
ABSTRACT

Leveraging Large Language Models for Legal Document Understanding and Software
System Analysis: Addressing Key Challenges

Ernesto Quevedo Caballero, Ph.D.

Co-Mentor: Pablo Rivas, Ph.D.,

Co-Mentor: Tomas Cerny, Ph.D.

In the rapidly advancing field of software development, ensuring compliance with

legal regulations and policies has become increasingly critical. The intricate separation

between legal expertise and software engineering creates challenges that demand

robust, automatic compliance and auditing methods. Thesis focuses on leveraging

Large Language Models (LLMs) to bridge this gap, particularly in two key areas: legal

document question answering and classification and understanding complex software

systems based on microservices architectures. By evaluating the capabilities of LLMs

in these domains, this dissertation contributes essential insights into their potential

role as auditors of legal compliance in software systems. Although this work covers

only a portion of the broader vision of LLMs in full-spectrum compliance auditing, it

lays the groundwork for a comprehensive approach by addressing the applications of

LLMs in understanding legal documents and software systems.

However, a crucial challenge in deploying LLMs for legal compliance lies

in their tendency to hallucinate. This limitation affects their application in legal

document analysis, software understanding, and the broader goal of ensuring automatic

compliance with legal regulations, where accuracy and reliability are essential, and

errors can have significant consequences. Given that hallucinations in LLMs are a

significant barrier to achieving automatic legal compliance in software, this thesis

also addresses the hallucination problem in LLMs, ultimately contributing to the

development of more reliable LLM-based tools not only for the main goal of this thesis

but also for any domain where LLMs are utilized.

ii

Hold for signature page

Leveraging Large Language Models for Legal Document Understanding and Software

System Analysis: Addressing Key Challenges

by

Ernesto Quevedo Caballero, B.ENG, M.S.

A Thesis

Approved by the Department of Computer Science

Greg Hamerly, Ph.D., Chairperson

Submitted to the Graduate Faculty of
Baylor University in Partial Fulfillment of the

Requirements for the Degree
of

Doctor of Philosophy

Approved by the Thesis Committee

Pablo Rivas, Ph.D., Chairperson

Tomas Cerny, Ph.D., Co-chair

Greg Hamerly, Ph.D.

Eunjee Song, Ph.D.

Andrei Martinez-Finkelshtein, Ph.D.

Accepted by the Graduate School

January 14, 2025

J. Larry Lyon, Ph.D., Dean

Page bearing signatures is kept on file in the Graduate School.

Copyright © 2025 by Ernesto Quevedo Caballero

All rights reserved

TABLE OF CONTENTS

LIST OF FIGURES . x

LIST OF TABLES . xi

ACKNOWLEDGMENTS . xiii

1 Introduction . 1

1.1 Objectives . 3

1.2 Contributions . 8

1.2.1 Study state-of-the-art approaches of Legal NLP in legal docu-
ments oriented to software development. 8

1.2.2 Assessing state-of-the-art LLMs like ChatGPT capabilities to
comprehend and respond to complex software project inquiries
through source code analysis. 9

1.2.3 A Token Probability Method for Detecting Hallucinations in
Large Language Model Outputs. 10

1.3 Thesis Organization . 11

2 Literature Review on Legal NLP . 14

2.1 Taxonomy of Legal NLP tasks . 14

2.1.1 Language Modeling . 15

2.1.2 Multiclass Classification . 18

2.1.3 Summarization . 25

2.1.4 Information Extraction . 26

2.1.5 Question Answering and Information Retrieval 29

2.2 Current Legal NLP Limitations . 33

2.3 Discussion . 36

2.4 Datasets . 38

2.5 Limitations . 39

2.6 Conclusion . 41

2.7 Credit . 42

3 Study the performance of state of the art of Legal NLP in legal regulations
associated with software systems . 44

3.1 LLMs evaluated on SQuAD V2.0 and PolicyQA 46

3.1.1 LLMs used . 47

3.1.2 Experiments . 47

vi

3.2 Creation and Analysis of a Natural Language Understanding Dataset
for DoD Cybersecurity Policies (CSIAC-DoDIN V1.0) 48

3.2.1 Dataset . 50

3.2.2 Annotation Scheme . 50

3.2.3 Extraction and Annotation process 52

3.2.4 Developed Legal NLP Tasks 55

3.2.5 Statistics of the Dataset . 56

3.2.6 Experiments and Results . 59

3.3 Discussion . 62

3.4 Limitations . 63

3.5 Conclusions . 65

3.6 Credit . 65

4 Survey in the Use of LLMs to Understand Software Systems 68

4.1 Taxonomy of Software Engineering Area where LLMs have been applied 69

4.1.1 Software Requirements and Documentation 69

4.1.2 Code Generation and Software Development 75

4.1.3 Software Design and Evaluation 82

4.1.4 Code Summarization . 87

4.1.5 Overall Conclusions . 90

4.2 Discussion . 91

4.3 Limitations . 93

4.4 Conclusions . 94

5 Assessing ChatGPT’s Ability to Comprehend and Respond to Microservice
Architecture Questions Using Source Code Insights 97

5.1 Research Questions . 98

5.2 Methodology . 99

5.2.1 Source Code Extraction . 100

5.2.2 NL Transformation . 104

5.2.3 Questions Created . 105

5.2.4 Prompt Engineering . 106

5.2.5 ChatGPT Question Answering Process 108

5.3 Experimental Design . 109

5.3.1 Testbench . 109

5.3.2 Customized Questions for TrainTicket Testbench 110

5.3.3 Prompt Engineering . 111

5.3.4 Methodology Implementation 114

5.3.5 Execution of the Experiments 117

5.3.6 Evaluation of Answers . 118

5.3.7 Analysis . 119

5.4 Limitations . 124

vii

5.5 Discussion . 125

5.6 Conclusion . 127

5.7 Credit . 129

6 LLMs Hallucinations Detection Survey . 130

6.1 Definition . 131

6.2 Taxonomy of Hallucination Detection Methods 132

6.2.1 Retrieval methods . 132

6.2.2 Uncertainty-based . 137

6.2.3 Prompting-based . 139

6.2.4 Facts Overlapping . 142

6.2.5 Entailment methods . 144

6.2.6 Supervised Learning methods 145

6.3 Discussion . 148

6.4 Limitations . 150

6.5 Conclusions . 151

7 A Token Probability Method for Detecting Hallucinations in Large Language
Model Outputs . 152

7.1 Methodology . 153

7.1.1 Problem Statement . 153

7.1.2 General Pipeline . 153

7.1.3 Features Description . 154

7.1.4 Feature Extraction . 157

7.1.5 Models Specification . 157

7.2 Experimental Setup and Results . 157

7.2.1 Datasets . 157

7.2.2 LLM Evaluators Used . 158

7.2.3 Training Process of the Classifiers 159

7.2.4 Results . 160

7.2.5 HELM results without condition-text 163

7.2.6 Feature Importance Analysis - Ablation 166

7.3 Discussion . 166

7.4 Limitations . 167

7.5 Conclusions . 169

7.6 Credit . 170

8 LLMs Hallucinations Mitigation Survey . 171

8.1 Taxonomy of Hallucination Mitigation Methods in LLMs 172

8.1.1 Mitigating Misinformation and Biases 172

8.1.2 Retrieval Augmented Generation (RAG) 174

8.1.3 Self-Improvement through reasoning and feedback 179

viii

8.1.4 Prompt Engineering . 183

8.1.5 Decoding Strategies . 185

8.1.6 Using Knowledge Graphs . 186

8.1.7 Faithfulness loss functions . 188

8.1.8 Supervised Fine-tuning . 189

8.2 Discussion . 191

8.2.1 Hallucinations in LLMs . 192

8.2.2 Why Hallucinations Happen 194

8.2.3 Hallucination Mitigation . 197

8.2.4 Proposals . 199

8.3 Limitations . 200

8.4 Conclusions . 201

9 Conclusion . 204

9.1 Publications . 206

9.2 Contributions . 207

9.2.1 Study of State-of-the-Art Approaches in Legal NLP for Software
Development. 207

9.2.2 Assessing ChatGPT’s Ability to Comprehend and Respond to
Microservice Architecture Questions Using Source Code Insights.209

9.2.3 A Token Probability Method for Detecting Hallucinations in
Large Language Model Outputs. 210

9.3 Future Works . 211

9.3.1 Training Domain-Specific LLMs for Legal Compliance 211

9.3.2 Enhancing Context Management in LLMs 212

9.3.3 Improving Detection of Hallucinations in LLMs 212

9.3.4 Ethical and Regulatory Implications 213

9.4 Acknowledgements . 214

Bibliography . 215

ix

LIST OF FIGURES

Figure 1.1 Problems and Objectives of the Thesis. 4

Figure 3.1 example of a set of procedures on the left extracted and annotated
on the excel file on the right. 53

Figure 3.2 Distribution of examples in the dataset by cluster. 57

Figure 4.1 Summary of the review on LLMs applied to Software Engineering 70

Figure 5.1 Methodology Phases. 99

Figure 5.2 PO-CCG Example. 102

Figure 5.3 Boxplot graphs of the F1 score in each evaluation scenario. 121

Figure 6.1 Summary of the review on Hallucination Detection in LLMs . . . 133

Figure 7.1 General Pipeline of the Proposed Methodology. 153

Figure 8.1 Summary of the review on Hallucination Mitigation in LLMs . . . 173

x

LIST OF TABLES

Table 2.1 Results from empirical study Song et al. (2022) with metrics: F1,
m-F1 (micro F1), M-F1 (Macro F1), W-F1 (weighted F1). 24

Table 2.2 Legal NLP Limitations . 36

Table 2.3 List of datasets and their corresponding tasks, papers and access link. 40

Table 3.1 Result of the models on SQUAD V2.0 and PolicyQA 48

Table 3.2 Subclusters corresponding to each cluster and its description . . . 51

Table 3.3 Documents distribution and extraction results by subcluster or cluster. 56

Table 3.4 Dataset distribution by type . 57

Table 3.5 Dataset distribution by subcluster 58

Table 3.6 Positives examples in each Text-Co-Occurrence task. 58

Table 3.7 Test results for all examined models across all Multiclass-
Classification tasks. 60

Table 3.8 Test results for all examined models across all Text Co-Occurrence
tasks. 61

Table 3.9 Test results aggregated over all tasks: arithmetic (A), harmonic (H)
and Geometric (G) mean. 61

Table 5.1 Information extracted during source code extraction phase 101

Table 5.2 Nodes in the Control Flow Graph that produce a message in natural
language. 105

Table 5.3 Experimental Questions . 111

Table 5.4 Experimental Questions Cont. 112

Table 5.5 Results of Friedman’s test in several scenarios. In each case, the
final statistic and the p-value are reported. 123

Table 5.6 Friedman’s post-hoc tests for finding statistically relevant pairwise
differences among the three knowledge bases in the More-than-two
Microservices scenario. 123

Table 7.1 Results taken from Li et al. (2024) measured in Accuracy (%) on
the Halu-Eval dataset. 161

Table 7.2 Results for each LLME and task using the LR classifier and measure
in accuracy on the test set. 161

Table 7.3 Average results in the test set for each task in the HaluEval bench-
mark given the selected LLME. NCA stands for accuracy without
condition-text and KA for accuracy including extra knowledge. Here,
AUC is the PRAUC. 162

xi

Table 7.4 Results of the approach and previous methods in the HELM
benchmark measured in PRAUC. 163

Table 7.5 Results of the approach and previous methods in the HELM
benchmark measured in PRAUC without condition-text. 164

Table 7.6 Results of the approach and previous methods in the True-False
dataset measured in accuracy. The SALPMA results shown are using
the 16th hidden layer with LLC-7b. 165

Table 7.7 Feature importance based on accuracy for three tasks in the HaluEval
benchmark given three LLME. 166

xii

ACKNOWLEDGMENTS

I wish to express my deepest and most sincere gratitude to my advisors, Dr.

Tomas Cerny and Dr. Pablo Rivas, whose unwavering guidance, relentless support,

and mentorship have been indispensable throughout this dissertation and my academic

life at Baylor University. Both are amazing professors, advisors, and researchers who

helped me grow enormously in a short amount of time. Their wisdom and profound

insights shaped the direction of this research and were instrumental in achieving

success. Their commitment to academic excellence and rigorous scholarly inquiry has

inspired me to aim higher, think more critically, and pursue knowledge with great

dedication. I wouldn’t be the researcher I am today if it were not for them.

I extend my heartfelt appreciation to the members of my dissertation committee. In

particular, I would like to recognize Dr. Tomas Cerny, Dr. Pablo Rivas, Dr. Greg

Hamerly, Dr. Eunjee Song, and Dr. Andrei Martinez for invaluable feedback, prompt

engagement, and flexibility greatly enriched this research. Their expertise, thoughtful

critiques, and guidance since the proposal were essential in helping me refine and

elevate my work. Their collective support contributed to this dissertation’s academic

rigor and significantly influenced my growth as a researcher.

I owe an enormous gratitude to my labmates, including Amr Elsayed Abdelfattah,

Alejandro Rodriguez, Jorge Yero, Korn Sooksatra, Bikram Khanal, Maisha Binte

Rashid, and many others. The intellectual exchange and shared curiosity we cultivated

within our lab profoundly impacted my research experience. The opportunity

to collaborate with such talented individuals facilitated the success of numerous

experiments and made the long hours spent in the lab far more enjoyable and fulfilling.

Their insights, encouragement, and friendship transformed the lab into a dynamic and

inspiring environment that fostered both personal and professional growth.

xiii

I also want to acknowledge the exceptional administrative support from Sharon

Humphrey, Candace Ditsch, and Dr. Eunjee Song, whose guidance through the often

complex procedural aspects of graduation was indispensable. Navigating the intricate

requirements of the graduation process can be overwhelming. Still, their support

ensured everything was completed smoothly and efficiently, allowing me to focus on

my research and its final presentation without undue stress.

This thesis is dedicated to my grandmother, Daisy Rivero, whose dream was for me

to become a PhD, just as she did. Sadly, she passed away a few months ago, but even

though she won’t be here to see it, I dedicate all of this to her, as she inspired me to

pursue this path.

I would like to extend my deepest gratitude to my mother, who has supported me

throughout my life, being present in every moment, and is why I am who I am today.

I also want to thank Maribel, whom I love as a mother, for her unwavering support,

love, and guidance.

Of course, I cannot express enough thanks to my partner in life, Maca, who embraced

me during moments of immense stress, providing me with the strength to keep going

and the love to find happiness, even in difficult circumstances, for her love, help,

and support during this period I will be eternally grateful. I am deeply grateful to

my closest friends in Waco, such as Marchena and Rafa, who have been exceptional

friends, offering me unconditional support and help throughout these four years, which,

thanks to them, were also very fun. I also want to thank other friends who shared

this journey with me: Alejandro, Yero, Quintero, Benni, Betty, Valeria, Ana, Giselle,

Diana, Laura, and more. The great moments we spent together over these four years

made this time feel much closer to home.

