps to " ϕ'_{ITL} and ψ'_{ITL} ".
 997 • $\phi \vee \psi$: maps to " ϕ'_{ITL} or ψ'_{ITL} ".
 998 • $\phi \rightarrow \psi$: maps to "if ϕ'_{ITL} , then ψ'_{ITL} ".
 999 • $\phi \leftrightarrow \psi$: maps to " ϕ'_{ITL} if and only if ψ'_{ITL} ".
 1000 • $X\phi$: maps to "In the next state, ϕ'_{ITL} ".
 1001 • $G\phi$: maps to "Always, ϕ'_{ITL} ".
 1002 • $F\phi$: maps to "Eventually, ϕ'_{ITL} ".
 1003 • $\phi U \psi$: maps to " ϕ'_{ITL} until ψ'_{ITL} ".
 1004 • $\phi R \psi$: maps to " ϕ'_{ITL} releases ψ'_{ITL} ".
 1005 • $\phi W \psi$: maps to " ϕ'_{ITL} weakly until ψ'_{ITL} ".
 1006

1007 The generation process ensures that the nesting and scope of operators in the LTL formula are
 1008 preserved in the hierarchical structure implied by the ITL string composition, often through implicit
 1009 parenthesization mirroring the LTL AST structure.

1010 C.3 FORMAL DEFINITION OF THE MAPPING FUNCTION \mathcal{T}

1011 We define the mapping function $\mathcal{T} : \text{LTL}_{\text{VF}} \rightarrow \text{Strings}$, which translates an LTL formula $\phi \in \text{LTL}_{\text{VF}}$
 1012 (assumed to be in its Spot-canonical form and represented as an AST, denoted $\text{AST}(\phi)$) into its
 1013 $\text{ITL}_{\text{CANONICAL}}$ string representation. The function \mathcal{T} is defined recursively based on the structure of
 1014 $\text{AST}(\phi)$:

1015 1. If $\phi = \alpha$ where $\alpha \in AP$: $\mathcal{T}(\text{AST}(\alpha)) = \alpha$ (the string literal of the atom).
 1016 2. If $\phi = \top$: $\mathcal{T}(\text{AST}(\top)) = \text{true}$.
 1017 3. If $\phi = \perp$: $\mathcal{T}(\text{AST}(\perp)) = \text{false}$.
 1018 4. If $\phi = \neg\psi$: $\mathcal{T}(\text{AST}(\neg\psi)) = \text{not } \oplus \mathcal{T}(\text{AST}(\psi))$, where \oplus denotes string concatenation.
 1019 5. If $\phi = \psi_1 \wedge \psi_2$: $\mathcal{T}(\text{AST}(\psi_1 \wedge \psi_2)) = \mathcal{T}(\text{AST}(\psi_1)) \oplus \text{and } \oplus \mathcal{T}(\text{AST}(\psi_2))$.
 1020

1026 6. If $\phi = \psi_1 \vee \psi_2$: $\mathcal{T}(\text{AST}(\psi_1 \vee \psi_2)) = \mathcal{T}(\text{AST}(\psi_1)) \oplus \text{"or"} \oplus \mathcal{T}(\text{AST}(\psi_2))$.
 1027 7. If $\phi = \psi_1 \rightarrow \psi_2$: $\mathcal{T}(\text{AST}(\psi_1 \rightarrow \psi_2)) = \text{"if"} \oplus \mathcal{T}(\text{AST}(\psi_1)) \oplus \text{"then"} \oplus \mathcal{T}(\text{AST}(\psi_2))$.
 1028 8. If $\phi = \psi_1 \leftrightarrow \psi_2$: $\mathcal{T}(\text{AST}(\psi_1 \leftrightarrow \psi_2)) = \mathcal{T}(\text{AST}(\psi_1)) \oplus \text{"if and only if"} \oplus \mathcal{T}(\text{AST}(\psi_2))$.
 1029 9. If $\phi = X\psi$: $\mathcal{T}(\text{AST}(X\psi)) = \text{"In the next state,"} \oplus \mathcal{T}(\text{AST}(\psi))$.
 1030 10. If $\phi = G\psi$: $\mathcal{T}(\text{AST}(G\psi)) = \text{"Always,"} \oplus \mathcal{T}(\text{AST}(\psi))$.
 1031 11. If $\phi = F\psi$: $\mathcal{T}(\text{AST}(F\psi)) = \text{"Eventually,"} \oplus \mathcal{T}(\text{AST}(\psi))$.
 1032 12. If $\phi = \psi_1 U \psi_2$: $\mathcal{T}(\text{AST}(\psi_1 U \psi_2)) = \mathcal{T}(\text{AST}(\psi_1)) \oplus \text{"until"} \oplus \mathcal{T}(\text{AST}(\psi_2))$.
 1033 13. If $\phi = \psi_1 R \psi_2$: $\mathcal{T}(\text{AST}(\psi_1 R \psi_2)) = \mathcal{T}(\text{AST}(\psi_1)) \oplus \text{"releases"} \oplus \mathcal{T}(\text{AST}(\psi_2))$.
 1034 14. If $\phi = \psi_1 W \psi_2$: $\mathcal{T}(\text{AST}(\psi_1 W \psi_2)) = \mathcal{T}(\text{AST}(\psi_1)) \oplus \text{"weakly until"} \oplus \mathcal{T}(\text{AST}(\psi_2))$.
 1035 15. If $\phi = \psi_1 M \psi_2$: $\mathcal{T}(\text{AST}(\psi_1 M \psi_2)) = \mathcal{T}(\text{AST}(\psi_1)) \oplus \text{"strong release"} \oplus \mathcal{T}(\text{AST}(\psi_2))$.

1041 Parentheses in the output ITL string are implicitly handled by the recursive structure of \mathcal{T} and the
 1042 string concatenations, preserving the LTL AST's operator scope and precedence. Explicit parentheses
 1043 can be added around the ITL for sub-formulas in practice to ensure clarity, especially for binary
 1044 operators, e.g., $\mathcal{T}(\text{AST}(\psi_1 \wedge \psi_2)) = (\text{"} \oplus \mathcal{T}(\text{AST}(\psi_1)) \oplus \text{"})$ and $(\text{"} \oplus \mathcal{T}(\text{AST}(\psi_2)) \oplus \text{"})$. However,
 1045 for this proof, the direct template application is sufficient as structure is inherited from the AST.
 1046

1047 C.4 PROOF OF COMPLETENESS (TOTALITY OF \mathcal{T})

1049 We claim that the mapping function \mathcal{T} is total for all LTL formulas $\phi \in \text{LTL}_{\text{VF}}$. That is, for every
 1050 valid LTL formula generated and verified in our dataset (which conforms to LTL_{VF}), \mathcal{T} produces a
 1051 well-defined ITL_{Canonical} string output. The proof proceeds by structural induction on the formula ϕ .
 1052

1053 Base Cases:

- 1054 • If $\phi = \alpha$, where $\alpha \in AP$: $\mathcal{T}(\text{AST}(\alpha))$ is defined as the string literal " α ".
 1055
- If $\phi = \top$: $\mathcal{T}(\text{AST}(\top))$ is defined as the string "true".
 1056
- If $\phi = \perp$: $\mathcal{T}(\text{AST}(\perp))$ is defined as the string "false".
 1058

1059 In all base cases, \mathcal{T} yields a well-defined string.
 1060

1061 **Inductive Hypothesis (IH):** Assume that for any LTL formula ψ (and χ , if applicable) that is a
 1062 proper subformula of ϕ , the function \mathcal{T} is total, and $\mathcal{T}(\text{AST}(\psi))$ (and $\mathcal{T}(\text{AST}(\chi))$) is a well-defined
 1063 ITL string.
 1064

1065 **Inductive Step:** We examine each case for constructing ϕ from its subformula(s) according to the
 1066 rules of LTL_{VF} :

- 1067 1. If $\phi = \neg\psi$: By the IH, $\mathcal{T}(\text{AST}(\psi))$ is a well-defined string. The rule for \neg (Rule 4 in
 1068 the definition of \mathcal{T}) defines $\mathcal{T}(\text{AST}(\neg\psi))$ as the concatenation "not" $\oplus \mathcal{T}(\text{AST}(\psi))$. This
 1069 operation on well-defined strings results in a well-defined string.
 1070
2. If $\phi = \psi_1 \text{ op } \psi_2$, where $\text{op} \in \{\wedge, \vee, \rightarrow, \leftrightarrow, U, R, W\}$: By the IH, $\mathcal{T}(\text{AST}(\psi_1))$ and
 1071 $\mathcal{T}(\text{AST}(\psi_2))$ are well-defined strings. The rules for these binary operators (Rules 5-8, 12-
 1072 14 in the definition of \mathcal{T}) define $\mathcal{T}(\text{AST}(\phi))$ as a concatenation of $\mathcal{T}(\text{AST}(\psi_1))$, a specific
 1073 ITL keyword for op, and $\mathcal{T}(\text{AST}(\psi_2))$. This results in a well-defined string.
 1074
3. If $\phi = \text{op } \psi$, where $\text{op} \in \{X, G, F\}$: By the IH, $\mathcal{T}(\text{AST}(\psi))$ is a well-defined string.
 1075 The rules for these unary temporal operators (Rules 9-11 in the definition of \mathcal{T}) define
 1076 $\mathcal{T}(\text{AST}(\phi))$ as a concatenation of the ITL keyword for op and $\mathcal{T}(\text{AST}(\psi))$. This results in
 1077 a well-defined string.
 1078

1079 Since the base cases hold and the inductive step covers all LTL operators defined in LTL_{VF} , the
 1080 function \mathcal{T} is total for all formulas $\phi \in \text{LTL}_{\text{VF}}$.

1080
1081

C.5 PRESERVATION OF SEMANTIC STRUCTURE AND REVERSIBILITY

1082
1083
1084
1085
1086
1087
1088
1089
1090

Semantic Structure Preservation: The function \mathcal{T} is designed to be structure-preserving. It operates directly on the AST derived from the Spot-parsed (and canonicalized) LTL formula. The recursive definition of \mathcal{T} ensures a one-to-one mapping between LTL operators in the AST and their corresponding ITL keywords/templates. The recursive application of these mappings ensures that the nesting and scope of operators in the LTL formula are preserved in the hierarchical structure of the resulting $\text{ITL}_{\text{Canonical}}$ string. This structural isomorphism provides a strong basis for asserting that the core semantic relationships (temporal and logical) of the LTL formula are maintained in its ITL translation. A formal proof of semantic equivalence would require a formal semantics for ITL; however, the systematic, structure-driven nature of \mathcal{T} supports this claim.

1091
1092
1093
1094
1095
1096
1097
1098
1099
1100

Reversibility (ITL to LTL): The $\text{ITL}_{\text{Canonical}}$ strings generated by \mathcal{T} are designed to be unambiguously parseable back into LTL formulas that are semantically equivalent to the original LTL formulas. This reversibility is crucial for verifying the integrity of the ITL representation. As described in Section ?? (referring to Section 4.2 in the main paper), an ITL-to-LTL parser was developed based on the inverse of the ‘LTL_TO_CANONICAL’ rules. The VERIFY dataset construction pipeline includes an automated verification step where canonical ITL strings are parsed back to LTL, and this reconstructed LTL is then formally checked for semantic equivalence against the original Spot-verified LTL formula using Spot’s built-in capabilities (e.g., ‘spot.are_equivalent()’). This empirical validation across the dataset (specifically, 18% of it, as mentioned in Section 4.4 for NL, and a similar process for ITL integrity check mentioned in Section 4.2) confirms that the $\text{LTL} \rightarrow \text{ITL} \rightarrow \text{LTL}$ round trip preserves logical meaning.

1101
1102
1103

C.6 CONCLUSION

1104
1105
1106
1107
1108
1109
1110

The mapping function \mathcal{T} from the defined and verified LTL fragment LTL_{VF} to $\text{ITL}_{\text{Canonical}}$ is total (complete), meaning every formula in LTL_{VF} has a corresponding ITL string. This mapping is deterministic and preserves the structural composition of the LTL formula. Empirical verification through round-trip LTL-ITL-LTL conversion and semantic equivalence checking using formal tools (Spot) further confirms that the generated canonical ITL accurately represents the logical meaning of the source LTL formula. Therefore, the grammar used for translating LTL to $\text{ITL}_{\text{Canonical}}$ is complete with respect to the LTL_{VF} fragment.

1111
1112
1113

D EXTENDED DATASET DETAILS

1114
1115
1116

This appendix provides further details about the VERIFY dataset, including additional illustrative examples, comprehensive per-domain statistics, supplementary visualizations, and the full data schema.

1117

D.1 ADDITIONAL EXAMPLES

1118
1119
1120
1121
1122
1123
1124
1125

To further illustrate the nature and diversity of the VERIFY dataset, this section presents five detailed examples. Each example includes the domain, the natural language definitions for propositional variables (Activity), the Spot-canonical Linear Temporal Logic (LTL) formula, its corresponding rule-based canonical Intermediate Technical Language (ITL) representation, and the final contextual Natural Language (NL) translation. These examples showcase variations in logical complexity, domain-specific terminology, and the types of properties represented.

1126
1127

D.1.1 EXAMPLE 1: AUTOMOTIVE/AUTONOMOUS VEHICLES

1128
1129
1130
1131
1132
1133

- **Domain:** Automotive/Autonomous Vehicles
- **Activity:**
 - p: Lane departure detected
 - q: Obstacle detection active
 - r: Driver override requested
 - s: Sensor calibration complete

1134 – t: Emergency braking engaged
 1135 – u: System in autonomous mode
 1136 – v: GPS signal lost
 1137 – w: Manual steering input detected

1138

- 1139 • **LTL Formula (Spot-canonical):**

1140

$$(X \neg(qRp \rightarrow Xs) U (p \rightarrow q) RXu \rightarrow \neg X(q \vee q) R(p \rightarrow s) U(pUwWr \rightarrow (r \wedge q \leftrightarrow Gq)))$$

1141

$$U((Fq \vee Xr) R(\neg s) WrRuU(q \wedge (v \vee v) \leftrightarrow (r \vee t) Wq) \leftrightarrow$$

1142

$$(GrWq \rightarrow (t \rightarrow w) Wu \rightarrow (vU(u \leftrightarrow r) \leftrightarrow t)) W(\neg Gv \vee p))$$

1143

$$\vee (t \rightarrow ((t \vee q) \wedge Fp) WrWrRu RrUrR(\neg s))$$

1144

1145

- 1146 • **Canonical ITL:**

1147 if In the next state, not if q releases p, then In the next state, s until if p, then q releases In the
 1148 next state, u, then not In the next state, q or q releases if p, then s until if p until w weakly
 1149 until r, then q and r if and only if Always, q until Eventually, q or In the next state, r releases
 1150 not s weakly until r releases u until q and v or v if and only if r or t weakly until q if and
 1151 only if if Always, r weakly until q, then if if t, then w weakly until u, then t if and only if v
 1152 until r if and only if u weakly until p or not Always, v or if t, then q or t and Eventually, p
 1153 weakly until r weakly until r releases u releases r until r releases not s

1154

- 1155 • **NL Translation:** The system must maintain that after lane departure, either obstacle
 1156 detection remains active until sensor calibration follows, or autonomous mode persists
 1157 until manual override triggers a protocol where persistent lane-keeping requires continuous
 1158 obstacle detection, until either emergency braking initiates redundant navigation checks or
 1159 GPS loss forces driver takeover – whichever occurs first while maintaining sensor integrity
 1160 throughout.

1161

D.1.2 EXAMPLE 2: HOME AUTOMATION

1162

- 1163 • **Domain:** Home Automation

1164

- 1165 • **Activity:** Atomic propositions represent device states: u=user presence detected, r=security
 1166 system armed, q=lights activated, s=door locked, t=motion detected, v=HVAC running,
 1167 w=window open, p=power saving mode

1168

- 1169 • **LTL Formula (Spot-canonical):**

1170

$$GGuW(r \rightarrow q) \rightarrow qU(\neg r)W((s \leftrightarrow r) \rightarrow r)$$

1171

$$U(s \wedge XF(t \rightarrow q) UrWvRX(q \vee r) WFwW((\neg s) WXw \wedge (v \vee u \rightarrow u)))$$

1172

$$\vee ((v \wedge \neg p) U(r \rightarrow w) WrRu \rightarrow (Gs \vee w) Wv) W(X(v \rightarrow t) RFu \wedge v)$$

1173

$$U((\neg s \vee Fv) WFs \wedge qRu \leftrightarrow Xv) Uq$$

1174

1175

- 1176 • **Canonical ITL:**

1177 if Always, u weakly until if r, then q, then q until not r weakly until if r if and only if s, then r
 1178 until s and In the next state, Eventually, if t, then q until r weakly until v releases In the next
 1179 state, q or r weakly until Eventually, w weakly until if u or v, then u and not s weakly until
 1180 In the next state, w or if not p and v until if r, then w weakly until r releases u, then w or
 1181 Always, s weakly until v weakly until v and In the next state, if v, then t releases Eventually,
 1182 u until not s or Eventually, v weakly until Eventually, s and q releases u if and only if In the
 1183 next state, v until q

1184

- 1185 • **NL Translation:** If user presence persists until security arming triggers lights, then lights
 1186 must stay active until disarm occurs, maintaining that locked doors require security en-
 1187 gagement until motion triggers lights through HVAC operation, while windows stay closed
 1188 unless presence or HVAC override occurs, and power mode exits when security triggers
 1189 window control until HVAC/temperature conditions maintain either sustained locking or
 1190 window states matching security status through presence verification.