To each of you, whether through mentorship, collaboration, family, friendship, or

support, you have made an indelible impact on my academic and personal life. Your

xiv

contributions have been invaluable, and I am eternally grateful. Thank you for being

part of this transformative and pivotal chapter in my life.

xv

CHAPTER ONE

Introduction

The growing body of legal texts, including privacy policies, state regulations,

contracts, and judicial rulings, contributes to an increasing workload for legal

professionals, making many tasks repetitive and time-consuming. The complex

and often ambiguous nature of legal language demands thorough analysis and

understanding, which can be challenging even for experienced practitioners. For

individuals without legal expertise, these documents are often incomprehensible.

For instance, they routinely agree to or ignore terms in organizational security and

privacy policies without fully understanding them. The specialized vocabulary in legal

documents further complicates interpretation, making it challenging to address basic

questions or understand the content Chalkidis and Kampas (2019); Rosili et al. (2021);

Sansone and Sperli (2022).

On the other hand, modern society’s reliance on software systems, from daily

tasks to complex services, requires architects and developers to continuously update

their knowledge to avoid technical debt and maintain system quality. The shift toward

cloud-native designs, with decentralized microservices managed by various teams, has

created complex environments that are difficult to manage holistically Parker et al.

(2023); Abdelfattah (2022); Taibi et al. (2017); Abdelfattah and Cerny (2023). As these

systems evolve independently, they risk degradation and pose challenges in maintaining

cybersecurity, privacy, and legal compliance. Compliance with rules and regulations

often becomes an afterthought, leading to costly post-development fixes and potential

legal penalties, especially as systems and legislation evolve separately. Addressing

legal compliance issues in software systems requires a thorough understanding of the

associated business processes, structures, data flows, and policies. Designing systems

1

that are both aware of and adaptable to legal changes helps ensure their long-term

viability and provides clear insights into the legal implications.

Recent developments in Natural Language Processing (NLP) have shown

promise in improving and automating various tasks within the legal sector. In this

context, the term “Legal NLP” has emerged, highlighting the specialized application

of NLP techniques to legal documents and processes. Legal NLP researchers have

explored diverse applications, including text classification, which helps organize legal

documents but requires expert oversight to prevent misclassification. Summarization

makes lengthy legal texts more accessible, though it needs careful review to avoid

inaccuracies. Information extraction identifies key details in complex texts, benefiting

from the structured nature of legal documents but still requiring validation. Question-

answering tools offer initial guidance for legal inquiries; though they may struggle

with complex questions, they are best used as supplementary resources. Information

retrieval automates the search for legal documents but may overlook important

contextual nuances. In most cases, the state-of-the-art is determined by applying

Large Language Models (LLMs) Chalkidis and Kampas (2019); Chalkidis et al. (2021);

Quevedo et al. (2023).

Additionally, investigators explored various aspects of privacy and software

design, including consulting and legal counseling, developing privacy policies for

vendors, and researching the implications of privacy measures on system security.

Creating a cross-platform distributed system static code analysis to determine internal

system structures, endpoints, and data flow holistically Cerny et al. (2020) through

software architecture reconstruction Walker et al. (2021); Bushong et al. (2021). Their

advancements were applied to assess systems for incompatible security policies Das

et al. (2021) or poor design practices in code Walker et al. (2020).

Integrating Legal NLP techniques into the analysis and management of software

regulations faces several critical challenges. While advancements in Legal NLP have

2

improved the ability to process and interpret legal texts, there is a pressing need to

enhance these techniques for evaluating compliance with complex software regulations,

including cybersecurity policies. Current Legal NLP tools and LLMs struggle with

several issues in evaluating compliance in a software system: their effectiveness in

addressing the nuanced requirements of software development regulations remains

underexplored, their capability to handle intricate software projects through source

code analysis is limited, and their reliability is compromised by the phenomenon of

hallucinations where generated outputs may be misleading or incorrect Hadi et al.

(2023); Ji et al. (2023); Jin et al. (2024).

Despite their impressive Natural Language Generation (NLG) capabilities,

state-of-the-art LLMs exhibit significant limitations in comprehending and responding

accurately to complex inquiries related to software projects. Their tendency to generate

hallucinated content further exacerbates the problem, leading to potential inaccuracies

in compliance assessments. These challenges highlight the need for a more robust

methodology to enhance the effectiveness of Legal NLP tools, improve the capability of

agents to assess software from multiple perspectives, and develop reliable techniques for

detecting and mitigating hallucinations in LLM-generated content. Addressing these

gaps is crucial for advancing the reliability and accuracy of automated compliance

systems in the context of evolving software regulations.

1.1 Objectives

This dissertation aims to advance the application of cutting-edge Legal NLP

techniques to legal regulations of software development, including creating new datasets

for underexplored areas such as cybersecurity policies. It will also investigate how state-

of-the-art LLMs can analyze software projects. Furthermore, the thesis addresses the

critical challenge of hallucination detection in LLMs, which impacts various domains

of artificial intelligence, including creating an assistant for automated compliance

3

Figure 1.1. Problems and Objectives of the Thesis.

analysis of legal regulations in software systems. Figure 1.1 illustrates the problems

and objectives that this thesis will address. The specific objectives are as follows:

(1) Study the performance of state-of-the-art Legal NLP in legal

regulations associated with software systems.

Understanding legal documents associated with software is crucial for achieving

automatic legal compliance. Question Answering is one key task for an agent to

interpret legal documents and communicate their understanding. However, as

discussed in Chapter 2 of this thesis, a significant challenge in Legal NLP is the

limited availability of resources for Machine Learning approaches, particularly

in software related legal documents such as cybersecurity policies Sansone and

Sperli (2022); Rosili et al. (2021); Chalkidis and Kampas (2019); Quevedo

et al. (2023).

To address these challenges, the thesis:

4

• Studies the performance of LLMs in question answering legal documents

related to software.

• Introduces a new dataset focused on cybersecurity policies.

(2) Assessing state of the art LLMs capability to comprehend and

respond to complex software projects inquiries through source code

analysis.

A critical aspect of achieving automatic legal compliance in software is

automatically understanding a software system, regardless of its complexity.

Dr. Abdelfattah from Baylor University addressed this problem in his thesis

from the Software Architecture Reconstruction (SAR) perspective Abdelfattah

(2024). However, as discussed in Chapter 4, current state-of-the-art research

has limitations in code summarization, automatic documentation, and software

understanding for enterprise systems. Applying LLMs to understand complex

software systems could produce promising results. Despite these advancements,

the application of LLMs in this area still needs to be explored, particularly

in extending their use beyond source code to include other intermediate

system representations. Furthermore, there is a need for a question-answering

tool that enables various users (without technical expertise or development

knowledge) to ask questions directly about a software project and receive

clear, natural language answers. Addressing these issues is essential for

achieving the second objective of this thesis, which involves exploring software

understanding through the application of LLMs, thereby supporting the main

goal of automatic legal compliance in software Jin et al. (2024).

To address this problem, the thesis:

• Builds a question-answering tool based on LLMs over a complex software

project.

5

• Evaluates such tools in well designed and challenging questions about

the software system.

• Includes in the context of the LLMs the use of an intermediate

representation of the source code, instead of the source code alone.

(3) Detect hallucinations from LLMs generation using a token probabil-

ity based approach.

Both Objective 1 and Objective 2 address critical aspects of the overarching

goal of achieving automatic legal compliance in software systems using LLMs.

Improving LLMs is essential for understanding legal documents and software

systems. As discussed before and deeply in chapters 6, 7 and 8 of this thesis,

one of the major challenges with current LLMs is their tendency to hallucinate,

which significantly hinders the success of an LLM agent being able to answer

questions about its understanding of a legal document and software system.

This issue also poses a substantial barrier to developing an effective tool for

automatic legal compliance, should it rely on LLMs, as suggested by the

findings of this thesis and existing literature Ji et al. (2023); Saxena and

Bhattacharyya (2024).

To address the problem of hallucinations in LLMs, it is crucial to focus on

their detection. Therefore, this objective of the thesis:

• Develops a supervised learning approach for detecting hallucinations in

LLMs.

• Evaluate the performance of this approach, comparing it with state-of-

the-art methods and highlighting its strengths and weaknesses.

The dissertation’s objectives represent a significant advancement at the

intersection of Legal NLP and software development, focusing on enhancing the

6

understanding and application of legal regulations in this domain. The first objective,

which involves applying cutting-edge Legal NLP techniques to software development

regulations, is crucial for bridging the gap between complex legal requirements and

their practical implementation in software systems, as understanding the specific legal

regulations that need to be assessed is a necessary precursor to evaluating compliance.

Additionally, by creating new datasets, such as those focusing on cybersecurity policies,

the research addresses an underexplored area in Legal NLP Quevedo et al. (2023);

Chalkidis and Kampas (2019). This expansion of resources will facilitate further

research into state-of-the-art Legal NLP methods, particularly in cybersecurity. Such

advancements are essential for developing an automated legal compliance agent capable

of detecting cybersecurity challenges in software based on relevant policies.

The second objective, investigating how state-of-the-art LLMs can understand

and answer questions about software projects, is significant for advancing our ability

to interpret and manage complex software systems. By leveraging advanced LLMs

and intermediate representations of software projects, the objective will enhance the

capacity of these LLMs to provide meaningful insights and answers from a software

system. This objective is pivotal for developing tools that can automate and improve

the quality of software maintenance and design validation, particularly in the scope of

this thesis, the legal compliance assessment.

Furthermore, addressing the challenge of hallucination detection in LLMs is

vital for ensuring the reliability and accuracy of LLM-driven solutions. Hallucinations,

where models generate incorrect or nonsensical outputs, pose a significant risk in

various LLM applications, including legal compliance analysis of software. By focusing

on detecting hallucinations, the objective improves the robustness of LLMs-based

agents, making them more reliable for critical tasks such as automated compliance

analysis. This focus is essential for creating a dependable assistant to provide accurate

and actionable insights into legal regulations governing software projects.

7

1.2 Contributions

This dissertation makes several significant contributions to Legal NLP, Software

Development, and the domain of LLMs.

1.2.1 Study state-of-the-art approaches of Legal NLP in legal documents oriented to

software development.

• Study on the performance of state of the art LLMs in legal

documents oriented to software development: A study is conducted on

the performance of several models, including BERT, LEGAL-BERT, ALBERT,

DistilBERT, and RoBERTa, on the SQuAD and PolicyQA datasets. After

comparing and analyzing the results, the best model for achieving optimal

performance on the PolicyQA dataset using pre-trained models was identified.

The findings reveal that these models perform significantly worse on the

PolicyQA dataset than SQuAD V2.0. Surprisingly, general domain models

like ALBERT and BERT outperformed the domain-specific LEGAL-BERT in

this task.

• Release the CSIAC-DoDIN V1.0 dataset, focused on cybersecurity

policies, responsibilities, and procedures of the organizations

involved:

Due to the lack of resources for Legal NLP, especially in software-based

policies like cybersecurity, a new curated dataset is introduced, focused on

cybersecurity-related policies and issuances developed by the DoD Deputy

CIO for Cybersecurity. This thesis established a baseline using four classic

transformer-based language models, BERT, RoBERTa, Legal-BERT, and

PrivBERT, applied to multiclass classification and text co-occurrence tasks

derived from the dataset. Additionally, the dataset and the code for training

8

and evaluating these baselines are openly accessible, facilitating further

research and testing new or pre-trained models.

This dataset helps to address the resource gap in Legal NLP, particularly in

the context of cybersecurity policies. Providing a structured and detailed

collection of cybersecurity-related documents supports the development of

more robust and accurate NLP models for policy analysis. Researchers and

practitioners can leverage this dataset to advance their work in automated

legal compliance, improve policy enforcement mechanisms, and explore new

methodologies in NLP for cybersecurity.

1.2.2 Assessing state-of-the-art LLMs like ChatGPT capabilities to comprehend and

respond to complex software project inquiries through source code analysis.

• Create a set of practical system design questions to evaluate the

service and interaction view perspectives: This contribution involves

developing a targeted set of questions designed to assess how effectively

ChatGPT can understand and respond to queries about microservice systems.

Using these questions, ChatGPT’s ability to leverage source code to answer

questions related to service and interaction views of microservices is evaluated.

This evaluation helps determine whether ChatGPT’s performance improves

using source code versus intermediate representations and whether integrating

both approaches enhances efficiency.

This contribution is crucial for advancing automatic legal compliance in

software systems, as it provides insights into how LLMs can be effectively

used to understand and analyze complex software architectures.

9

1.2.3 A Token Probability Method for Detecting Hallucinations in Large Language

Model Outputs.

This objective contributes to the goals of the thesis by addressing a critical

challenge in deploying LLMs for legal compliance: the tendency of these models to

generate hallucinations. By developing a method that leverages token probability to

detect hallucinations, this objective enhances the accuracy and reliability of LLM

outputs in general and, therefore, is also applicable in the context of legal document

analysis and understanding complex software systems. This contribution is essential

for ensuring that LLMs can be effectively utilized as auditors of legal compliance, where

precision is vital. By mitigating the risks associated with hallucinations, the proposed

method supports the broader vision of using LLMs for automatic legal compliance in

software systems and other domains requiring high-stakes decision-making.

• Propose a supervised learning approach using four features to detect

hallucinations: This thesis proposes a supervised learning approach using

four features to detect hallucinations in conditional text generated by LLMs,

achieving success with two classifiers: Logistic Regression and Simple Neural

Network.

• Evaluation and Validation: Evaluate the performance of this approach

across three datasets, comparing it with state-of-the-art methods and

highlighting its strengths and weaknesses.

• Model and Features analysis: Investigate the impact of using the same

versus different LLMs as evaluators for detecting hallucinations. Compare the

performance of smaller LLM evaluators against larger ones, like LLaMa-Chat-

7b. Perform a feature importance study through ablation.

These contributions advance the understanding of Legal NLP by evaluating

the performance of state-of-the-art LLMs on software-oriented legal documents

10

and introducing a novel cybersecurity-focused dataset. Additionally, they enhance

knowledge in software development by assessing ChatGPT’s capability to handle

microservice architecture queries using source code insights, providing a roadmap

for integrating agents in the question-answering process related to software, and

highlighting the challenges. Finally, they contribute to general NLP and the domain

of LLMs by proposing and validating a token probability method for detecting

hallucinations in LLM-generated text, considered one of the most significant challenges

currently Ji et al. (2023); Saxena and Bhattacharyya (2024); Xu et al. (2024).

1.3 Thesis Organization

Chapter 2 provides a literature review to analyze Legal NLP research. Focusing

on research problems, limitations, and areas for improvement. The chapter then

elaborates on the taxonomy of Legal NLP tasks and the approaches taken in each

one. Furthermore, it explores these techniques and the datasets that have been

predominantly utilized over the years. It provides a comprehensive understanding of

the historical and current state of research in Legal NLP.

Chapter 3 discusses the evaluation of state-of-the-art LLMs in the context of

legal documents relevant to software development. This includes a comparative study

of models such as BERT, LEGAL-BERT, ALBERT, DistilBERT, and RoBERTa

using the SQuAD and PolicyQA datasets. It highlights the performance variations

observed, with general domain models like ALBERT and BERT outperforming the

domain-specific LEGAL-BERT on the PolicyQA dataset. Additionally, this chapter

introduces the CSIAC-DoDIN V1.0 dataset, which focuses on cybersecurity policies.

It provides a baseline for multiclass classification and text co-occurrence tasks, with

open access to the dataset and code to support further research.

Chapter 4 provides a literature review on applying LLMs to improve automatic

software understanding.

11

Chapter 5 evaluates ChatGPT’s capability to understand and respond to

questions about microservice architecture using source code insights. It details the

creation of practical system design questions to assess ChatGPT’s effectiveness in

addressing service and interaction view perspectives. The chapter investigates whether

ChatGPT performs more efficiently with source code than PO-CCG intermediate

representation and explores the potential benefits of combining both approaches.

Additionally, it includes a statistical analysis to determine whether ChatGPT’s

performance varies across different question categories when using source code versus

PO-CCG.

Chapter 6 provides a literature review on techniques for hallucination detection

in LLMs.

Chapter 7 explores a token probability method for detecting hallucinations in

outputs from LLMs. It introduces a supervised learning approach that employs four

features to identify hallucinations in generated text, demonstrating its effectiveness

with classifiers such as Logistic Regression and Simple Neural Networks. The

chapter evaluates and validates this method across three datasets, comparing its

performance with state-of-the-art techniques and assessing its strengths and weaknesses.

Additionally, it analyzes the impact of using different LLMs as evaluators for

hallucinations, including a comparison between smaller and larger models. Finally, it

shows a feature importance study through ablation.

Chapter 8 provides a literature review on methods to mitigate hallucinations

in LLMs and a deep discussion of the problem, using all the knowledge presented in

Chapters 6 and 7.

Chapter 9 concludes the dissertation by summarizing the key findings and

contributions of the research. It reviews the thesis and suggests potential future

studies in Legal NLP, Question-Answering systems for software development, and

detecting and mitigating hallucinations in LLM outputs. The chapter aims to stimulate

12

further research in these areas, mainly focusing on Legal NLP applications in software

development and addressing the challenges of hallucinations in LLMs.

13

CHAPTER TWO

Literature Review on Legal NLP

The work detailed in Chapter Two has been written mainly from the publi-

cation: Quevedo, Ernesto, Tomas Cerny, Alejandro Rodriguez, Pablo Rivas, Jorge

Yero, Korn Sooksatra, Alibek Zhakubayev, and Davide Taibi “Legal Natural Language

Processing from 2015-2022: A Comprehensive Systematic Mapping Study of Advances

and Applications” IEEE Access (2023).

This chapter performs a literature review to provide descriptive statistics

of Legal Natural Language Processing (Legal NLP) research. It categorizes and

sub-categorizes key publications based on research problems, identifies limitations

and areas for improvement, and highlights diverse methods used for tasks like

Language Modeling, Multiclass Classification, Summarization, Information Retrieval,

and Question Answering.

This literature review examines the primary methods employed in Legal NLP

for various tasks and identifies the top-performing approaches. This analysis will

provide the necessary insights to choose the most suitable methodology for conducting

a state-of-the-art Legal NLP evaluation of software-related legal documents.

2.1 Taxonomy of Legal NLP tasks

To make the readability and clarity of the discussion easier, this section presents

a category per Legal NLP task. The categories to be covered include:

Language Modeling (LM): predicts upcoming words from prior word context.

Multiclass Classification (Mult. Class.): in Machine Learning consists of classi-

fying data instances into two or more selected classes.

14

Summarization (Sum.): in NLP is the task of producing a shorter version of one

or several documents that preserves most of the input’s semantics.

Information Extraction (IE): is the NLP task of extracting limited semantic

content from text.

Question Answering and Information Retrieval (QA/IR): Question Answer-

ing is the NLP task where a given question is answered by using a set of

documents as a knowledge base. Information Retrieval under NLP encom-

passes the retrieval of all media based on the user needs related to a topic.

2.1.1 Language Modeling

The language modeling task involves forecasting the next words based on the

context of preceding words. Formally, given A sequence of words w1, w2, ..., wn drawn

from a vocabulary V , where n is the length of the sequence, and V is the set of all

possible words. Then, the objective is to estimate the joint probability distribution

P (w1, w2, ..., wn) of the sequence. This joint probability can be decomposed using the

chain rule of probability:

P (w1, w2, ..., wn) =
n∏

i=1

P (wi|w1, w2, ..., wi−1) (2.1)

Where P (wi|w1, w2, ..., wi−1) is the conditional probability of word wi given

the previous i− 1 words in the sequence.

Recent advancements in language modeling have been primarily driven by

Neural Language Models Song et al. (2022), where embeddings of previous words

capture the context. Notable high-performance models include transformer-based

architectures such as Bidirectional Encoder Representations from Transformers

(BERT) Devlin et al. (2018), Generalized Autoregressive Pretraining Model based on

Transformer-XL (XLNet) Yang et al. (2019), and Generative Pre-trained Transformer

(GPT) Radford et al. (2018).

15

In the context of language modeling for legal texts, Chalkidis et al. (2020)

explored how to enhance BERT’s performance within the legal domain. They

introduced a specialized model, Legal Bidirectional Encoder Representations from

Transformers (Legal-BERT), by fine-tuning the original BERT model on legal datasets.

The data sources used for this fine-tuning included the official European Union Law

database (EURLEX) 1, the UK’s legislation database (LEGISLATION.GOV.UK) 2,

the European Court of Human Rights case-law database (HUDOC) 3, the CASE LAW

ACCESS PROJECT 4, and the SEC’s EDGAR system 5.

Huang et al. (2021) developed a language model for legal documents utilizing

GPT Radford et al. (2018). They replaced uncertain tokens with slots during

training to address uncertainties, such as variable article numbers. Legal documents

containing these slots were used to train the model, which was then enhanced with

Key-Value Memory Networks and Transformer encoders to fill in the slots, treating the

task as a question-answering problem. The model’s performance surpassed existing

models, assessed through F-score and perplexity metrics. Additionally, their slot-filling

approach achieved greater accuracy compared to Memory Networks (MemNN) Weston

et al. (2014) and Whoosh6.

Zheng et al. (2021) introduced a new dataset called Case Holdings On Legal

Decisions (CaseHOLD), which addresses a significant task for legal professionals and

presents notable NLP challenges. They evaluated the performance of models on

CaseHOLD and other legal NLP datasets. The findings suggested that domain-specific

data pretraining could be advantageous if the task aligns well with the pretraining

1http://eur-lex.europa.eu Accessed on 02/04/2023

2http://www.legislation.gov.uk

3http://hudoc.echr.coe.int

4https://case.law

5https://www.sec.gov/edgar.shtml

6https://pypi.org/project/Whoosh/

16

http://eur-lex.europa.eu
http://www.legislation.gov.uk
http://hudoc.echr.coe.int
https://case.law
https://www.sec.gov/edgar.shtml
https://pypi.org/project/Whoosh/

corpus. The study found that task domain specificity improved performance on three

legal tasks. Additionally, they compared SVM and BERT for an overruling task and

found similar performance, though differences were more pronounced for more complex

tasks.

In the research by Xiao et al. (2021), the authors introduced Lawformer, a pre-

trained model designed for analyzing lengthy legal documents. Lawformer is based on

the Transformer architecture adapted to manage long sequences, incorporating sliding

window attention, dilated sliding window attention, and global attention mechanisms

to achieve linear complexity for extended data. The study proposed the CAIL-Long

dataset, an extension of CAIL2018 with average case lengths reflecting real world

scenarios, and used additional datasets like LeCaRD, CJRC, and JEC-QA.

Qin et al. (2022), the performance of four pre-trained models was assessed on

both general and legal domain corpora, focusing on classification accuracy across three

Chinese legal document datasets: CAIL2018, CAIL-Long, and other datasets with

varying text lengths. The study identified the leading language model based on the

best performance in these evaluations. The leading language model showcasing the

best results was:

Lawformer: which utilizes Longformer as a basic encoder and collects tens of millions

of case documents published by the Chinese government for pretraining.

Legal-RoBERTa: same dataset as Lawformer, but with the Robustly optimized

BERT approach (RoBERTa) architecture. The main limitations mentioned

are long text, quadratic complexity of self-attention, and position embeddings

not generalizable (like BERT, max 512).

The authors also noted a limitation where the classification effectiveness of

Pretrained Language Models (LLMs) diminishes as the semantic complexity and

composition of the documents increase. To address these issues, they propose

17

using transformer variants with attention mechanisms that have lower computational

complexity.

Cui et al. (2023) introduce Chatlaw, an innovative legal assistant designed to

improve the reliability and accuracy of AI-driven legal services. Chatlaw employs a

Mixture-of-Experts (MoE) model with a multi-agent system. To ensure high-quality

training, the authors have integrated knowledge graphs with artificial screening,

resulting in a refined legal dataset tailored to the MoE model. This model leverages

specialized experts to tackle various legal issues, enhancing the precision of legal

responses. Additionally, the implementation of Standardized Operating Procedures

(SOP), inspired by the workflows of real law firms, plays a crucial role in minimizing

errors and reducing hallucinations in legal services. The authors report that their MoE

model outperforms GPT-4, achieving a 7.73% increase in accuracy on the Lawbench

and scoring 11 points higher on the Unified Qualification Exam for Legal Professionals.

Furthermore, the model surpasses other models across multiple dimensions in real

case consultations, demonstrating its strong capability for legal consultation.

2.1.2 Multiclass Classification

The multiclass classification task in Machine Learning consists of classifying

data instances into two or more selected classes. Formally, given an input sequence

of words w1, w2, ..., wn from the vocabulary V and a set of classes C = {c1, c2, ..., ck}

where k is the number of classes. Then, it is assigned the input sequence w1, w2, ..., wn

to a given class in C based on the estimated probabilities P (ci|w1, w2, ..., wn) for

i = 1, 2, ..., k. Usually, the optimization problem to solve is:

c∗ = arg maxci∈CP (ci|w1, w2, ..., wn) (2.2)

Where c∗ is the predicted class for the given input sequence.

18

Similar to other NLP domains, several types of classifications that are desirable

to automate for legal text are actively researched. The following key works in the

Legal NLP field are presented.

In the study by Luo et al. (2017), the prediction of judgment outcomes for

Chinese court cases was approached as a multiclass classification problem. Data was

obtained from online court judgments available through China Judgement Online

(CJO)7. The research utilized a two-stack attention mechanism for fact and dynamically

generated article embeddings guided by fact-side clues. Word embeddings were

generated using “Words to Vectors” (Word2Vec) Mikolov et al. (2013) on various legal

texts. A noted limitation was the model’s restriction to single-defendant cases, as

multiple defendants complicate mapping facts to defendants.

The study by Shulayeva et al. (2017) focused on automatically identifying

legal principles and facts in common law citations. The Naive Bayesian Multinomial

Classifier was employed to classify features such as part of speech tags, unigrams,

dependency pairs, sentence length, text position, and citation presence. A new corpus

was introduced, derived from 50 British and Irish Legal Institute common law reports,

with annotations for citation names and labels indicating whether sentences contained

facts, principles, or neither. The corpus is available upon request.

Additionally, alongside Word2Vec embeddings Mikolov et al. (2013), the study

investigated other pre-trained word embeddings such as FastText vectors 8 from

Facebook AI Research and GloVe vectors 9. The study also examined publicly

available pre-trained word vectors derived from approximately 100 billion words in

the Google News dataset 10.

7https://wenshu.court.gov.cn Accessed on 02/04/2023

8https://github.com/facebookresearch/fastText/blob/master/

pretrained-vectors.md

9https://nlp.stanford.edu/projects/glove/

10https://code.google.com/archive/p/word2vec/

19

https://wenshu.court.gov.cn
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://nlp.stanford.edu/projects/glove/
https://code.google.com/archive/p/word2vec/

From the comparisons, the most effective approach for automating legal

document classification in this study was the combination of Convolutional Neural

Networks (CNN) with word embeddings from a general domain (Google News),

achieving 72.4% accuracy for 15 general categories and 31.9% accuracy for 279 more

specific categories.

In the study by Zhong et al. (2018), the TOPJUDGE model was introduced for

predicting judgments based on Chinese legal documents. The study proposed a unique

multitasking approach using Directed Acyclic Graph (DAG)-based architectures for

legal judgment prediction. This method was compared with baseline models, including

CNNs and LSTMs with a softmax activation function. The authors also introduced

new datasets: China Judgement Online (CJO)11, Peking University Law Online

(PKU)12, and the Chinese AI and Law Challenge (CAIL)13.

Consistent with previous approaches, Harkous et al. (2018) conducted a study

to evaluate whether privacy policies effectively address users’ general privacy concerns.

They used the 115 Online Privacy Policies (OPP-115) dataset Wilson et al. (2016)

and employed a neural architecture featuring neural embeddings, a Convolutional

Neural Network (CNN), and dense layers with a classification head. Custom word

embeddings specific to the privacy-policy domain, known as “Policies Embeddings,”

were trained on a corpus of 130,000 privacy policies from Google Play Store apps,

reflecting the data practices of app companies. Additionally, Bag-of-Words techniques

were used to represent judicial documents and extract features for further learning.

In the study by Fang and Zhao (2018), manifold learning-based dimensionality

reduction methods were evaluated for classifying judicial documents. Their dataset,

11http://wenshu.court.gov.cn/

12http://www.pkulaw.com/

13http://cail.cipsc.org.cn/index.html

20

http://wenshu.court.gov.cn/
http://www.pkulaw.com/
http://cail.cipsc.org.cn/index.html

drawn from Aletras et al. (2016), included features from European Court of Human

Rights (ECHR) case texts and utilized N-gram and topic models 14.

Various dimensionality reduction techniques were assessed, including autoen-

coders, factor analysis, Gaussian Processes Latent Variable Model (GPLVM), Isomap,

Principal Component Analysis (PCA), its kernel and probabilistic variants, Landmark

Isomap, Locally Linear Embedding (LLE), Multidimensional Scaling (MDS), Sammon

Mapping, Stochastic Neighbor Embedding (SNE), Symmetric SNE, and t-Distributed

Stochastic Neighbor Embedding (t-SNE). Methods such as Bagging, K-Nearest Neigh-

bors (KNN), Logistic Regression, Random Forest, and Support Vector Machine (SVM)

were examined for classification.