1188 D.1.3 EXAMPLE 3: SECURITY AND AUTHENTICATION

1189 • **Domain:** Security and Authentication1190 • **Activity:**1191

- 1192 – p: Unauthorized access detected
- 1193 – q: User authentication request
- 1194 – r: System lockdown activated
- 1195 – s: Security breach detected
- 1196 – t: Two-factor authentication enabled
- 1197 – u: User role changed
- 1198 – v: Vulnerability patched
- 1199 – w: Access granted

1200 • **LTL Formula (Spot-canonical):**

1201
$$\begin{aligned}
 & ((\neg((t \leftrightarrow q) \vee s) R (\neg p) RFp \vee (\neg t \vee s) WGrU (XGr \rightarrow t)) U \\
 & \quad (\neg s) W (r \leftrightarrow Fq) WvWv \leftrightarrow v \\
 & \quad W ((\neg \neg s) Wu \wedge (p \vee FpUpR (s \rightarrow s) \rightarrow (w \leftrightarrow w))) \\
 & \quad W (\neg(Gq \vee u) U (\neg s \vee r) U (q \leftrightarrow t)))
 \end{aligned}$$

1202 • **Canonical ITL:**1203 v if and only if not s or q if and only if t releases not p releases Eventually, p or s or not t
1204 weakly until Always, r until if In the next state, Always, r, then t until not s weakly until r if
1205 and only if Eventually, q weakly until v weakly until s weakly until u1206 • **NL Translation:** The system must maintain that: either (1) security breach absence and
1207 two-factor-authentication alignment with authentication requests persist while blocking
1208 unauthorized access until detection occurs, or (2) lockdown persists until two-factor ac-
1209 tivation if future lockdown continuity implies it, all until breaches cease. This continues
1210 weakly until breaches force lockdown equivalence to pending authentications, repeated
1211 vulnerability patching, and role changes persist only if access-right consistency holds unless
1212 infinite authentication demands or role changes occur until security states resolve.

1213 D.1.4 EXAMPLE 4: SMART GRID/ENERGY MANAGEMENT

1214 • **Domain:** Smart Grid/Energy Management1215 • **Activity:** p=peak load condition, t=tariff adjustment activated, r=renewable generation
1216 available, u=usage restriction enforced, w=wind power input threshold, q=grid stability
1217 query issued, s=storage system activated, v=voltage stability compromised1218 • **LTL Formula (Spot-canonical):**

1219
$$\begin{aligned}
 & (pWFXp \leftrightarrow t) \\
 & R ((rUp \vee (t \rightarrow t) \wedge \neg r) U (uWr \wedge XpUw) \wedge ((q \wedge p \rightarrow s) \wedge (q \rightarrow Fq) \rightarrow (s \rightarrow s)) \\
 & \quad W (t \wedge u) W (uWv \rightarrow Xt) \leftrightarrow \neg Fr \rightarrow vR (\neg w) R (\neg v \leftrightarrow t)) \\
 & \quad U (vR ((u \vee rRw \wedge Fv) \wedge Gs \leftrightarrow GrUpWuWfs) \leftrightarrow XX (\neg s) U (s \leftrightarrow q) U \\
 & \quad \quad \quad Fu \vee (s \rightarrow (q \rightarrow r) Uu) \wedge (\neg q \leftrightarrow v) Ru)
 \end{aligned}$$

1220 • **Canonical ITL:**1221 t if and only if p weakly until Eventually, In the next state, p releases not r or r until p until
1222 u weakly until r and In the next state, p until w if and only if if not Eventually, r, then v
1223 releases not w releases t if and only if not v until v releases u or r releases w and Eventually,
1224 v and Always, s if and only if Always, r until p weakly until u weakly until Eventually, s if
1225 and only if In the next state, In the next state, not s until q if and only if s until Eventually, u
1226 or if s, then if q, then r until u and not q if and only if v releases u1227 • **NL Translation:** Tariff adjustments match peak load persistence until eventual resumption
1228 if and only if grid operations maintain: renewable availability until peak load or usage
1229 restrictions with wind thresholds, requiring storage activation only when stability queries
1230 trigger sustained responses, unless voltage instability forces delayed demand response until
1231 tariff-voltage alignment governs restoration.

Table 11: Application domains covered in the VERIFY dataset.

Domain	Illustrative Context Example Snippet (activity)
Financial Services	p=trade execution confirmed, q=risk limit check passed
Web Services / E-commerce	p=user adds item to cart, q=inventory level updated
Home Automation	p=motion detected in room, q=lights turn on
Aerospace / Avionics	p=altitude within safe range, q=autopilot engaged
Medical Devices	p=heart rate exceeds threshold, q=alert generated
Industrial Automation / Mfg.	p=pressure threshold reached, q=safety valve opens
Automotive Systems	p=obstacle detected by sensor, q=emergency brake applied
Robotics / Autonomous Systems	p=battery level low, q=robot returns to charging station
Network Protocols / Security	p=login attempt failed 3 times, q=account locked
Business Process Management	p=invoice approved, q=payment scheduled
Supply Chain / Logistics	p=package scanned at hub, q=tracking status updated
Energy Systems / Smart Grid	p=demand exceeds supply, q=load shedding initiated
Telecommunications	p=call successfully connected, q=billing record created

D.1.5 EXAMPLE 5: VERSION CONTROL AND CODE REVIEWS

- **Domain:** Version Control and Code Reviews
- **Activity:** q: Code review requested | v: Code review passed | u: Code conflicts resolved | t: Tests passed | w: Work-in-progress flag | p: Pull request open | r: Revision submitted | s: Code merged
- **LTL Formula (Spot-canonical):**

$$\begin{aligned}
 & qU(v \vee (((u \rightarrow t) \wedge (w \vee p)) R(\neg t) U(p \vee r) \leftrightarrow \neg r) U(p \rightarrow (Fw \rightarrow Xs) Ws)) \\
 & U((vU(t \wedge v) R s \rightarrow \neg X t W w R t R p \vee Gq) \wedge (s \leftrightarrow F w U r W(w \leftrightarrow u)) W G F t W G s \\
 & W((t \wedge u) R p \vee w) W(G s U w U q R s \vee ((X t \rightarrow (r \leftrightarrow r)) \wedge (\neg p) U u R t \leftrightarrow w)))
 \end{aligned}$$
- **Canonical ITL:**

q until v or not r if and only if u, then t and p or w releases not t until p or r until if p, then if Eventually, w, then In the next state, s weakly until s until if v until t and v releases s, then not In the next state, t weakly until w releases t releases p or Always, q and s if and only if Eventually, w until r weakly until u if and only if w weakly until Always, Eventually, t weakly until Always, s weakly until w or t and u releases p weakly until Always, s until w until q releases s or w if and only if not p until u releases t
- **NL Translation:** A code review remains requested until either it passes, or (if conflicts being resolved guarantees tests pass and an open pull request or WIP flag persists while tests are failing until a revision or pull request exists) exactly when no revision exists, until pull requests being open implies (if work eventually continues, the next state must merge code *or* keep merging pending) persists, while either: (1) review passes until tests succeed with passing review under merge protection until tests require WIP or persistent review requests; or (2) merging occurs only if eventual WIP under revision constraints matches conflict resolution, weakly until recurring tests and merges align with open pull requests or WIP, provided merges persist until WIP transitions or review compliance.

D.2 PER-DOMAIN STATISTICS

To provide a deeper insight into the characteristics of the VERIFY dataset across its 13 domains, Table 11 summarizes the application domains covered VERIFY and Table 12 summarizes key statistics. These include the number of unique LTL formulas, various measures of LTL formula complexity (average, median, min/max number of temporal operators, and AST depth), natural language translation length statistics (word count), activity string length statistics (word count), and approximate vocabulary sizes for both translations and activities within each domain.

D.2.1 LTL OPERATOR AND SUB-PATTERN FREQUENCIES PER DOMAIN

The distribution of LTL operators and common structural patterns (identified by Spot’s formula kinds) varies across domains, reflecting different specification needs. Below is a summary of the frequency

1296 Table 12: Detailed Per-Domain Dataset Statistics. "LTL Ops" refers to the count of temporal operators.
1297 "LTL Depth" refers to the AST depth. "Words" refers to word count. "Vocab Size" is the count of
1298 unique words (lowercase, simple tokenization).

1300 Domain	1301 Unique LTLs	1302 LTL Operators			1303 LTL Depth			1304 NL Trans. Words			1305 Activity Words			1306 Vocab Size	
1307	1308	Avg	Med	Min/Max	Avg	Med	Min/Max	Avg	Med	Min/Max	Avg	Med	Min/Max	NL	Activity
Aerospace	16821	6.0	6	0/19	4.98	5	56.21	56	10/152	33.99	34	6/91	~4034	~5810	
Auto/Autonomous	16711	6.0	6	0/22	5.04	5	56.17	56	10/162	29.83	30	5/88	~3749	~6318	
Build Pipelines/CI-CD	16737	6.0	6	0/21	4.98	5	53.60	54	6/152	24.50	24	5/85	~2975	~3525	
Financial/Transaction	16765	6.0	6	0/18	4.98	5	53.26	53	7/140	26.54	26	5/130	~3469	~3507	
Home Automation	16748	6.0	6	0/18	5.01	5	56.82	57	7/142	32.31	32	6/74	~2961	~3019	
Industrial Automation	16782	6.2	6	0/22	5.17	5	54.70	55	5/201	28.27	28	5/76	~3943	~4934	
Medical Devices	16710	6.0	6	0/19	5.01	5	56.04	56	6/144	34.86	35	6/93	~4045	~4988	
Networking/Distributed	16748	5.9	6	0/21	4.96	5	52.75	53	11/142	28.08	28	6/78	~3636	~3771	
Robotics	16800	6.0	6	0/19	4.98	5	56.66	57	5/204	33.71	34	6/78	~3854	~4537	
Security/Authentication	16750	6.0	6	0/18	4.98	5	54.31	54	8/162	31.14	31	6/70	~3088	~2808	
Smart Grid/Energy	16715	6.0	6	0/21	4.98	5	55.29	55	8/152	32.59	32	5/78	~3395	~4039	
Version Control	16820	5.9	6	0/21	4.97	5	55.00	55	6/185	32.98	33	6/107	~3363	~3639	
Web Services/APIs	16764	5.9	6	0/19	4.96	5	53.38	53	6/126	28.18	28	6/98	~3691	~3675	
Overall Dataset	~15,900*	5.92	5	0/44	4.99	5	54.93	54	5/204	31.02	31	5/130	~18K*	~10K*	

* Total unique LTLs / total unique vocabulary across all domains.

LTL complexity statistics (Ops and Depth) are based on the LTL formulas associated with translations in each domain.

The LTL Operator counts in this table refer to all operators (temporal and boolean), whereas Figure 1a focuses on temporal operators only.

of top-level LTL operators (G, F, X) and common Spot formula kinds (e.g., Implies, U, R, W, Equiv, And, Or) for each domain. This data is derived from analyzing the LTL formulas associated with the NL translations in each respective domain.

- **Aerospace:** Predominantly features ‘G’ (Global), ‘F’ (Finally), and ‘X’ (Next) as top-level operators. Common structural patterns include Implications, Until, and Release. (*Example counts: G: 2059, F: 2055, X: 2055; Implies: 2900, R: 2510, U: 2496*)
- **Automotive/Autonomous Vehicles:** High use of ‘X’, ‘G’, and ‘F’. Implications, Until, and Release are common patterns. (*Example counts: X: 2119, G: 2058, F: 2051; Implies: 2886, U: 2552, R: 2468*)
- **Build Pipelines and CI/CD:** ‘F’, ‘X’, and ‘G’ are frequent. Structural patterns show many Implications, Until, and Release forms. (*Example counts: F: 2125, X: 2063, G: 1950; Implies: 2865, U: 2529, R: 2481*)
- **Financial/Transaction Systems:** ‘X’, ‘F’, ‘G’ are common. Implications, Release, and Until patterns are prominent. (*Example counts: X: 2118, F: 2069, G: 1998; Implies: 2925, R: 2508, U: 2488*)
- **Home Automation:** Balanced use of ‘X’, ‘F’, ‘G’. Implications, Release, and Until are frequent structures. (*Example counts: X: 2098, F: 2088, G: 2069; Implies: 2966, R: 2523, U: 2479*)
- **Industrial Automation/Manufacturing:** ‘F’, ‘G’, ‘X’ are prevalent. Implications, Until, and Release patterns are common. (*Example counts: F: 2050, G: 2031, X: 2027; Implies: 2852, U: 2584, R: 2472*)
- **Medical Devices:** ‘F’, ‘X’, ‘G’ appear often. Implications, Weak Until (W), and Release are frequent. (*Example counts: F: 2104, X: 2047, G: 2037; Implies: 2860, W: 2527, R: 2497*)
- **Networking/Distributed Systems:** ‘G’, ‘X’, ‘F’ are common. Implications, Weak Until (W), and Release structures are frequent. (*Example counts: G: 2103, X: 2039, F: 2034; Implies: 2948, W: 2470, R: 2459*)
- **Robotics:** High frequency of ‘G’, ‘F’, ‘X’. Implications, Until, and Release are common patterns. (*Example counts: G: 2088, F: 2082, X: 2063; Implies: 2958, U: 2479, R: 2464*)
- **Security and Authentication:** ‘X’, ‘F’, ‘G’ are prominent. Structural patterns often involve Implications, Until, and Weak Until (W). (*Example counts: X: 2107, F: 2077, G: 2059; Implies: 2967, U: 2502, W: 2442*)
- **Smart Grid/Energy Management:** ‘G’, ‘F’, ‘X’ are frequent. Implications, Release, and Until patterns are common. (*Example counts: G: 2111, F: 2100, X: 2040; Implies: 2938, R: 2509, U: 2432*)
- **Version Control and Code Reviews:** ‘G’, ‘F’, ‘X’ appear often. Implications, Weak Until (W), and Until structures are frequently used. (*Example counts: G: 2130, F: 2077, X: 2066; Implies: 2903, W: 2527, U: 2492*)

1350
 1351 • **Web Services/APIs:** ‘X’, ‘F’, ‘G’ are common. Implications, Until, and Release are
 1352 frequent patterns. (Example counts: X: 2138, F: 2102, G: 2052; Implies: 3020, U: 2557, R:
 1353 2501)

1354
 1355 *Note: The operator counts for G, F, X above refer to their appearance as the outermost temporal
 1356 operator in many formulas within the domain, indicating common high-level properties like invariants,
 1357 eventualities, or next-state transitions. The structural pattern counts (Implies, U, R, etc.) are derived
 1358 from Spot’s analysis of formula kinds within the LTL expressions for each domain.*

1360
 1361 **D.3 ADDITIONAL VISUALIZATIONS**
 1362

1363 This section presents additional visualizations to complement the main paper, providing further
 1364 insights into the VERIFY dataset’s characteristics.