The authors identified a limitation in the typically smaller number of labeled

judicial documents compared to their feature dimensionality, which can hinder

prediction performance when using text features directly. The Bag of Words model,

in particular, can generate many features, potentially impacting the performance of

NLP algorithms. While linear dimensionality reduction techniques are anticipated to

produce improved vectors with fewer dimensions, non-linear techniques were suggested

to better preserve the distances between points in reduced dimensions.

In the study by Chalkidis et al. (2019), various neural models were evaluated

using a newly introduced English legal judgment prediction dataset from the European

Court of Human Rights (ECHR)15. The study presented the dataset, which achieved

significant multiclassification results and highlighted the advantages of pre-trained

language models (LLMs) over simpler approaches. The models assessed included

Bidirectional Gated Recurrent Unit with Attention (BiGRU-Att) Xu et al. (2015),

Hierarchical Attention Network (HAN) Yang et al. (2016), Label-Wise Attention

Network (LWAN) Mullenbach et al. (2018), and BERT. A hierarchical variant of

14https://figshare.com/s/6f7d9e7c375ff0822564

15https://archive.org/details/ECHR-ACL2019

21

https://figshare.com/s/6f7d9e7c375ff0822564
https://archive.org/details/ECHR-ACL2019

BERT, named HIER-BERT, was introduced to address BERT’s limitations with long

texts. HAN and HIER-BERT showed solid performance.

A separate study by Chalkidis et al. (2019) focused on Large-Scale Multi-label

Text Classification (LMTC) within the legal domain. This research introduced a

dataset comprising 57,000 legislative documents from EUR-LEX16. Techniques such

as BERT, BIGRU-ATT, HAN, CNN-LWAN, BIGRU-LWAN, and their Zero-Shot

variants like ZERO-CNN-LWAN and ZERO-BIGRU-LWAN were evaluated. The

findings indicated that pre-trained language models (LLMs), particularly BERT,

outperformed several other methods and achieved the highest results across most

evaluation metrics.

The study by Noguti et al. (2020) focused on automating the categorization of

petitions into their appropriate legal areas. The dataset used was from the “Public

Prosecutor’s Office of the Ministério Público” (PRO-MP), which includes public

petition records from 2016 to 2019. It was carefully labeled by prosecutors from the

“Ministério Público do Estado do Paraná” (MPPR). The study utilized standard text

preprocessing techniques such as lowercasing, lemmatization, and punctuation removal.

Texts were represented using Term Frequency-Inverse Document Frequency (TF-IDF)

or word embeddings like Word2Vec, FastText, and Glove.

The authors evaluated various classification models, including Logistic Regres-

sion, SVM, Gradient Boosting, and different neural networks. Among these, Recurrent

Neural Networks, especially LSTM, achieved up to 90% accuracy, exceeding human

performance. However, the study needed a clear reference for the dataset used.

In the research by Jayasinghe et al. (2021), sentence embeddings were applied

to multiclass classification to identify key sentences in legal cases. They used an

adapted dataset based on the SigmaLaw ABSA Dataset from Mudalige et al. (2020).

16http://nlp.cs.aueb.gr/software_and_datasets/EURLEX57K Accessed on 02/04/2023

22

http://nlp.cs.aueb.gr/software_and_datasets/EURLEX57K

The BERT-cased model17 was fine-tuned, with hidden states averaged and predictions

made through a fully connected layer. A custom loss function was created to address

the specific requirements of their classification task.

In the research conducted by Akça et al. (2022), the prediction of crime labels

in Turkish court decisions was investigated. The authors developed supervised and

unsupervised datasets and tested various models, ranging from traditional machine

learning to transformers. Hyperparameters were optimized using grid search. The

models compared included Näıve Bayes, Logistic Regression, SVM, Bidirectional Long

Short-Term Memory (BiLSTM), Distilled BERT (DistilBERT), and BERT. Different

word embeddings, such as Bag of Words + TF-IDF and FastText, were examined.

Two datasets were utilized: an unlabeled collection for transformer pretraining and a

labeled set of court cases, both sourced from Turkish legal documents.

Shankar et al. (2023) introduced PrivacyGLUE, a benchmark dataset for

general language understanding in privacy policies. This dataset aggregates several

existing privacy policy datasets and includes a comprehensive analysis and comparison

of the performance of various transformer-based language models, such as BERT,

RoBERTa Liu et al. (2019), Legal-BERT Chalkidis et al. (2020), and PrivBERT Srinath

et al. (2020).

Song et al. (2022) introduced a novel legal extreme multi-label classification

dataset, POSTURE50K, containing 50,000 legal opinions and their corresponding

legal procedural postures. A deep learning architecture was proposed, featuring

domain-specific pre-training and a label attention mechanism for multi-label document

classification. The model was evaluated on both the POSTURE50K dataset and

the EUROLEX57K dataset, achieving state-of-the-art results. The methodology

employed was based on a RoBERTa-driven deep learning architecture, incorporating

label embeddings and multi-task learning strategies.

17https://huggingface.co/bert-base-cased

23

https://huggingface.co/bert-base-cased

Yang et al. (2016) mapped fact description sentences into latent spaces using

a hierarchical BiLSTM encode. Key criminal elements, such as criminals and

targets, were identified with the help of a reinforced criminal extractor. An element

discriminator was also employed to differentiate law articles with similar TF–IDF

representations. The proposed method’s effectiveness for Legal Judgment Prediction

(LJP) was validated through comprehensive experiments on the benchmark datasets

CAIL-small and CAIL-big.

The empirical study by Song et al. (2022) demonstrated that the top-performing

Pretrained Language Models (LLMs) were evaluated across four datasets for binary

and multilabel classification tasks. The metrics used were F1, m-F1 (micro F1), M-F1

(Macro F1), W-F1 (weighted F1). Table 2.1 shows the models that get the best results

in each dataset.

Table 2.1. Results from empirical study Song et al. (2022) with metrics: F1, m-F1
(micro F1), M-F1 (Macro F1), W-F1 (weighted F1).

Dataset PLM F1 m-F1 M-F1 W-
F1

Overruling Zheng
et al. (2021)

Custom LegalBERT Zheng
et al. (2021)

0.973

Terms of Ser-
vice Lippi et al.
(2019)

Custom LegalBERT 0.812

POSTURE50K BigBird Zaheer et al. (2020) 0.809
POSTURE50K LightXML Jiang et al.

(2021) + Custom Legal-
BERT

0.820

POSTURE50K LAMT MLC Song et al.
(2022)

0.263

EUROLEX57K LightXML + Custom Legal-
BERT

0.727 0.700

EUROLEX57K LAMT MLC 0.326

The research of Liga and Robaldo (2023) proposes a Legal Rule Classification

(LRC) task utilizing GPT-3. They train and test the LRC task on the General

24

Data Protection Regulation (GDPR) encoded in LegalDocML and LegalRuleML,

both widely recognized XML standards within the legal domain. The authors use

annotations to fine-tune GPT-3. Their findings demonstrate that LLMs can effectively

learn to classify legal and deontic rules, even with limited data. Furthermore, GPT-

3 significantly outperforms previous experiments on the same task. The study

focuses on a multiclass classification, revealing GPT-3’s capability to distinguish

between obligation, permission, and constitutive rules, achieving superior performance

compared to prior LRC efforts.

2.1.3 Summarization

Summarization in NLP is the task of producing a shorter version of one or

several documents that preserves most of the input’s semantics. Formally, given an

input document D which consists of sentences s1, s2, ..., sm where each sentence si is a

sequence of words wi1 , wi2 , ..., win from the vocabulary V. The objective is to produce

a concise summary S that retains the essential semantic information from D.

In the research by Polsley et al. (2016), TF-IDF and Part of Speech Tagging

(POS-tag) were used to assign importance to different parts of a legal document. These

weights were then used to create summaries of the documents. The dataset used in

this study was obtained from the Federal Court of Australia18.

In the research by Merchant and Pande (2018), legal text summarization was

explored using latent semantic analysis. Singular Value Decomposition (SVD) was

employed to pinpoint key sentences from singular vectors, selecting them based on their

importance. The Bag of Word embeddings Le and Mikolov (2014) served as the vector

representation of sentences. For the summarization tasks, criminal judgments were

used in multi-document scenarios, while civil judgments were used for single-document

tasks. The authors considered moving away from the Recall-Oriented Understudy

18https://archive.ics.uci.edu/ml/datasets/Legal+Case+Reports

25

https://archive.ics.uci.edu/ml/datasets/Legal+Case+Reports

for Gisting Evaluation (ROUGE) Lin (2004) method for evaluating summaries and

discussed the potential application of their approach on mobile devices.

Tran et al. (2019) investigated retrieving legal cases as part of the Competition

on Legal Information Extraction/Entailment 2019 (COLIEE 2019). They introduced a

method called decided summarization, which combines lexical and latent features. The

approach involves comparing a query case with potential candidates using different

perspectives. Each query is represented by its summary and paragraphs, while each

candidate is represented by its summary, the leading sentence of each paragraph, and

the following paragraphs.

Anand and Wagh (2019) redefined legal document summarization as a binary

classification task, where sentences are categorized as either essential or non-essential.

Noting that many judgments come with a preliminary summary called a headnote,

they developed a novel dataset generation method using these reference summaries.

This technique eliminates the need for domain experts. Their approach enables the

creation of legal document summaries without the need for complex feature engineering

or specialized domain knowledge.

In their empirical study, Song et al. (2022) tackled the summarization task

using the JRC-Acquis and BillSum datasets Kornilova and Eidelman (2019). The PLM

that performed best across all metrics and test sets for the JRC-Acquis dataset was

DYPLOC Hua et al. (2021). For the BillSum dataset, Global Aware Ma et al. (2021)

achieved the top results in most metrics and test sets, although TextRank Mihalcea

and Tarau (2004) excelled in the California test set.

2.1.4 Information Extraction

Information Extraction (IE) is the automated process of identifying and

extracting structured information from unstructured text. This involves recognizing

and retrieving specific data points, such as names, dates, or relationships, from a text

corpus. IE aims to convert unstructured textual content into a structured format that

26

can be more easily analyzed and utilized. This process typically involves techniques

from natural language processing and machine learning to extract relevant information

systematically based on predefined criteria or patterns.

In the research by Dragoni et al. (2016), NLP techniques were used to extract

rules from legal documents. These rules are represented as logical statements in

A =⇒ B. The approach relied on the Stanford Parser19 for parsing. WordNet was

employed to handle variations in language, and logical dependencies were identified

using the Boxer framework Curran et al. (2007).

Chalkidis et al. (2017) defined and automated extracting elements from

contracts. They introduced a new dataset to support the creation of models for

this extraction process. Two linear classifiers, Logistic Regression (LR) and Support

Vector Machine (SVM), were evaluated using hand-crafted features, pre-trained word

embeddings, and pre-trained POS tag embeddings. The best performance was achieved

by a hybrid approach that combined machine learning (LR or SVM with the features

and embeddings) with manually crafted post-processing rules. They released two

datasets covering 11 contract element types: a labeled dataset with 3,500 English

contracts and an unlabeled set with 750,000 contracts, both encoded to ensure privacy.

These datasets are available online20.

Garćıa-Constantino et al. (2017) introduced the Commercial Law Information

Extraction based on Layout (CLIEL) system, which extracts information from legal

documents regardless of format, structure, or layout. The system focuses on context

and begins with a Rule-based Layout Detection (RLD) phase. This is followed by

integrating a proposed Rule-based Layout Detection Tree (RLDT) data structure.

In the RLD phase, document sections are annotated, extracted, and organized into

the RLDT, allowing for structured storage of identified parts and entities for further

19http://nlp.stanford.edu/software/lex-parser.shtml

20http://nlp.cs.aueb.gr/software_and_datasets/CONTRACTS_ICAIL2017/index.html

27

http://nlp.stanford.edu/software/lex-parser.shtml
http://nlp.cs.aueb.gr/software_and_datasets/CONTRACTS_ICAIL2017/index.html

processing. The study specifically targeted five types of data points: (i) “Date of

document,” (ii) “Name of party,” (iii) “Name of counterparty,” (iv) “Governing law,”

and (v) “Jurisdiction.”

Ji et al. (2020) tackled information extraction from court records by framing it

as a combined task of paragraph classification and sequence labeling, which is typical

for Named Entity Recognition (NER). They employed a BiLSTM + Attention-based

architecture with a shared core, which was trained jointly. This architecture featured

two separate heads for the classification and labeling tasks and a final Conditional

Random Field (CRF) layer. This approach achieved a 72% success rate in extracting

legal evidence information, surpassing previous methods. A noted limitation was

the extended length of legal documents, and to address this, the study suggested

incorporating paragraph classification as part of future joint training efforts.

Yoshioka et al. (2021) achieved a significant breakthrough in the field by

surpassing previous benchmarks in the statute law legal textual entailment task of

the Competition on Legal Information Extraction/Entailment (COLIEE)21. They

introduced an ensemble method based on BERT combined with data augmentation

techniques. This approach assessed whether a given legal article supports a specified

question statement. The authors constructed multiple fine-tuned BERT models and

carefully selected the best model ensemble, accounting for the inherent variability in

BERT fine-tuning and the nature of the questions.

Using their proposed method, Yoshioka et al. (2021) achieved an accuracy of

0.7037 on the statute law legal textual entailment task. Their implementation involved

an ensemble of BERT models. For each question and legal article pair, they used a

sentence-separator token ([SEP]) to concatenate the two texts before inputting them

into the BERT model to determine if the article entailed the question (positive:1)

or not (negative:0). In addition to their primary approach, they tested ten more

21https://sites.ualberta.ca/~rabelo/COLIEE2021/

28

https://sites.ualberta.ca/~rabelo/COLIEE2021/

models without data augmentation, calculating the average probability of positive and

negative outcomes from these models. The dataset used was from task number 4 in

COLIEE, known as the COLIEE Statute Law Task, and is available in both Japanese

and English on the official COLIEE website.

2.1.5 Question Answering and Information Retrieval

Question Answering (QA) is a natural language processing (NLP) task designed

to automatically generate precise and contextually relevant answers to questions posed

in natural language. The process begins with question analysis, where the system

interprets the intent and context of the input question. Next, document retrieval is

conducted to identify and retrieve relevant documents or passages that might contain

the answer. Finally, the system performs answer extraction or generation to pinpoint

or construct the specific answer from the retrieved information. QA systems can handle

a range of question types, from fact-based queries to more complex interrogatives, and

typically operate on both structured and unstructured data sources.

Information Retrieval (IR) refers to locating and obtaining relevant information

from a vast repository of data in response to a user query. This process involves several

key stages: indexing, where a structured index of the content is created to facilitate

efficient searching; query processing, which involves analyzing and interpreting user

queries to understand their information needs; retrieval, where algorithms and models

are used to search the indexed data and retrieve documents that match the query; and

ranking, where the retrieved documents are ordered based on their relevance to the

query using relevance scoring or ranking algorithms. IR systems are foundational to

search engines, digital libraries, and other applications that require effective information

retrieval from large datasets.

In QA and IR tasks, employing methods that can accurately capture text

similarity is essential. This is illustrated in the work by Landthaler et al. (2016),

where a word embedding technique was introduced. The goal was to measure the

29

similarity between two vectors: one representing the entire search by summing the

word embeddings and another of the same size, which maintains the original word

order through the summation process.

The authors employed Word2Vec for word embedding and used cosine similarity

to assess the similarity between vectors. To compute the vector for a search, they

summed the vectors of each word in the query. For the documents, they iterated

over all the words and created a comparison vector using a window size of n/2,

where n represents the length of the search query. These results were concatenated

after identifying the top X results most similar to the query using cosine similarity.

Subsequently, the selected words were shifted sequentially, and the similarity was

recalculated to see if a better result could be found.

John et al. (2017) introduced a system designed to tackle Bar Examination

questions written in Natural Language. They utilized a BiLSTM architecture enhanced

with an Attention mechanism and Glove word embeddings for this task. The dataset

for their study was sourced from the MultiState Bar Examination (MBE). However,

the corpus used in their research is only accessible upon request.

Do et al. (2017) proposed methods for information retrieval and answering

legal questions using the dataset from the Competition on Legal Information

Extraction/Entailment (COLIEE) 201622. They utilized six features: TF-IDF,

Euclidean, Manhattan, Jaccard, LSI, and LDA for information retrieval. To rank the

articles relevant to a given query, a Ranking SVM was trained on pairs of queries and

articles using selected features. The trained SVM generated scores for each article

relative to the query during inference. Experimental results demonstrated that a

combination of LSI, Manhattan, and Jaccard produced the best outcomes.

Question Answering is treated as a form of textual entailment, approached

as a binary classification task. Word embeddings are generated using Word2Vec

22https://webdocs.cs.ualberta.ca/~miyoung2/COLIEE2016/ Accessed on 02/04/2023

30

https://webdocs.cs.ualberta.ca/~miyoung2/COLIEE2016/

with the Continuous Bag of Words (CBOW) technique. Sentence embeddings are

then created by summing all word embeddings and normalizing by the number of

words in the sentence. The embeddings for the question and article are combined and

passed through a Convolutional Neural Network (CNN). The CNN’s output is further

enhanced by integrating Latent Semantic Indexing (LSI) and Term Frequency-Inverse

Document Frequency (TF-IDF) features. These combined features are then processed

through two perceptron layers for final output prediction. An ablation study revealed

that incorporating LSI and TF-IDF with CNN’s output results in the most effective

performance.

The Legal Case Retrieval Task of COLIEE 2019 was tackled by Shao et al. (2020)

by introducing a new BERT-based model, incorporating Paragraph-Level Interactions

(BERT-PLI). This model focused on capturing interactions between paragraphs within

case documents using BERT and then aggregating these interactions through sequential

modeling to determine the overall relevance of the document. The experimental results

demonstrated that this approach outperformed existing solutions at the time.

The methodology began by narrowing down the candidate set using BM25

rankings. To enhance the model’s ability to understand the semantic connections

between legal paragraphs, BERT was fine-tuned on an available entailment dataset

specific to the legal domain before being integrated with BERT-PLI. This fine-tuning

enabled BERT to infer better relationships between supportive paragraphs, which

proved advantageous for the legal case retrieval task.

Kien et al. (2020) introduced a retrieval-based legal Question-answering model

designed to learn attentive neural representations of both the input question and

relevant legal articles. The authors validated the model’s effectiveness by providing an

annotated corpus and conducting experiments that compared their approach to other

leading methods in the field. The model features two distinct encoders: a Sentence

Encoder and a Paragraph Encoder. The Sentence Encoder employs word embeddings

31

and a CNN framework, while the Paragraph Encoder calculates a sentence’s attention

weight by averaging the attention weights of its words. Recognizing that not every

sentence contributes equally to the paragraph’s overall meaning, the authors replaced

the traditional softmax function with sparsemax Martins and Astudillo (2016) to

better handle this variation.

Chalkidis et al. (2021) tackled the Document to Document (Doc2Doc) problem,

which is focused on Information Retrieval within the context of European Union

(EU) and United Kingdom (UK) legislation. The task involves identifying relevant

documents from one legislative body when a document from the other is used as a

query. This problem is typically approached in two steps. The first step, document

prefetching, involves retrieving the top k most relevant documents to maximize recall.

Various algorithms are employed to generate document embeddings, including Best

Match 25 (BM25), Words to Vector Centroids (W2VCent) Brokos et al. (2016),

BERT, Sentence-BERT (S-BERT) Reimers and Gurevych (2019), Legal-BERT, and

an ensemble method. Additionally, the study mentions C-BERT, a BERT variant pre-

trained through a classification task based on the multilingual thesaurus maintained

by the Publications Office of the European Union, known as EUROVOC23.

Vold and Conrad (2021) describe implementing a RoBERTa Base question-

answer classification model for practical use. In their study, they compared the

performance of the RoBERTa-base classifier with a traditional machine learning model

within the legal domain, specifically evaluating the differences between a trained linear

SVM and results on the publicly available Privacy QA dataset. The findings revealed

that RoBERTa outperformed the conventional SVM, showing a 31% improvement in

F1-score and a 41% increase in Mean Reciprocal Rank.

Abualhaija et al. (2022) introduced an automated Question Answering (QA)

system designed to assist requirements engineers in pinpointing legal text segments

23http://www.lt-innovate.org/lt-observe/resources/eurovoc-%E2%80%

93-eus-multilingual-thesaurus

32

http://www.lt-innovate.org/lt-observe/resources/eurovoc-%E2%80%93-eus-multilingual-thesaurus
http://www.lt-innovate.org/lt-observe/resources/eurovoc-%E2%80%93-eus-multilingual-thesaurus

relevant to compliance requirements. Their approach utilized large-scale language

models, including BERT, ALBERT, RoBERTa, and ELECTRA, all fine-tuned for QA

tasks. The authors created a dataset with 107 questions and corresponding answers

to evaluate their models. However, their publication did not provide a method for

accessing this dataset.

Song et al. (2022) conducted an empirical study demonstrating that Custom

LegalBERT achieved the highest accuracy in the Question Answering task. This

notable performance is attributed to its domain-specific knowledge acquired through

pre-training on 3.5 million U.S. cases. For the Information Retrieval task, evaluated

using the COLIEE-2021 dataset24, RoBERTa excelled in the Macro F1 metric, while

LMIR Ponte and Croft (2017) delivered the best results for the Micro F1 metric.

2.2 Current Legal NLP Limitations

This section shows the main limitations highlighted in the literature regarding

Legal NLP.

Fang and Zhao (2018) noted that the number of labeled judicial documents

frequently needs to be higher than the feature dimensionality of these documents. This

discrepancy can impair prediction accuracy when directly using these text features. To

tackle this issue, they proposed non-linear dimension reduction techniques to preserve

distances between data points in lower dimensions.

Pillai and Chandran (2020) identified two main limitations: the lack of

standardized legal procedures across different countries and the limited availability of

cross-country data for evaluating various legal texts. Additionally, they pointed out

that legal texts often contain significant amounts of irrelevant information.

Zhong et al. (2020a) explored three main challenges in Legal Artificial

Intelligence (AI), particularly within the Legal NLP domain:

24https://github.com/sophiaalthammer/dossier_coliee

33

https://github.com/sophiaalthammer/dossier_coliee

Knowledge Modelling Legal texts are highly formalized and contain a wealth of

crucial knowledge and concepts. However, many recent works need to utilize

this extensive knowledge due to inadequate modeling of legal concepts across

documents.

Legal Reasoning Legal reasoning differs significantly from general NLP tasks. It

requires adherence to well-defined legal rules, which means NLP approaches

must integrate these rules to align with legal reasoning requirements.

Interpretability Legal language is inherently complex, and any legal decision or

prediction made by an AI system must be interpretable. This is essential

for its application within the legal system, ensuring that decisions can be

understood and justified.

Zhong et al. (2020a) raised ethical concerns regarding deploying high-

performance Legal NLP algorithms. Such technology must avoid biases, racial

discrimination, and difficult results to interpret or persuade individuals. The study

stressed that advancements in Legal NLP should support legal professionals rather

than replace them.

Ji et al. (2020) identified the extensive length of legal documents as a significant

limitation and proposed a paragraph classification task to address this issue through

joint training. Similarly, Shao et al. (2020) emphasized that, within the legal domain,

relevance extends beyond mere topical relevance. Relevant cases often relate to the

decision of the current case, involving similar circumstances and relevant statutes.

Shaheen et al. (2021) explored the limitations of legal resources in the context

of Legal NLP, highlighting issues related to scarcity and multilingual constraints. They

pointed out that it’s more than just insufficient resources; many available resources

are limited to a single language. Working with low-resource languages exacerbates the

difficulties of achieving high performance in Legal NLP using current state-of-the-art

methods.

34

Akça et al. (2022) highlighted the need for more resources in the Legal NLP

field, noting issues such as missing benchmarks for specific tasks and a need for

well-curated datasets across various Legal NLP subdomains. As discussed in works

like Yoshioka et al. (2021), the complexity of legal language presents challenges for

tasks such as Question Answering. Current state-of-the-art methods often need help

to deliver optimal performance and results when dealing with complex questions.

Chalkidis et al. (2021) emphasized the limitations of multilingual legal resources,

underlining the need for developing Legal NLP models in languages other than English.

They discussed the difficulties of creating new datasets and resources in the legal field,

regardless of language. Legal obstacles, such as copyright protections for essential

documents like contracts and trade secrets, pose significant barriers to dataset creation.

Additionally, bureaucratic hurdles often limit access to court decisions. The study

also noted the need for more human evaluation in existing legal datasets, pointing out

that resources like LexGLUE rely on ground truth labels automatically derived from

sources like court decisions, which lacks a definitive and reliable quality benchmark.

Qin et al. (2022) identified a limitation where the classification efficacy of LLMs

decreases as the semantic complexity and intricacy of documents increase, a challenge

frequently encountered with legal documents. To address this issue, the authors

suggested employing transformer variants that incorporate attention approximations

to reduce complexity.

In a recent empirical study, Song et al. (2022) demonstrated the limitations of

domain-specific Pre-trained Language Models (LLMs), such as Legal-BERT, due to

variations in legal subdomains and language across diverse legal documents.

Cui et al. (2023) highlight that popular models such as ChatGPT and LLaMA,

along with other general-purpose and law-specific LLMs, although powerful, are not

immune to the hallucination problems of LLMs. The knowledge these models rely on

can be incomplete or outdated, further exacerbating the risk of hallucinations. In legal

35

applications, where decisions can have profound consequences, the potential for these

models to produce incorrect or misleading information presents a substantial risk.

Table 2.2 summarizes the limitations found in Legal NLP and possible solutions

according to the literature reviewed.

Table 2.2. Legal NLP Limitations

Limitation References Proposed Solution

Lack of unified legal procedures across coun-
tries

Pillai and
Chandran
(2020); Shao
et al. (2020)

Agree on a standardized legal procedure around the
globe.

Knowledge Modelling Zhong et al.
(2020a); Shao
et al. (2020)

Design a proper model to represent the knowledge
across legal documents.

Legal Reasoning Zhong et al.
(2020a); Shao
et al. (2020)

Include the rules already present in law when designing
any solution.

Interpretability Zhong et al.
(2020a)

Explainability of the models used and a clear legal
interpretation of any decision.

Ethical issues Zhong et al.
(2020a)

Inclusion of bias and fairness analysis and good
interpretability.

Long Documents Ji et al. (2020);
Shao et al.
(2020); Tran
et al. (2020)

Paragraph classification task and train jointly in it.

Lack of resources Song et al.
(2022); Shao
et al. (2020);
Shaheen et al.
(2021)

Data augmentation

Complexity and ambiguity of the Legal lan-
guage

Song et al.
(2022,?); Yosh-
ioka et al.
(2021); Shao
et al. (2020);
Ge et al.
(2021); Lyu
et al. (2022)

Trained LLMs in more legal complex data. More
separation of concerns in the solutions.

LLMs effectiveness decreases when the seman-
tic composition of the documents increases

Qin et al.
(2022)

Using variants of transformers with approximations
of attention with lower complexity.

Number of labeled judicial documents is less
than the dimensionality of features

Fang and Zhao
(2018)

Using non-linear dimension reduction techniques.

Lack of Transferability of Domain-Specific
LLMs

Song et al.
(2022)

Trained domain-specific LLMs in massive and more
language-sparse legal data.

Hallucinations in LLMs Cui et al.
(2023)

High quality datasets, Mixture of Experts (MoE).

2.3 Discussion

The application of Legal NLP to software-related regulations needs to be

improved, and several gaps and challenges need to be addressed for the field to

progress effectively. One of the most pressing issues is the scarcity of well labeled

36

and curated datasets specific to various subdomains of legal language, particularly

those intersecting with software regulations. While the development of large language

models (LLMs) has achieved significant advancements, the performance of these models

could be more consistent when applied to specialized legal tasks. This inconsistency

highlights the limitations of current models, which may need to adequately capture

the complexities and nuances of legal language regarding software-related regulations.

Moreover, domain-specific models like Legal-BERT offer a promising direction,

but they often do not outperform general-purpose models such as BERT or RoBERTa

across all legal tasks. This suggests substantial variation in the language used across

different legal subdomains, which domain-specific models must still be fully equipped

to handle. The lack of diverse and comprehensive datasets encompassing a wide range

of legal subcategories exacerbates this issue, limiting the models’ ability to generalize

effectively across different regulatory contexts within the software industry.

Additionally, the complexity of legal language, particularly in the context of

software regulations, poses a significant challenge for existing LLMs. The legal domain

requires models that can navigate intricate regulatory language, interpret ambiguities,

and handle the voluminous and often dense documents typical of legal texts. However,

the current trend in the NLP community leans heavily towards developing larger

models with more parameters, often at the expense of incorporating domain-specific

knowledge. While successful in many domains, this approach may need to address the

unique challenges posed by legal texts fully and, therefore, the regulations associated

with software systems.

Another critical challenge that has gained increasing attention is hallucinations

in LLMs, particularly in the context of Legal NLP. Hallucinations refer to instances

where models generate plausible-sounding text or information that is factually incorrect

or completely fabricated. In the legal domain, hallucinations can have severe

implications. Misinterpretations or fabricated legal references can lead to incorrect

37

legal conclusions, potentially inaccurately influencing software compliance decisions

and regulatory interpretations.

The impact of hallucinations in Legal NLP goes beyond just the generation

of incorrect information; it undermines trust in the technology, particularly in high-

importance areas such as legal compliance and regulatory analysis in software systems.

This challenge emphasizes the need for more robust mechanisms to detect and

mitigate hallucinations, including integrating external knowledge bases, enhanced

model interpretability, and specialized fine-tuning techniques that align model outputs

more closely with established legal principles and facts.