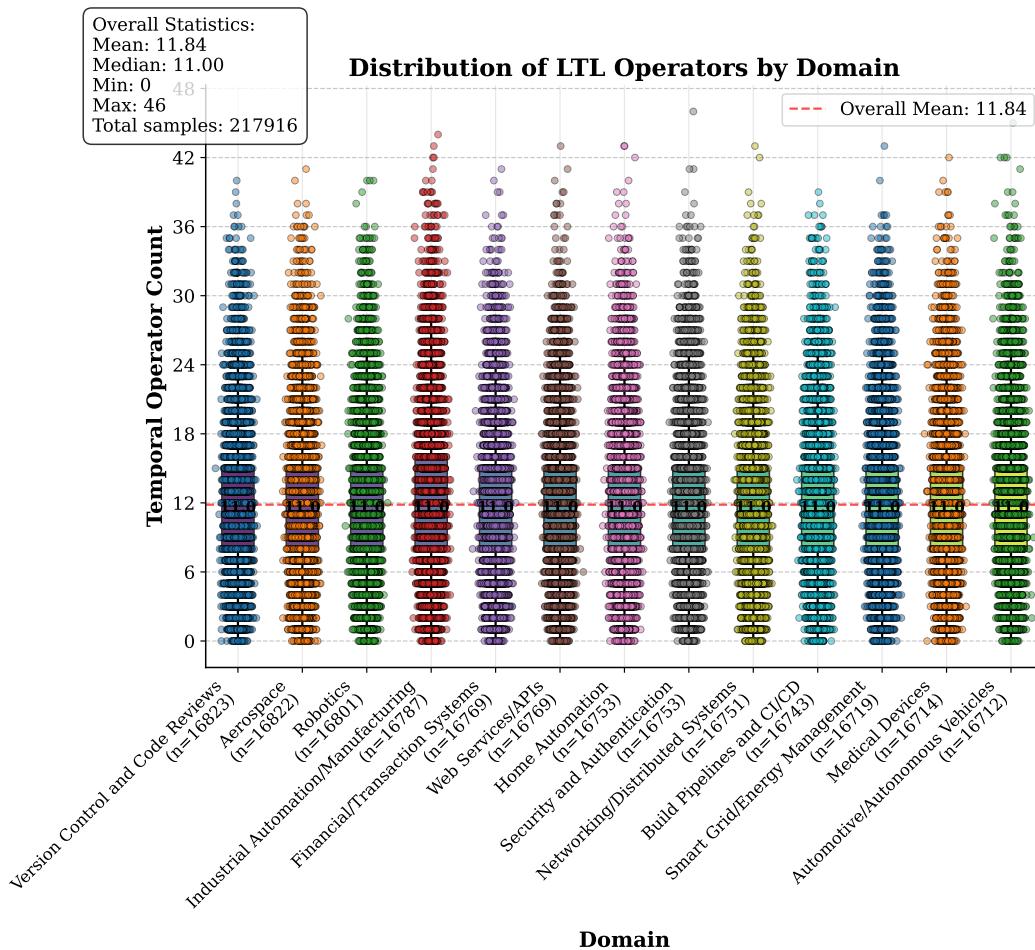
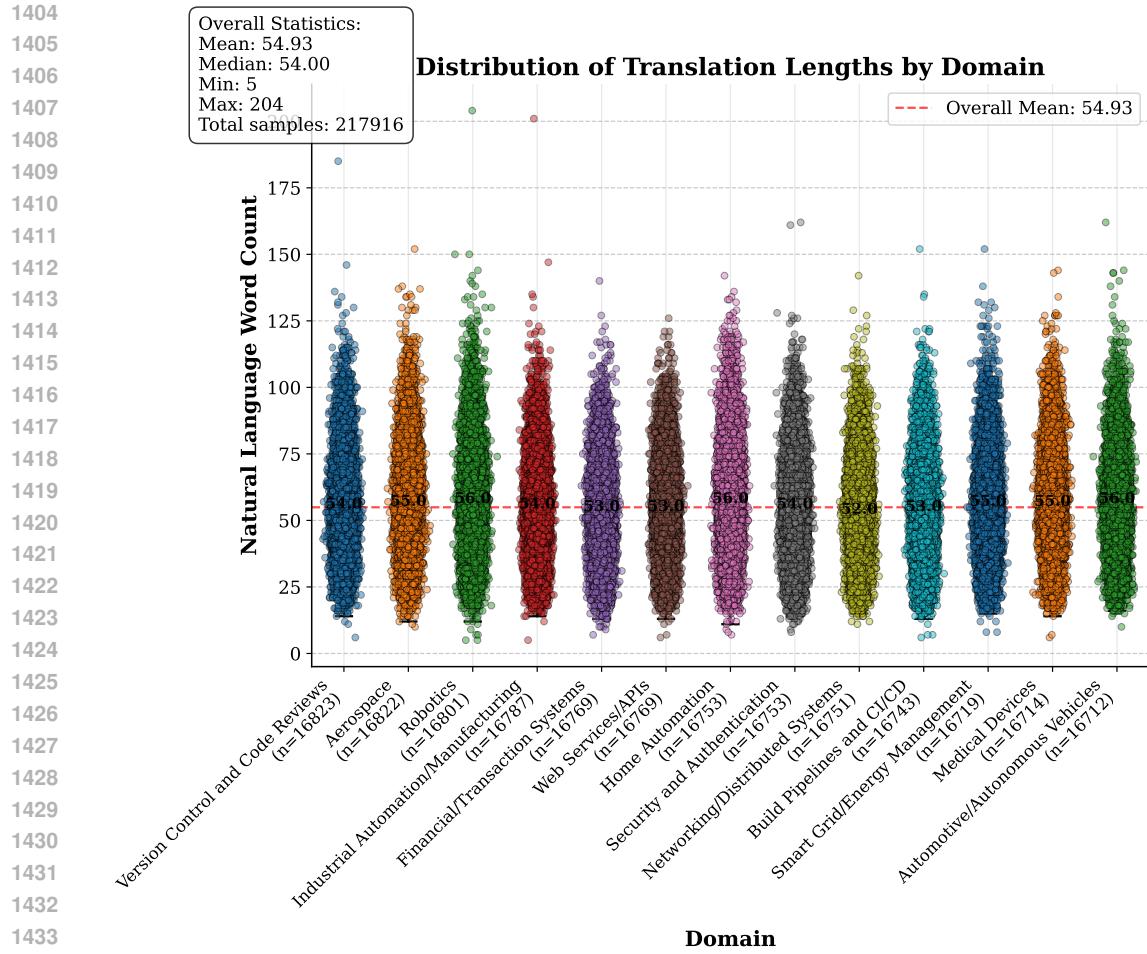


Figure 3: Distribution of LTL temporal operator counts per formula, shown as box plots for each of the 13 domains in the VERIFY dataset. The overall mean is indicated. This complements Figure 1a in the main paper by providing domain-specific views.



1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Figure 4: Distribution of natural language translation lengths (by word count) per formula, shown as box plots for each of the 13 domains. The overall mean is indicated. This complements Figure 1b in the main paper with domain-specific distributions.

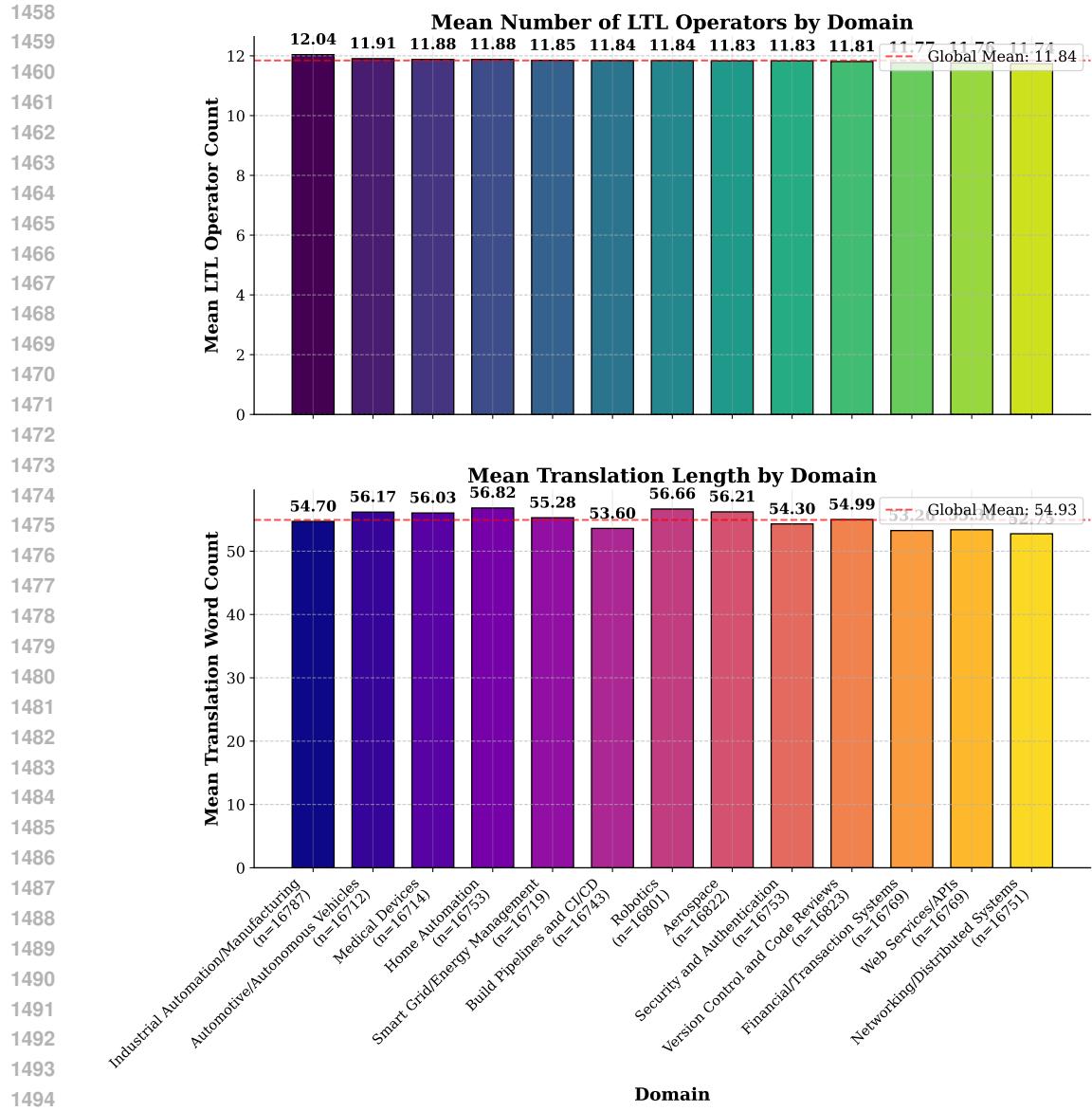
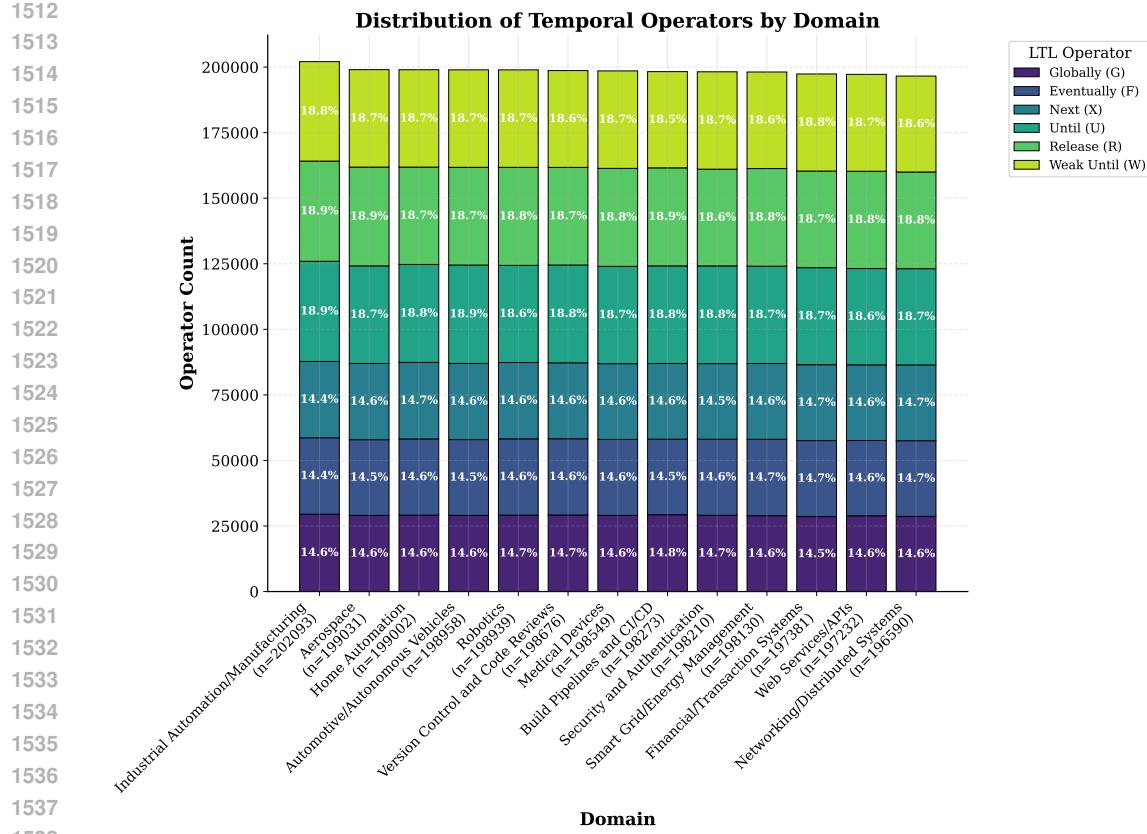