The field would benefit from developing more refined and specialized legal

language models trained on a broader and more diverse array of legal datasets to

address these challenges. Furthermore, integrating symbol-based approaches could

provide significant benefits, particularly in knowledge modeling, legal reasoning, and

interpretability. These methods could complement existing LLMs by enhancing their

ability to understand and process the complex, rule-based nature of legal language,

thereby improving their performance in tasks related to software regulation. As the

field continues to evolve, a more balanced approach that combines the strengths of

both large-scale neural models and symbolic reasoning techniques may be essential for

advancing the application of Legal NLP in software-related regulations, especially in

mitigating the risks posed by hallucinations.

2.4 Datasets

This section shows the list of available resources found during this literature

review. Table 2.3, which maps every dataset extracted from the previous papers

to its respective Legal NLP task, along with references to where each resource can

be found. However, it’s important to note that many of these studies have utilized

38

resources provided by the Competition on Legal Information Extraction/Entailment

(COLIEE) 25.

2.5 Limitations

Due to the specific inclusion criteria, the selection of works may have

inadvertently excluded some relevant studies, potentially leading to an incomplete

or skewed representation of the field. This challenge is compounded by publication

bias, as many studies focus on positive outcomes, while negative results or failed

experiments are often underreported, further narrowing the scope. Additionally, the

fast-paced evolution of Legal NLP means that some of the findings in this review may

quickly become outdated as new developments emerge.

Additionally, the chapter prioritized the tasks that were more related in the

earlier stage to developing an agent capable of understanding, answering questions, and

mapping knowledge from legal documents. However, the chapter does not explore other

Legal NLP tasks, such as Coreference-Resolution and the Multilingual perspective.

The conclusions of this literature review are focused on Legal NLP and

cannot be generalized to other areas of NLP. Although some of the limitations

and challenges identified also apply to NLP, the chapters must attempt to make

such broad generalizations. Additionally, since the results presented from multiple

primary studies were not validated, the limitations present in those studies may also

be reflected in this chapter.

Another significant limitation stems from the diverse evaluation metrics

employed across studies. The variability in datasets, baselines, and performance

measures complicates direct comparisons, making it difficult to draw uniform

conclusions. Furthermore, Legal NLP is inherently interdisciplinary, combining legal

and computational perspectives, and this review may not have fully captured the

nuanced legal reasoning required for practical applications, placing greater emphasis

25https://sites.ualberta.ca/~rabelo/COLIEE2022/

39

https://sites.ualberta.ca/~rabelo/COLIEE2022/

Table 2.3. List of datasets and their corresponding tasks, papers and access link.

Dataset Legal NLP Tasks References Link

CAIL2018; CAIL-Long LM Xiao et al. (2021) https://paperswithcode.com/dataset/

chinese-ai-and-law-cail-2018

Case-HOLD LM, IE Zheng et al. (2021);
Song et al. (2022)

https://paperswithcode.com/dataset/

casehold

LexGLUE LM, Mult. Class., IE,
QA/IR

Chalkidis et al. (2021) https://huggingface.co/datasets/lex_

glue

SCOTUS Mult. Class. Undavia et al. (2018) http://supremecourtdatabase.org

CJO Mult. Class. Zhong et al. (2018) http://wenshu.court.gov.cn/

PKU Mult. Class. Zhong et al. (2018) http://www.pkulaw.com/

CAIL Mult. Class. Zhong et al. (2018) http://cail.cipsc.org.cn/index.html

OPP-115 Mult. Class. Wilson et al. (2016) https://www.usableprivacy.org/data

ECHR Mult. Class. Fang and Zhao (2018);
Chalkidis et al. (2019);
Ge et al. (2021)

https://archive.org/details/

ECHR-ACL2019

SigmaLaw ABSA Mult. Class. Jayasinghe et al. (2021) http://www.cs.ucy.ac.cy/gkapi/foss.

html

Terms of Service Mult. Class. Lippi et al. (2019) http://claudette.eui.eu/ToS.zip

DMOZ Mult. Class. Nokhbeh Zaeem and
Barber (2021)

https://tinyurl.com/y43htvum

POSTURE50K Mult. Class. Song et al. (2022,?) https://rb.gy/fzsp1

ILSI Mult. Class. Paul et al. (2022) https://github.com/Law-AI/LeSICiN

Legal Cases from the
Federal Court of Aus-
tralia

Summ. Anand and Wagh
(2019)

https://archive.ics.uci.edu/ml/

datasets/Legal+Case+Reports

BilSUM Summ. Kornilova and Eidel-
man (2019); Song et al.
(2022)

https://github.com/FiscalNote/

BillSum

LegalSUM Summ. Anand and Wagh
(2019)

https://github.com/lauramanor/legal_

summarization

Civil Trial Court De-
bate

Summ. Duan et al. (2019) https://github.com/zhouxinhit/Legal_

Dialogue_Summarization

COLIEE Statute Law
Task

IE Song et al. (2022); Ra-
belo et al. (2019); Do
et al. (2017); Yoshioka
et al. (2021)

https://sites.ualberta.ca/~rabelo/

COLIEE2021/

License texts IE Kapitsaki and
Paschalides (2017)

http://www.cs.ucy.ac.cy/gkapi/foss.

html

Contracts IE Chalkidis et al. (2017) http://nlp.cs.aueb.gr/software_and_

datasets/CONTRACTS_ICAIL2017/index.

html

Query Generation QA/IR Locke et al. (2017) https://github.com/ielab/

ussc-caselaw-collection

EURLEX57k QA/IR, Cross-Lingual Song et al. (2022);
Chalkidis et al. (2019)

https://paperswithcode.com/dataset/

eurlex57k

ALQAC-2021 QA/IR Tieu et al. (2021) https://www.jaist.ac.jp/is/labs/

nguyen-lab/home/alqac-2021/

CJRC QA/IR Duan et al. (2019) https://paperswithcode.com/dataset/

cjrc

JEC-QA QA/IR Zhong et al. (2020b) https://jecqa.thunlp.org/

LeCARD QA/IR Ma et al. (2021) https://github.com/myx666/LeCaRD

Bar Exam QA QA/IR Wyner et al. (2016) http://www.kaptest.com/

bar-exam/courses/mbe/

multistate-bar-exam-mbe-change

CJO QA/IR Zhong et al. (2018) https://wenshu.court.gov.cn/

CRC CoRef. Res. Pothong and Facundes
(2021)

https://www.refworld.org/docid/

3ae6b38f0.html

Luxembourg’s Income
Tax Law

CoRef. Res. Sannier et al. (2017) https://people.svv.lu/sannier/

crossreferences/

License texts CoRef. Res., Cross-
Lingual

Kapitsaki and
Paschalides (2017)

http://www.cs.ucy.ac.cy/gkapi/foss.

html

40

https://paperswithcode.com/dataset/chinese-ai-and-law-cail-2018
https://paperswithcode.com/dataset/chinese-ai-and-law-cail-2018
https://paperswithcode.com/dataset/casehold
https://paperswithcode.com/dataset/casehold
https://huggingface.co/datasets/lex_glue
https://huggingface.co/datasets/lex_glue
http://supremecourtdatabase.org
http://wenshu.court.gov.cn/
http://www.pkulaw.com/
http://cail.cipsc.org.cn/index.html
https://www.usableprivacy.org/data
https://archive.org/details/ECHR-ACL2019
https://archive.org/details/ECHR-ACL2019
http://www.cs.ucy.ac.cy/∼gkapi/foss.html
http://www.cs.ucy.ac.cy/∼gkapi/foss.html
http://claudette.eui.eu/ToS.zip
https://tinyurl.com/y43htvum
https://rb.gy/fzsp1
https://github.com/Law-AI/LeSICiN
https://archive.ics.uci.edu/ml/datasets/Legal+Case+Reports
https://archive.ics.uci.edu/ml/datasets/Legal+Case+Reports
https://github.com/FiscalNote/BillSum
https://github.com/FiscalNote/BillSum
https://github.com/lauramanor/legal_summarization
https://github.com/lauramanor/legal_summarization
https://github.com/zhouxinhit/Legal_Dialogue_Summarization
https://github.com/zhouxinhit/Legal_Dialogue_Summarization
https://sites.ualberta.ca/~rabelo/COLIEE2021/
https://sites.ualberta.ca/~rabelo/COLIEE2021/
http://www.cs.ucy.ac.cy/∼gkapi/foss.html
http://www.cs.ucy.ac.cy/∼gkapi/foss.html
http://nlp.cs.aueb.gr/software_and_datasets/CONTRACTS_ICAIL2017/index.html
http://nlp.cs.aueb.gr/software_and_datasets/CONTRACTS_ICAIL2017/index.html
http://nlp.cs.aueb.gr/software_and_datasets/CONTRACTS_ICAIL2017/index.html
https://github.com/ielab/ussc-caselaw-collection
https://github.com/ielab/ussc-caselaw-collection
https://paperswithcode.com/dataset/eurlex57k
https://paperswithcode.com/dataset/eurlex57k
https://www.jaist.ac.jp/is/labs/nguyen-lab/home/alqac-2021/
https://www.jaist.ac.jp/is/labs/nguyen-lab/home/alqac-2021/
https://paperswithcode.com/dataset/cjrc
https://paperswithcode.com/dataset/cjrc
https://jecqa.thunlp.org/
https://github.com/myx666/LeCaRD
http://www.kaptest.com/bar-exam/courses/mbe/multistate-bar-exam-mbe-change
http://www.kaptest.com/bar-exam/courses/mbe/multistate-bar-exam-mbe-change
http://www.kaptest.com/bar-exam/courses/mbe/multistate-bar-exam-mbe-change
https://wenshu.court.gov.cn/
https://www.refworld.org/docid/3ae6b38f0.html
https://www.refworld.org/docid/3ae6b38f0.html
https://people.svv.lu/sannier/crossreferences/
https://people.svv.lu/sannier/crossreferences/
http://www.cs.ucy.ac.cy/∼gkapi/foss.html
http://www.cs.ucy.ac.cy/∼gkapi/foss.html

on technical advancements over legal applicability. This is closely tied to the gap

between theoretical progress and real-world challenges, where many academic findings

may need more practical utility for deployment in legal practice or compliance systems.

2.6 Conclusion

The literature review presented in this chapter offers a comprehensive review of

the current state of Legal NLP, highlighting both the progress made and the challenges

that remain in the field. Through an analysis of diverse approaches used in various

Legal NLP tasks such as Multiclass Classification, Language Modeling, Summarization,

Information Extraction, Question Answering, and Information Retrieval, this study has

mapped out the landscape of existing research and identified key resources, datasets,

utilized in training machine learning models for legal applications.

The review shows the central role NLP is beginning to play in the legal

sector, especially in automating tedious legal processes such as reviewing lengthy legal

documents, retrieving relevant legal information, and evaluating contracts and privacy

policies. These are areas where Legal NLP models hold the potential to drastically

reduce the time and effort required by legal practitioners, providing significant efficiency

gains.

However, the study also reveals that significant challenges persist, particularly

in the processing of complex and lengthy legal texts. While pre-trained language

models (PLMs) have revolutionized NLP, their application in the legal domain has

exposed limitations.

General-purpose PLMs often fail to deliver accurate results for legal-specific

tasks, while domain-specific PLMs need help transferring their learning across different

legal subdomains. This highlights the need for more specialized models that can

handle the intricacies of legal language while being flexible enough to apply to diverse

legal contexts.

41

The lack of curated datasets and comprehensive ontologies further exacerbates

these challenges, making it difficult to develop models that can generalize effectively

across different legal scenarios. The privacy and ethical concerns inherent in the legal

domain also pose significant barriers to progress. The digitization of sensitive legal

data for NLP model training introduces risks related to data privacy. In contrast,

biases in the models, whether related to gender, race, or other factors, raise critical

ethical issues, particularly in applications like judgment prediction.

Hallucinations in LLMs present another layer of complexity. In the legal

domain, where precision is crucial, hallucinations can have severe consequences. This

further emphasizes the need for robust and reliable Legal NLP models that can be

trusted in high-stakes environments.

The findings suggest that while areas within Legal NLP have seen considerable

advancement and are ripe for tool development, the field must address its inherent

difficulties to achieve meaningful progress. The creation of more curated datasets,

the development of unified legal data accessible across multiple jurisdictions, and the

integration of symbolic methods that leverage existing legal knowledge and rules are

critical steps toward overcoming the current limitations.

While Legal NLP is on the path to achieving a level of automation that could

transform legal practice, significant work remains. Addressing the challenges identified

in this literature review, particularly those related to data availability, model reliability,

and ethical considerations, will be essential to advancing the field and realizing its

full potential in automating and enhancing legal processes, including the complete

automation of legal compliance in software systems.

2.7 Credit

In this section, we will provide each author’s contributions to the work presented

in this chapter. For this, we will use the system CRediT(https://www.elsevier.

42

https://www.elsevier.com/researcher/author/policies-and-guidelines/credit-author-statement
https://www.elsevier.com/researcher/author/policies-and-guidelines/credit-author-statement

com/researcher/author/policies-and-guidelines/credit-author-statement)

from Springer to make it easier.

Ernesto Quevedo Caballero: Conceptualization, Methodology, Validation, Formal

analysis, Investigation, Resources, Data Curation, Writing-Original Draft,

Writing-Review Editing, Visualization, Project administration.

Tomas Cerny: Conceptualization, Methodology, Validation, Investigation, Writing-

review and editing, Visualization, Supervision.

Alejandro Rodriguez: Validation, Investigation, Data curation, Writing-review and

editing, Visualization.

Pablo Rivas: Investigation, Data curation, Writing-review and editing.

Jorge Yero: Investigation, Data curation

Korn Sooksatra: Investigation, Data curation

Alibek Zhakubayev: Investigation, Data curation

43

https://www.elsevier.com/researcher/author/policies-and-guidelines/credit-author-statement
https://www.elsevier.com/researcher/author/policies-and-guidelines/credit-author-statement
https://www.elsevier.com/researcher/author/policies-and-guidelines/credit-author-statement

CHAPTER THREE

Study the performance of state of the art of Legal NLP in legal regulations associated
with software systems

The work detailed in Chapter Three has been written mainly from two publica-

tions: Caballero, Ernesto Quevedo, Mushfika Sharmin Rahman, Tomas Cerny, Pablo

Rivas, and Gissella Bejarano “Study of Question Answering on Legal Software Docu-

ment using BERT based models” In LatinX in Natural Language Processing Research

Workshop 2022; Quevedo, Ernesto, Ana Paula Arguelles, Alejandro Rodriguez, Jorge

Yero, Dan Pienta, Tomas Cerny, and Pablo Rivas “Creation and Analysis of a Natural

Language Understanding Dataset for DoD Cybersecurity Policies (CSIAC-DoDIN V1.

0)” In 2023 International Conference on Computational Science and Computational

Intelligence (CSCI), pp. 91-98, IEEE, 2023.

Considering all the background from Chapter 2, it is clear that many challenges

block the perfection of automatic legal auditing of a software system. Among these

challenges is that legal documents often require a legal background, which poses

complications for individuals and software companies, particularly regarding software

privacy policies and regulations.

With the rapid expansion of applications and extensive personal information

monitoring, it’s increasingly crucial to understand how data is managed, shared, and

used. Companies are required to include this information in their privacy policies for

each application.

Therefore, a high-performance Question Answering (QA) system tailored for

legal documents, such as privacy policies and policy rules, can have significant practical

applications. For instance, such a system could enable individuals to quickly verify

if their questions are answered within lengthy documents before agreeing to terms

and conditions related to a software application. An even bigger application is to use

44

such a system tailored to a software project and assess if the software automatically

complies with policies and regulations in a question-answer form.

As the review of Chapter 2 shows, privacy policies have gained prominence in

the digital age; the research community has introduced several datasets related to

privacy policies in recent years. Despite this, empirical studies have revealed a need for

more transferability between domain-specific language models within legal subdomains

and those in more distinct subdomains Song et al. (2022). Models explicitly trained

on privacy policies have yet to be evaluated for their effectiveness on other policies like

cybersecurity policies. Privacy policies represent only a subset of the broader field of

cybersecurity policies and practices aimed at defending against potentially disastrous

threats. Existing datasets often focus solely on the policies themselves, needing more

coverage of guidance, responsibilities, or procedural elements. Additionally, the need

for more structured data to train deep learning models is a widespread issue in Legal

Natural Language Processing (Legal NLP), and this challenge also extends to the

domain software systems’ legal regulations.

Chapter 2 also clarified that current state-of-the-art methods and results are

being obtained by applying Large Language Models (LLMs) or their combination

with other methods. This chapter will focus on applying LLMs of specific and general

domains, comparing their performance on the question-answering benchmark datasets

Standford Question Answering Dataset (SQuAD V2.0) and Policy Question Answering

(PolicyQA). Since SQuAD V2.0 is general domain and PolicyQA is related to software

systems, a comparison of how the models behave in general domain and domain-specific

questions can be performed.

Additionally, this chapter creates the dataset CSIAC-DoDIN V1.0, which is

used to evaluate the performance of a set of LLMs in the cybersecurity domain. This

dataset is focused on the cybersecurity policies, responsibilities, and procedures of

45

the organizations involved. This first version offers classic Legal NLP tasks, such as

several Multiclass Classification tasks and Text Co-occurrence.

This chapter is organized as follows: First, it presents the methodology,

experiments, and results of state-of-the-art LLMs on the SQuAD V2.0 and PolicyQA

datasets, including a thorough analysis and discussion. Next, it introduces a newly

created dataset, CSIAC-DoDIN V1.0, detailing the methodology used in its creation.

Finally, it presents the methodology, experiments, and results of state-of-the-art LLMs

on CSIAC-DoDIN V1.0, along with an analysis and discussion.

3.1 LLMs evaluated on SQuAD V2.0 and PolicyQA

This section examined and compared the performance of various BERT-related

models using two Question Answering datasets: SQuAD V2.0 is from the general

domain, and PolicyQA pertains specifically to legal texts on privacy policies applied

to software development.

The SQuAD V2 dataset is a reading comprehension resource comprising over

100,000 questions generated by crowdworkers based on a selection of Wikipedia

articles. Each question is answered with a text segment from the corresponding

passage Rajpurkar et al. (2016, 2018).

The PolicyQA dataset is a reading comprehension resource with 25,017 examples

curated from a corpus of 115 website privacy policies. It includes 714 questions

annotated by humans, covering a broad range of privacy practices Ahmad et al.

(2020).

Both datasets are intended for extractive Question Answering, where the answer

is a span of text extracted directly from the passage. Additionally, the passage may

be unrelated to the question or may not contain the answer at all.

46

3.1.1 LLMs used

Several widely used BERT-related models are known for their strong perfor-

mance on the SQuAD dataset, including ALBERT, RoBERTa, and the original BERT.

Also, the DistilBERT model is a smaller and more efficient variant that maintains com-

petitive performance while being more cost-effective and faster during inference Sanh

et al. (2019). Additionally, the LEGAL-BERT model, a specialized version of BERT

trained from scratch on legal documents Chalkidis et al. (2020) exists. These models

are used to compare the performance in both datasets SQuAD and PolicyQA.

BERT, DistilBERT, and ALBERT were trained originally on BookCorpus 1 and

English Wikipedia (excluding lists, tables, and headers).

RoBERTa was pretrained in the same data than BERT and also CC-News 2,

OpenWebText 3 and Stories Trinh and Le (2018).

LEGAL-BERT was trained on documents of EU legislation from EURLEX, the

UK legislation portal; 19,867 from the European Court of Justice (ECJ),

also available from EURLEX; 12,554 cases from HUDOC, the repository of

the European Court of Human Rights (ECHR); 164,141 cases from various

courts across the USA, hosted in the Case Law Access Project portal; 76,366

US contracts from EDGAR, the database of US Securities and Exchange

Commission (SECOM).

3.1.2 Experiments

Experiments using the pre-trained versions of the models BERT, ALBERT,

RoBERTa, DistilBERT, and LEGAL-BERT are conducted. The performance in the

1https://yknzhu.wixsite.com/mbweb

2https://commoncrawl.org/2016/10/news-dataset-available/

3https://github.com/jcpeterson/openwebtext

47

Question Answering (QA) task was evaluated using the Exact Match (EM) and F1

metrics Jurafsky and Martin (2022).

The EM metric refers to the percentage of predictions that exactly match any

of the True Answers(labeled datasets for QA can have more than one span of text

that is accepted as a correct answer to a given question). On the other hand, the

F1 metric is computed over the individual words in the prediction against the True

Answer. The number of shared words between the prediction and the truth is the

basis of the F1 score, which could be written as F1 = 2∗precision∗recall
precision+recall

.

The open-source code from Hugging Face’s Transformers library 4 is utilized to

conduct the experiments. Two notebooks for running experiments were created and

made available in an open repository at 5.

The selected models were trained for 5 and 10 epochs on the PolicyQA and

SQuAD V2.0 datasets. Table 3.1 compares the models across both datasets and epoch

variations, using the EM (Exact Match) and F1 metrics for evaluation.

Table 3.1. Result of the models on SQUAD V2.0 and PolicyQA

Dataset
Name

BERT ALBERT LEGAL-BERT RoBERTa DistillBERT
EM F1 EM F1 EM F1 EM F1 EM F1

SQUAD V2.0
5 epochs

71.6 77.39 73.9 77.91 73.5 77.01 76.9 80.1 65.47 69.27

PolicyQA
5 epochs

29.5 56.11 28.76 57.36 28.08 54.66 27.23 54.88 25.42 52.34

SQUAD V2.0
10 epochs

71.7 75.39 72.71 77.21 71.5 75.30 75.18 74.30 64.79 68.93

PolicyQA
10 epochs

29.6 57.02 29.7 58.43 28.45 55.01 27.85 54.91 25.81 52.48

3.2 Creation and Analysis of a Natural Language Understanding Dataset for DoD

Cybersecurity Policies (CSIAC-DoDIN V1.0)

This section details the development of the CSIAC-DoDIN V1.0 dataset,

which concentrates on cybersecurity policies, responsibilities, and procedures within

4https://github.com/huggingface/transformers

5https://github.com/Fidac/Legal-SE-BERT-Study

48

organizations. This initial version includes traditional Legal NLP tasks, such as

various Multiclass Classification tasks and Text Co-Occurrence analyses. Additionally,

it presents a baseline for this dataset and its associated tasks through experiments

utilizing established transformer-based language models, including BERT, RoBERTa,

Legal-BERT, and PrivBERT.

The CSIAC-DoDIN V1.0 dataset focuses on the Department of Defense (DoD)

cybersecurity policies, given the DoD’s strategic significance and extensive global

operations, which demand rigorous and comprehensive cybersecurity measures. The

dataset includes detailed DoD policies and policies from the National Institute of

Standards and Technology (NIST), which are widely adopted in the industry. The

dataset provides a broad perspective on cutting-edge cybersecurity strategies and

methodologies, incorporating both DoD-specific and industry “best practice” policies

and NIST and ISO-type guidelines. Including industry wide practices reflects how

many companies model their cybersecurity and privacy policies after DoD standards.

As shown in Chapter 2, the research on benchmarks such as those by Shankar

et al. (2023), and Chalkidis et al. (2021) has revealed significant disparities among legal

subdomains, indicating that general-purpose models in specific tasks and datasets can

outperform domain-specific models like Legal-BERT or PrivBERT. This highlights the

critical need for multiple curated and labeled datasets across various legal subdomains,

addressing the scarcity of legal domain datasets in recent literature Song et al. (2022);

Shaheen et al. (2021).

While privacy policies have garnered substantial attention and resulted in

numerous datasets, other policies and documents have been largely overlooked. A

new dataset focused on cybersecurity policies is introduced to address this gap. This

dataset includes a comprehensive collection of documents and guidance related to

cybersecurity and establishes a baseline for further research in this area.

49

3.2.1 Dataset

For constructing this dataset, a chart that clusters and classifies Cybersecurity-

Related Policies and Issuances developed by the DoD Deputy CIO for Cybersecurity 6

is used. This chart organizes cybersecurity policies and guidance documents according

to Strategic Goals and the Office of Primary Responsibility. It captures a broad array

of policies within a comprehensive organizational scheme, providing detailed clusters

of documents and their content. By leveraging this knowledge base, the dataset

encompasses a wide range of policies from a globally influential entity in cybersecurity.

The chart’s careful organization ensures that the policies included are current

and relevant. Additionally, the DoD policies featured in the chart incorporate guidance

from the National Institute of Standards and Technology (NIST), which is widely

adopted in industry. The chart also integrates specific DoD policies and best practice

industry standards, such as NIST and ISO-type policies, which serve as benchmarks

for cybersecurity and privacy policies in the industry.

3.2.2 Annotation Scheme

The annotation scheme for each document and policy is based on the

organizational structure provided in the chart. In 2009, the Department of Defense

(DoD) developed clusters to achieve specific goals as part of its information assurance

strategy, ensuring appropriate unit-level capabilities. This scheme consists of seven

outer clusters and twelve subclusters. Each outer cluster represents a main class to

which a document belongs, while each subcluster provides additional categorization.

Table 3.2 illustrates the subclusters corresponding to each outer cluster and their

descriptions. The seven outer clusters are described as follows:

Organize: Policies in this cluster focus on how enterprise units (e.g., departments)

should organize to achieve unity and purpose. These policies offer guidance

to ensure that unit capabilities are designed, organized, and managed in a

6https://dodiac.dtic.mil/dod-cybersecurity-policy-chart/

50

https://dodiac.dtic.mil/dod-cybersecurity-policy-chart/

Table 3.2. Subclusters corresponding to each cluster and its description

Subcluster Outer Cluster Description

Lead and Govern Organize Provide vision and follow through to set the enterprise direction,
foster a culture of accountability, and provide insight and oversight
for the enterprise.

Design for the Fight Organize Deliver, synchronize and integrate capabilities across the organi-
zation in time by shaping capabilities, engineering for the entire
enterprise, leveraging technology, investing for success, and bal-
ancing risk.

Develop the Workforce Organize Provide a learning continuum to recruit, retain, and educate
qualified professionals while keeping capabilities current through
education and training, proper structure of the workforce, and
the cultivation of awareness of initiatives.

Partner for Strength Organize Leverage the unique capabilities of partners from various areas
such as intra-goverment, academia, cybersecurity and IT industry,
defense industry, and international/global partners.

Secure Data in Transit Enable Provide robust, state-of-the-art cryptographic products and key
management services for secure data transmission.

Manage Access Enable Provide secure, authenticated access to authorized users for proper
visibility, configuration, connection, and allocation of resources
through managed identity credentials, privileges, and resources.

Assure Information
Sharing

Enable Allow for secure and seamless information flow and management
across security domains by assuring publishing, discovery, and
collaboration.

Understand the Bat-
tlespace

Anticipate Align and leverage information from audits, sensors, forensics,
and incident management across an enterprise through knowing
adversaries, networks, and consequences.

Prevent and Delay At-
tackers and Prevent At-
tackers from Staying

Anticipate Leverage knowledge of networks, vulnerabilities, and adversaries
to harden systems, defend perimeters, and assess defenses. Lower
adversarial capabilities through detecting, diagnosing, eliminating,
preventing, and constraining attacks.

Develop and Maintain
Trust

Prepare Guarantee integrity and availability of systems by assuring use,
engineering for survivability, and maintaining integrity.

Strengthen Cyber
Readiness

Prepare Harden response procedures by linking units across the enterprise,
stress testing response procedures, identifying critical assets, and
improving continuity planning.

Sustain Missions Prepare Enable enterprise mission with limited interruption during
an attack by assessment for fighting through adverse events,
sustaining critical systems during degradation, and rapidly
restoring systems to a trusted state.

way that they are synergistic, flexible, and dynamic. This allows them to

effectively respond to various events and support the overarching objectives

of the entire enterprise.

Enable: Policies in this cluster pertain to information access. They guide the ensuring

that information is available to authorized parties while safeguarded from

adversaries. The aim is to ensure that all units have proper visibility, control,

and management of information assets, all within a secure framework.

Anticipate: Policies in this cluster focus on anticipating and preventing attacks on

data and networks. They provide guidance on thwarting attacks from outside

51

the network perimeter while allowing for flexibility and maneuverability when

necessary. Additionally, the policies offer guidance for secondary defenses in

the event that a network perimeter is breached.

Prepare: Policies in this cluster focus on preparing and operating during a data breach

or cyber-attack. They guide enhancing system resilience by ensuring cyber

assets can self-monitor, self-attest, and self-repair. The policies ensure that

units affected by a cyber-attack have assurances that the enterprise remains

functional or has a plan in place in case of complete system degradation.

Authorities: This cluster of policies specifies the agency or authority the policy

applies to (e.g., Department of Defense, United States Coast Guard). It

also outlines the acting authority to be followed when multiple entities from

different enterprises work together.

National/Federal: This cluster of policies pertains to national and federal regula-

tions that offer guidance for actions at these levels.

Operational/Subordinate Policy: This cluster pertains to policies designed for

specific entities, which may be used with overarching policies.

3.2.3 Extraction and Annotation process

Each annotator was assigned a set of outer clusters and followed the following

protocol:

• Access the link on the chart and find the correct document.

• Once the document is found, determine if the document is guidance, strategy,

or policy.

• If the document is guidance or strategy, extract the document PDF.

52

Figure 3.1. example of a set of procedures on the left extracted and annotated on the
excel file on the right.

• If the document is a policy, then extract the PDF and also go through the

document and extract every policy, responsibility, and procedure. Also, extract

the general Purpose, Scope, and Applicability of the document.

• If the link wasn’t accessible or there were any other reasons not to access the

PDF, report it and ignore that document.