Figure 5: Summary of mean LTL operator counts (top) and mean natural language translation word counts (bottom) across all 13 domains. Global means are indicated by dashed lines. This provides a direct comparison of averages across domains.



1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565

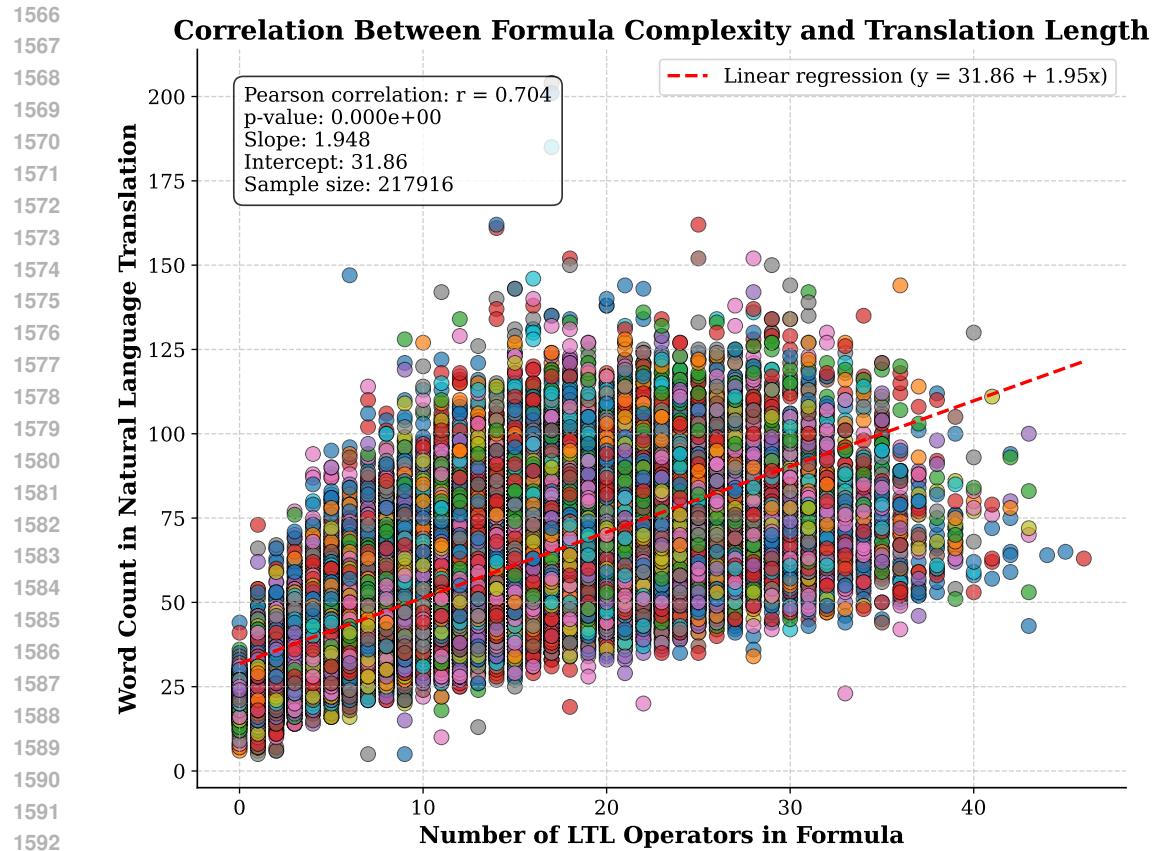


Figure 7: Scatter plot showing the correlation between LTL formula complexity (number of LTL operators) and the word count of the generated natural language translation. A linear regression line is overlaid. (Pearson correlation $r=0.704$, $p < 0.001$).

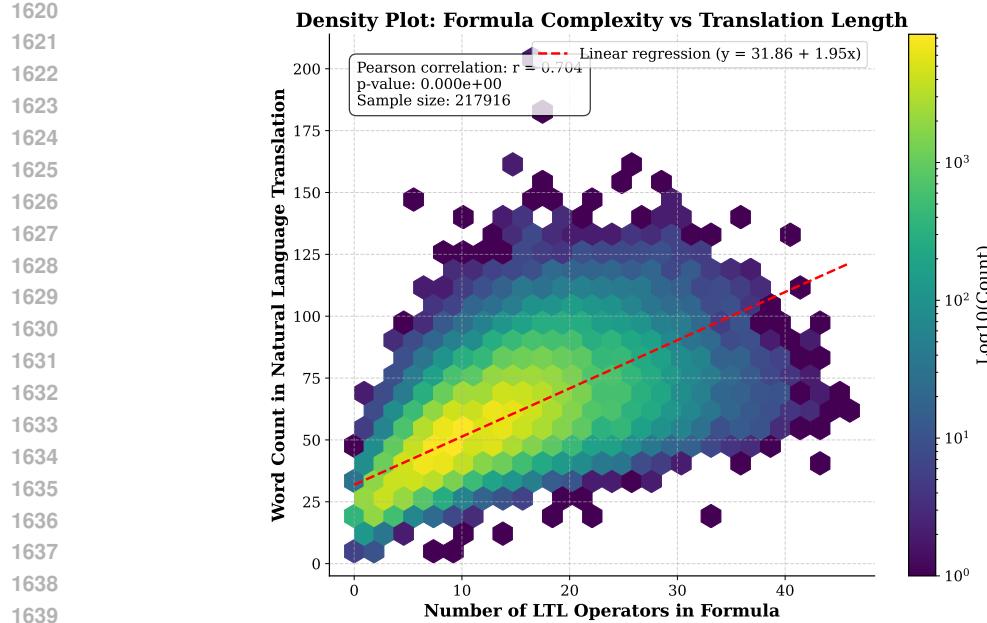


Figure 8: Density hexbin plot illustrating the relationship between LTL formula complexity (number of LTL operators) and the word count of the natural language translation. Darker regions indicate a higher concentration of data points. The linear regression line from Figure 7 is shown for reference.

D.4 FULL DATA SCHEMA

The VERIFY dataset is released in standard CSV and Apache Parquet formats. Each record in the dataset represents a single LTL-ITL-NL triplet, along with its associated contextual information and metadata. The detailed schema is presented in Table 13, derived from the internal database structure.

Table 13: Full Data Schema for the VERIFY Dataset.

Column Name	SQLite Type	CSV/Parquet Type	Constraints	Description
<code>id</code>	INTEGER	int	PRIMARY KEY (for triplet)	Unique identifier for the dataset record (triplet).
<code>formula_id</code>	INTEGER	int	NOT NULL; FK → conceptual formulas table	Identifier linking to a unique LTL formula structure (Spot-canonical).
<code>itl_id</code>	INTEGER	int	NOT NULL; FK → conceptual ITL table	Identifier linking to the unique canonical ITL structure (derived from <code>formula_id</code>).
<code>domain</code>	TEXT	string	NOT NULL	The application domain providing context (e.g., 'Aerospace').
<code>activity</code>	TEXT	string	NOT NULL	Natural language definitions of the propositional variables used in the LTL formula, specific to the given domain.
<code>ltl_formula</code>	TEXT	string	NOT NULL	The formal LTL formula string (Spot-canonical representation using standard ASCII operators).
<code>itl_representation</code>	TEXT	string	NOT NULL	The corresponding canonical Intermediate Technical Language (ITL) string.
<code>translation</code>	TEXT	string	NOT NULL	The contextual Natural Language (NL) description corresponding to the LTL/ITL pair within the specified domain.
<code>generation_time</code>	REAL	float		Time taken (in seconds) for the LLM to generate the 'activity' and 'translation' for this record.
<code>timestamp</code>	TEXT	string		ISO 8601 timestamp indicating when the record (specifically the NL part) was generated.

Conceptual Data Relationships:

- Each unique LTL formula (identified by `formula_id` after Spot canonicalization) has exactly one corresponding canonical ITL representation (identified by `itl_id`).

1674

- A single LTL-canonical ITL pair (i.e., a unique `formula_id`) appears multiple times

1675 in the dataset, typically once for each of the 13 domains for which a natural language

1676 translation and activity definition were generated.

1677

 - The primary key `id` in the released files uniquely identifies each LTL-ITL-NL-Domain

1678 quadruplet.

1679

1680 **Example Raw Record:**

1681

- **As a CSV data record (header shown first for clarity):**

1682 `id,formula_id,itl_id,domain,activity,ltl_formula,itl_representation,`

1683 `translation,generation_time,timestamp`

1684

1685 `106230,22,229,"Aerospace",`

1686 `"Consider an aircraft flight control system. 'p' indicates`

1687 `the autopilot is engaged. 'q' indicates the aircraft is on`

1688 `the correct flight path. 'r' indicates a critical system`

1689 `failure. 's' indicates the flight director is providing`

1690 `guidance. 't' indicates the aircraft has reached its`

1691 `destination. 'u' indicates the aircraft is maintaining a`

1692 `safe altitude. 'w' indicates the weather conditions are`

1693 `within acceptable limits.",`

1694 `"(p W q & w) W s U (! (r -> r R u & q) U (! X F p) | t) ->`

1695 `s",`

1696 `"if w and p weakly until q weakly until s until t or not`

1697 `if r, then q and r releases u until not In the next state,`

1698 `Eventually, p, then s",`

1699 `"If acceptable weather and the autopilot being engaged`

1700 `persist at least until the aircraft is on the correct flight`

1701 `path, and this condition persists at least until the flight`

1702 `director provides guidance, until the aircraft reaches`

1703 `its destination or it is not the case that if there is`

1704 `a critical system failure, the aircraft maintains a safe`

1705 `altitude and the critical system failure continues to be`

1706 `true at least until the aircraft is on the correct flight`

1707 `path at least until it is not the case that in the next`

1708 `state eventually the autopilot is engaged, then the flight`

1709 `director provides guidance.",`

1710 `1.54899549484253,"2025-04-30T12:51:08.943122"`

- **As a JSON object representing one row (formatted for readability):**

1711 {

1712 "id": 106230,

1713 "formula_id": 22,

1714 "itl_id": 229,

1715 "domain": "Aerospace",

1716 "activity": "Consider an aircraft flight control system. 'p' indicates \\

1717 the autopilot is engaged. 'q' indicates the aircraft is on the correct \\

1718 flight path. 'r' indicates a critical system failure. 's' indicates \\

1719 the flight director is providing guidance. 't' indicates the aircraft \\

1720 has reached its destination. 'u' indicates the aircraft is maintaining \\

1721 a safe altitude. 'w' indicates the weather conditions are within \\

1722 acceptable limits.",

1723 "ltl_formula": "(p W q & w) W s U (! (r -> r R u & q) U \\

1724 (! X F p) | t) -> s",

1725 "itl_representation": "if w and p weakly until q weakly until s until \\

1726 t or not if r, then q and r releases u until not In the next state, \\

1727 Eventually, p, then s",

1728 "translation": "If acceptable weather and the autopilot being engaged \\

1729 persist at least until the aircraft is on the correct flight path, and \\

```

1728     this condition persists at least until the flight director provides \
1729     guidance, until the aircraft reaches its destination or it is not the \
1730     case that if there is a critical system failure, the aircraft \
1731     maintains a safe altitude and the critical system failure continues to \
1732     be true at least until the aircraft is on the correct flight path at \
1733     least until it is not the case that in the next state eventually the \
1734     autopilot is engaged, then the flight director provides guidance.", \
1735     "generation_time": 1.54899549484253, \
1736     "timestamp": "2025-04-30T12:51:08.943122" \
1737   }
1738
1739
1740 E IMPLEMENTATION DETAILS
1741
1742 This section details the methodologies and resources used for dataset generation, verification and the
1743 establishment of baseline experimental results.
1744
1745 E.1 LTL FORMULA GENERATION AND VERIFICATION
1746
1747 Generation: Linear Temporal Logic (LTL) formulas were programmatically generated. The
1748 generation process recursively constructed formulas up to a maximum Abstract Syntax Tree (AST)
1749 depth of 25. This process utilized eight unique atomic propositions (denoted 'p' through 'w') and the
1750 standard LTL operators: Globally (G), Finally (F), Next (X), Until (U), Release (R), and Weak Until
1751 (W), along with boolean connectives ( $\wedge$ ,  $\vee$ ,  $\neg$ ,  $\rightarrow$ ,  $\leftrightarrow$ ).
1752 Canonicalization and Uniqueness: To ensure structural diversity and manage the formula space,
1753 generated LTL formulas underwent a rigorous canonicalization process. This involved conversion to
1754 Negation Normal Form (NNF), expansion of implications and equivalences, application of
1755 associative and distributive laws, and standardized sorting of operands for commutative operators. A
1756 unique hash was computed for each canonical structure to prevent duplicates in the master formula
1757 database, which was managed using SQLite.
1758 Formal Verification: The semantic validity and non-triviality of all LTL formulas were formally
1759 verified using the Spot model checking library (version 2.11.6). A dedicated software component was
1760 designed to convert the LTL formulas from their generated format into Spot's required syntax. This
1761 component also managed the interaction with the Spot library for parsing, validation, and the retrieval
1762 of Spot's own canonical string representation for each formula. This ensured that all LTL formulas in
1763 the VERIFY dataset are well-formed and standardized according to a formal verification tool.
1764
1765 E.2 INTERMEDIATE TECHNICAL LANGUAGE (ITL) GENERATION AND VERIFICATION
1766
1767 AST-based Generation: The canonical Intermediate Technical Language (ITL) representation for
1768 each verified LTL formula was generated deterministically. This process began by parsing the
1769 Spot-canonical LTL formula string into an internal AST representation, using Spot's parsing
1770 capabilities.
1771 Rule-based Transformation: A rule-based transformation was then applied by traversing the LTL
1772 AST. For each LTL operator encountered in the AST, a corresponding human-readable template was
1773 selected from a predefined set of 12 core mapping rules (e.g., ' $G \phi$ ' maps to 'Always,  $\phi$ '; ' $\phi U \psi$ ' \
1774 maps to ' $\phi$  until  $\psi$ '). This mapping ensures that the resulting canonical ITL string directly preserves
1775 the structure of the source LTL formula while using more verbose, keyword-like operators.
1776 ITL Semantic Integrity: To ensure the integrity of the ITL generation and its semantic equivalence
1777 to the source LTL, a verification step was implemented. This involved programmatically parsing the
1778 generated ITL text back into an LTL formula using a custom-designed recursive descent parser. This
1779 reconstructed LTL formula was then formally compared against the original, Spot-verified LTL
1780 formula. Equivalence was confirmed by ensuring that the Spot-canonical string representation of the
1781 reconstructed LTL formula matched that of the original Spot-canonical LTL formula. Spot's direct
equivalence checking functions were also utilized during development for additional validation.

```

1782 E.3 NATURAL LANGUAGE (NL) GENERATION
1783

1784 **LLM and API Usage:** Contextual natural language descriptions (comprising domain-specific
1785 propositional variable ‘activity’ definitions and the ‘translation’ of the LTL/ITL logic) were
1786 generated using the DeepSeek-R1 model, specifically accessed via the ‘deepseek-reasoner’ API
1787 endpoint (model version available Q4 2024 - Q1 2025). This API was publicly available, subject to
1788 registration and usage quotas.

1789 **Parallel Generation Orchestration:** To generate the extensive dataset, a parallel generation system
1790 was developed. This system orchestrated up to 500 concurrent Python ‘asyncio’ tasks distributed
1791 across multiple CPU nodes of an institutional high-performance computing (HPC) cluster. Each task
1792 handled an individual LTL/ITL pair for NL generation.

1793 **Prompting Strategy:** For each LTL/ITL pair, a target domain was selected using a balanced
1794 sampling strategy designed to ensure roughly equal representation across the 13 diverse domains.
1795 The LLM was provided with the LTL formula, its ITL representation, and the selected domain. The
1796 prompt requested two specific outputs, encapsulated within XML-like tags:
1797

1798 Given the following formal specification:
1799 LTL Formula: "{ltl_formula_string}"
1800 Intermediate Technical Language (ITL): "{itl_representation_string}"
1801 Domain: "{domain_name}"

1802 Please perform two tasks:
1803 1. Define plausible activities for the propositional variables used in the
1804 LTL formula, relevant to the specified domain. These definitions should
1805 make the LTL/ITL meaningful in that domain.
1806 2. Translate the LTL/ITL formula into a clear, concise, and semantically
1807 accurate natural language description. This description should incorporate
1808 the domain context and the activities you define.
1809

1810 Format your response strictly as follows, ensuring the content within
1811 the tags is on a single line if possible, or appropriately escaped if
1812 multi-line:
1813 <activity>p = [definition of p]; q = [definition of q]; ... </activity>
1814 <translation>[Natural language translation of the LTL/ITL incorporating
1815 the activities and domain context]</translation>

1816 The model was instructed to produce clear and concise translations that incorporated the defined
1817 activities.
1818

1819 E.4 LLM JUDGING FOR NL VALIDATION
1820

1821 **Validation Model:** A substantial portion (18%) of the generated NL translations underwent
1822 automated validation using a large language model to assess semantic correctness and quality. The
1823 model employed for this task was ‘meta-llama/Meta-Llama-3-70B-Instruct’.

1824 **Model Configuration:** The validation model was loaded using the Hugging Face ‘transformers’
1825 library (version 4.49.0), with 8-bit quantization enabled via the ‘bitsandbytes’ library (version 0.45.5).
1826

1827 **Judging Prompt:** The LLM judge was provided with the LTL formula, its ITL representation, the
1828 generated NL translation, and the corresponding ‘activity’ string. It was tasked to output its
1829 assessment in a structured JSON format. The prompt template was as follows:
1830

1831 You are an expert in formal methods and natural language.
1832 Your task is to evaluate the semantic correctness and quality
1833 of a natural language (NL) translation with respect to a given
1834 Linear Temporal Logic (LTL) formula and its Intermediate
1835 Technical Language (ITL) representation.

1836 LTL Formula: "{ltl_formula_string}"

1836 ITL Representation: "{itl_representation_string}"
 1837 Generated NL Translation (incorporating domain context and
 1838 variable activities): "{nl_translation_string}"
 1839 Domain Context & Variable Activities (as generated for the NL
 1840 translation): "{activity_string_from_dataset}"
 1841
 1842 Please carefully assess the 'Generated NL Translation'.
 1843 Consider the following:
 1844 1. Semantic Precision: Does the NL accurately convey the
 1845 precise meaning of the LTL/ITL, especially the temporal
 1846 relationships (e.g., always, eventually, until, next)?
 1847 2. Contextual Appropriateness: Is the NL translation
 1848 consistent with the provided 'Domain Context & Variable
 1849 Activities'?
 1850 3. Fluency & Clarity: Is the NL translation fluent,
 1851 grammatically correct, and easily understandable?
 1852
 1853 Output your assessment ***only*** as a single JSON object with the
 1854 following keys:
 1855 - "is_correct": boolean (true if the NL translation is
 1856 semantically correct with respect to LTL/ITL and
 1857 contextually appropriate; false otherwise)
 1858 - "score": integer (an overall quality score from 0 to 10,
 1859 where 10 is perfect)
 1860 - "issues": list of strings (a list of specific problems
 1861 identified, e.g., "Misinterprets 'Until' operator",
 1862 "NL is awkward". Empty list if no issues.)
 1863 - "reasoning": string (a brief textual explanation for your
 1864 judgment and score.)
 1865
 1866 **Generation Parameters for Judge Output:** The generation of the JSON response by the LLM
 1867 judge used the following parameters to ensure consistent and structured output: temperature = 0.1,
 1868 top_p = 0.95, do_sample = True, and max_new_tokens = 512.

1868 E.5 BASELINE MODEL TRAINING

1869 All baseline models were fine-tuned using a standardized methodology. Specific pre-trained
 1870 checkpoints were sourced from the Hugging Face Hub. The Hugging Face 'transformers' library
 1871 (version 4.49.0) and its 'Trainer' API were employed for the fine-tuning process. Data was tokenized
 1872 using the respective model's default tokenizer, with input and output sequences padded or truncated
 1873 to a maximum length of 512 tokens. LTL and ITL formulas were treated as regular text sequences for
 1874 tokenization.

1875 For each model and task, hyperparameters were optimized based on performance on the validation
 1876 set, using the primary metric defined for that task (e.g., BERTScore F1 for LTL/ITL→NL, Semantic
 1877 Equivalence for NL→LTL). The reported metrics in Tables 3, 4, and 5 of the main paper were
 1878 calculated on the held-out test set using the best checkpoint identified during validation.

1879 A representative configuration, exemplified by the **T5-large** model, is detailed below. Other models
 1880 (T5-base, BART-base, BART-large, Llama-3-8B-Instruct, Mistral-7B-Instruct-v0.2,
 1881 CodeLlama-7b-Instruct-hf, DeepSeek Coder-6.7b-instruct) followed an analogous fine-tuning
 1882 procedure, adapting batch sizes and learning rates as appropriate for model size and stability.

1884 **T5-large Example Configuration:**

- 1885 • **Pre-trained Checkpoint:** 't5-large' (from Hugging Face Hub).
- 1886 • **Task Input/Output Formatting:**
 - 1887 – LTL/ITL → NL: Input: "translate LTL to NL: domain: domain activity: activity ltL:
 1888 LTL_formula" (similarly for ITL). Output: "NL_translation".

- NL → LTL/ITL: Input: “translate NL to LTL: domain: domain activity: activity nl: NL_translation” (similarly for ITL). Output: “LTL_formula” or “ITL_representation”.
- LTL ↔ ITL: Input: “translate LTL to ITL: itl: LTL_formula” (Output: “ITL_representation”), and vice-versa.

- **Training Hyperparameters:**

- Learning Rate: Initial 1×10^{-4} , with a linear decay schedule.
- Batch Size: 16 per device, with gradient accumulation steps of 4 (effective batch size of 64).
- Training Epochs: 5.
- Optimizer: AdamW ($\beta_1 = 0.9, \beta_2 = 0.999, \epsilon = 1 \times 10^{-8}$).
- Weight Decay: 0.01.
- Scheduler: Linear scheduler with warmup for the first 500 steps.
- Gradient Clipping: Max norm of 1.0.

E.6 SOFTWARE AND HARDWARE ENVIRONMENT

Software Environment: The primary development and execution environment utilized Python 3.10.16. Key libraries and their versions include:

- PyTorch (torch): 2.5.1+cu121
- Transformers (Hugging Face): 4.49.0
- Datasets (Hugging Face): 3.3.2
- Accelerate (Hugging Face): 1.4.0
- BitsandBytes: 0.45.5 (for 8-bit quantization)
- Spot (for LTL manipulation and verification): 2.11.6
- Pandas: 2.2.3
- NumPy: 1.26.4
- Scikit-learn: 1.6.1
- NLTK: 3.9.1 (for METEOR score)
- SQLite3 (Python standard library) for database management.

The CUDA version compatible with the PyTorch build and drivers was CUDA 12.1, with NVIDIA drivers version 550.x.

Hardware Environment: Dataset generation, initial processing, and LTL/ITL verification stages were primarily conducted on an institutional high-performance computing (HPC) cluster. These tasks utilized nodes equipped with dual AMD EPYC 9334 32-Core Processors. Natural language generation (orchestration of API calls) was also managed from these CPU-based HPC nodes. The LLM judging phase (using Llama 3) and all baseline model training and testing were performed on a separate institutional AI compute cluster. For LLM judging and training of larger baseline models (e.g., Llama-3-8B, Mistral-7B), nodes equipped with 8x NVIDIA H200 GPUs (141 GB VRAM per GPU) were utilized. Training of other baseline models (e.g., T5, BART variants) and final testing/evaluation across all models utilized nodes equipped with NVIDIA H100 GPUs (94 GB VRAM).

E.7 COMPUTE RESOURCES

The development of the VERIFY dataset and the execution of baseline experiments required substantial computational resources.

- **LTL/ITL Database Generation & Verification:** Approximately 2,000 CPU core hours on AMD EPYC 9334 processors.

1944 • **NL Generation (API Orchestration):** Approximately 72 wall-clock hours, heavily
1945 parallelized across multiple CPU nodes managing concurrent API calls. (The compute for
1946 the DeepSeek API itself is external).
1947 • **LLM Judging (Llama 3):** Approximately 300 NVIDIA H200 GPU hours (for 18% of the
1948 dataset).
1949 • **Baseline Model Training (average per model type):**
1950 – T5-large / BART-large type models: Approximately 24 hours on a 4x NVIDIA H100
1951 GPU configuration.
1952 – T5-base / BART-base type models: Approximately 12 hours on a 4x NVIDIA H100
1953 GPU configuration.
1954 – Llama 3 8B / Mistral 7B / CodeLlama 7B / DeepSeek Coder 6.7B type models:
1955 Approximately 36 hours on an 8x NVIDIA H200 GPU configuration.
1956

1957 The total estimated compute investment is in the order of several thousand CPU core hours and
1958 several hundred high-end GPU hours (normalized to H100/H200 equivalents).
1959

1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997