After analyzing the documents with a legal expert, it was observed that the

policy documents were consistently structured into the following sections: Purpose,

Authority, Scope, Policies, Responsibilities, Procedures, Definitions, and References.

Based on discussions with the legal expert, the core content of the policy documents

is primarily found in the Purpose, Scope, Policies, Responsibilities, and Procedures

sections. Consequently, for this initial version of the dataset, the focus was on

extracting text from these sections. However, the full documents are included in the

dataset to ensure that any additional relevant information can be accessed. Each

extracted item from a document is classified by type as a policy, responsibility, or

procedure. Here is a more detailed description of each class:

Policy: A policy is designed to set parameters for decision makers while allowing for

flexibility for decision makers.

53

Responsibility: Responsibilities within the policy designate which organization

members are accountable to ensure the policy is adhered to.

Procedure: A procedure within the policy provides step by step instructions for

performing a routine task.

The annotator would start by identifying and extracting each policy document’s

Policies, Responsibilities, and Procedures sections. Each item within these sections

is then entered into an Excel file with a structured format. The Excel file includes

several key fields: Id for a unique identifier, Cluster for the classification based on the

organizational scheme, and Classification to specify whether the content is a Policy,

Responsibility, or Procedure. Additionally, the file contains fields for Purpose, detailing

the intent or objective of the policy, and Scope and Applicability, outlining the

range and applicability of the policy. The Type field indicates the specific classification

of the item, while Text contains the extracted text of the item. Multiple columns

labeled Child Level# are included to capture hierarchical or related sub-items. This

methodical approach ensures that each item is accurately categorized and easily

accessible for further analysis.

The rationale for including guidances, responsibilities, and procedures alongside

policies is that these elements provide essential clarity on the implementation and

execution of policies. Responsibilities outline the chain of command, ensuring that

accountability is clearly defined in the event of an incident or failure to meet specific

measures. Procedures offer a detailed, step by step guide on how to follow and achieve

the goals outlined in the policies. Without such procedures, even well-crafted policies

may be ineffective due to a lack of actionable directives. Additionally, incorporating

guidances, responsibilities, and procedures enriches the context, which can enhance a

LLMs ability to comprehend and interpret a policy and its broader implications.

54

3.2.4 Developed Legal NLP Tasks

This dataset was used to create Legal NLP tasks, including multiclass

classification and text co-occurrence analysis. The specific tasks proposed are outlined

below; however, the dataset supports a wider array of tasks beyond those listed.

Cluster Classification: Determine if a given policy, responsibility, or procedure

belongs to a cluster.

Subcluster Classification: Determine if a given policy, responsibility, or procedure

belongs to a subcluster.

Type Classification: Determine if a text is a policy, responsibility, or procedure.

Purpose-Text Co-Occurrence: Determine if a given policy, responsibility, or

procedure co-occurs a Purpose of a document.

Scope/Applicability-Text Co-Occurrence: Determine if a given policy, respon-

sibility, or procedure co-occurs with the Scope/Applicability of a document.

Text-Text Co-Occurrence: Determine if a given subpart of a policy, responsibility,

or procedure co-occurs with another subpart of a policy responsibility or

procedure.

The need for context relevance drives all Co-Occurrence tasks. This involves

assessing how policies, responsibilities, and procedures align with the Purpose and

Scope of a document. The Text-Text task aims to automatically identify whether a

subitem within a policy, responsibility, or procedure has a semantic relationship with

its preceding context. Another key focus is Verification and Comprehensiveness, which

includes automated checks to detect misplaced policies, responsibilities, or procedures

within a document. This also serves as a verification step before incorporating a new

item, ensuring its alignment with the document’s context.

Enhanced policy design is another major motivation. Identifying patterns and

understanding which sections of a document frequently co-occur offer critical insights.

55

This allows policy designers to craft or refine policies more effectively, ensuring that all

relevant components are comprehensively included. Additionally, cybersecurity policies’

increasing complexity and volume highlight the need for Automated Recommendations.

Large Language Models trained in co-occurrence tasks can assist professionals by

suggesting suitable responsibilities or procedures that align with the goals or scope of

a newly introduced or updated policy. They can also provide valuable insights into

potential subitems for existing policies, responsibilities, or procedures.

3.2.5 Statistics of the Dataset

This section will outline the dataset’s statistics and the different variants

created based on the Legal NLP tasks.

Table 3.3. Documents distribution and extraction results by subcluster or cluster.

Subcluster/Cluster Excels Just PDF Missing Total

Lead and Govern 0 23 0 23
Design for the Fight 15 3 6 24
Develop the Workforce 8 2 4 14
Partner for Strength 4 3 3 10
Secure Data in Transit 17 2 3 22
Manage Access 13 3 8 24
Assure Information Sharing 6 0 0 6
Understand the Battlespace 3 5 0 8
Prevent and Delay Attackers and Prevent Attackers from Staying 10 9 7 26
Develop and Maintain Trust 4 0 2 6
Strengthen Cyber Readiness 9 7 0 16
Sustain Missions 10 2 8 20
Authorities 3 3 2 8
National/Federal 21 11 4 36
Operational/Subordinate 0 0 6 6

Total 123 73 53 249

Table 3.3 details the number of documents extracted by subcluster or cluster

(if no subclusters are present) from the chart, including those with labeled text, those

where only the PDF was extracted, and those inaccessible. Following the extraction,

Table 3.4 presents a total of 7,698 examples in the dataset, categorized by type: Policy,

Responsibility, and Procedures. The bar chart in Figure 3.2 illustrates the distribution

of examples across the various clusters. It is important to note that each policy,

responsibility, or procedure is assigned to a cluster.

56

Table 3.4. Dataset distribution by type

Type Frequency

Policy 1531
Responsibility 4175
Procedures 1992

Total 7698

However, some examples are not assigned to a subcluster but only to an outer

cluster. Table 3.5 provides the dataset’s distribution by each subcluster. Notably,

the Lead and Govern subcluster has zero text examples because all documents in

this subcluster were strategy documents, which fall outside the current focus of the

dataset.

Figure 3.2. Distribution of examples in the dataset by cluster.

Additionally, Table 3.6 presents the number of positive examples available for

each Text-Co-Occurrence task. Notably, some documents have fewer examples for the

Purpose-Text and Scope/App-Text tasks due to the absence of Purpose or Scope/App

sections.

Positive examples are derived from every tree constructed from a document’s

policy, responsibility, or procedure for the Text-Text Co-Occurrence task. Each edge

in these trees represents a pair of Text-Text where the child co-occurs with the parent.

57

Table 3.5. Dataset distribution by subcluster

Subcluster Frecuency

Lead and Govern 0
Design for the Fight 1002
Develop the Workforce 107
Partner for Strength 102
Secure Data in Transit 663
Manage Access 816
Assure Information Sharing 903
Understand the Battlespace 96
Prevent and Delay Attackers and Prevent Attackers from Staying 2165
Develop and Maintain Trust 43
Strengthen Cyber Readiness 151
Sustain Missions 112

Total 6160

In creating negative examples for all Text-Co-Occurrence tasks, the following

strategy is followed:

(1) Randomly select the premise of a positive example.

(2) Choose the hypothesis of a different positive example that does not share the

same premise.

(3) Generate a negative example using the randomly selected premise and

hypothesis.

(4) Repeat this process until the number of negative examples matches that of

positive examples.

Table 3.6. Positives examples in each Text-Co-Occurrence task.

Task Frequency

Purpose-Text 7197
Scope/App-Text 6617
Text-Text 8355

58

3.2.6 Experiments and Results

This section discusses assessing five transformer-based language models that

have set benchmarks for performance across numerous NLP tasks Bommasani et al.

(2021). These models have been trained on extensive corpora of unlabeled text for

Masked Language Modeling (MLM) and Next Sentence Prediction (NSP) tasks. Each

of these models is fine-tuned using the specific version of the dataset relevant to the

task under evaluation.

BERT: Most popular transformer language model proposed by Devlin et al. (2018).

It is trained in MLM and NSP tasks on the Wikipedia7 and Bookcorpus Zhu

et al. (2015) datasets.

RoBERTa: Liu et al. (2019) implemented the RoBERTa model to improve BERT

using a larger vocabulary and a dynamic masking technique to eliminate the

NSP task. It was pre-trained on the same datasets as BERT.

Legal-BERT: Is another BERT-based model by Chalkidis et al. (2020) pre-trained

from scratch on English legal data consisting of contracts, legislation, and

court cases. The original paper and the Hugging Face Model Card cite the

data sources.8 The sub-word vocabulary of Legal-BERT is built from scratch

with additions to legal terminology.

PrivBERT: RoBERTa-based model proposed by Srinath et al. (2020). It was pre-

trained from scratch on one million privacy policy documents.9

The pre-trained models used are available on Hugging Face.10 Specifically, their

base configurations feature 12 Transformer layers, 768 hidden units, and 12 attention

7https://dumps.wikimedia.org

8https://huggingface.co/nlpaueb/legal-bert-base-uncased

9https://privaseer.ist.psu.edu/data

10https://huggingface.co/models

59

https://dumps.wikimedia.org
https://huggingface.co/nlpaueb/legal-bert-base-uncased
https://privaseer.ist.psu.edu/data
https://huggingface.co/models

heads. All models were trained using the Adam optimizer Kingma and Ba (2014)

with a learning rate of 5 × 10−5 over six epochs. This duration was chosen because

models typically reached optimal performance by the fourth or fifth epoch.

The dataset for the Multiclass Classification tasks is partitioned by randomly

assigning 60% of examples per class to the training set, 15% to the validation set,

and 25% to the test set. This distribution aimed to maintain balance and reduce the

risk of overfitting to any class. In the Text-Co-Occurrence tasks, the datasets were

already balanced; thus, the same percentage is applied: splits 60% for training, 15%

for validation, and 25% for testing to ensure consistency and balance.

To evaluate the performance of all models across both Multiclass Classification

and Text Co-Occurrence tasks, the micro-F1 (µ-F1) and macro-F1 (m-F1) metrics

are used to address class imbalance. Additionally, for thoroughness and in line with

the practices of several studies Shavrina and Malykh (2021); Chalkidis et al. (2021);

Shankar et al. (2023), also arithmetic, harmonic, and geometric means across tasks

are reported.

Table 3.7 displays the results of the models on all Multiclass Classification

dataset variants, while Table 3.8 shows the results for all Text Co-Occurrence dataset

variants. Furthermore, Table 3.9 provides the aggregated (averaged) results.

Table 3.7. Test results for all examined models across all Multiclass-Classification
tasks.

Type Cluster Subcluster
Method µ-F1 m-F1 µ-F1 m-F1 µ-F1 m-F1
BERT 0.963 0.95 0.96 0.921 0.911 0.734
RoBERTa 0.96 0.947 0.954 0.925 0.923 0.74
Legal-BERT 0.969 0.96 0.966 0.954 0.921 0.733
PrivBERT 0.969 0.959 0.967 0.938 0.931 0.741

60

Table 3.8. Test results for all examined models across all Text Co-Occurrence tasks.

Purpose-Text Scope/App-Text Text-Text
Method µ-F1 m-F1 µ-F1 m-F1 µ-F1 m-F1
BERT 0.749 0.735 0.581 0.503 0.715 0.699
RoBERTa 0.539 0.427 0.494 0.397 0.607 0.556
Legal-BERT 0.738 0.721 0.574 0.495 0.688 0.666
PrivBERT 0.533 0.414 0.491 0.347 0.55 0.464

Table 3.9. Test results aggregated over all tasks: arithmetic (A), harmonic (H) and
Geometric (G) mean.

A-Mean H-Mean G-Mean
Method µ-F1 m-F1 µ-F1 m-F1 µ-F1 m-F1
BERT 0.813 0.757 0.786 0.724 0.799 0.741
RoBERTa 0.746 0.665 0.689 0.591 0.717 0.627
Legal-BERT 0.809 0.754 0.778 0.717 0.794 0.736
PrivBERT 0.74 0.643 0.676 0.549 0.707 0.595

Table 3.7 demonstrates that Legal-BERT and PrivBERT consistently outper-

formed other models across all Multiclass Classification tasks. This indicates that

domain-specific models in the legal field have strong transferability to the domain of

cybersecurity policies, surpassing general-purpose models in specific Multiclass Classi-

fication tasks. However, in Text-Co-Occurrence tasks, the BERT model outperformed

all others across all metrics. The underperformance of RoBERTa and PrivBERT in

these tasks may be due to their lack of pre-training on the Next Sentence Prediction

(NSP) task. Despite this, BERT’s superior performance to Legal-BERT suggests

that domain-specific models like Legal-BERT and PrivBERT may struggle with more

complex tasks when applied to different domains. These results show the importance

of including NSP as a pre-training task for new transformer-based language models.

Finally, the aggregated results in Table 3.9 show that BERT outperforms other models

overall across all metrics. Although Legal-BERT’s performance is close, the disparity

between BERT and Legal-BERT is more pronounced in Text-Co-Occurrence tasks

61

than in Multiclass Classification tasks, where Legal-BERT has a slight edge over

BERT.

3.3 Discussion

Let’s start by discussing the implications of the CSIAC-DoDIN V1.0 dataset

and the results obtained, emphasizing the specific challenges of cybersecurity policies.

Management research indicates that misunderstandings of cybersecurity-related

policies can lead to severe consequences for organizations, such as increased risk of

data breaches Schlackl et al. (2022), regulatory fines Haislip et al. (2021), erosion

of consumer trust Goode et al. (2017), and a decline in firm value Cavusoglu et al.

(2004).

Additionally, information security policies often need to be more complex,

clearer, and consistent Cram et al. (2017). Studies reveal that there can be discrepancies

between those involved in creating policies and those responsible for implementing

them Schuetz et al. (2020); Cram et al. (2019). Additionally, the complexity of these

policies can cause stress, uncertainty, and confusion among stakeholders, thereby

increasing the likelihood of policy violations or improper adherence Milne and Culnan

(2004); D’Arcy et al. (2014).

As organizations emphasize cybersecurity, they often need clearer policies from

federal and state regulators, partners, and even within the organization itself. This

makes it challenging for executives and managers to maintain, organize, and enforce

compliance across multiple entities Cram et al. (2019). Lastly, many organizations

need to be fully aware of the range of policies that may apply to the cybersecurity

incidents they encounter, best practices for mitigating risks, and the correct steps

to remediate the effects of a data breach. Consequently, this dataset serves as a

valuable resource for academia and industry, enabling the development of innovative

technologies to reduce misunderstandings, improve comprehension, and ensure proper

adherence to cybersecurity policies.

62

Now, let’s discuss this chapter’s implications in the larger context of automatic

legal analysis of software systems.

The experimental results highlight several key implications for automatic legal

compliance analysis in software systems, particularly in using NLP models for tasks

like Question Answering (QA) within legal domains. One surprising finding was

that general-purpose pre-trained models like BERT and ALBERT outperformed

LEGAL-BERT, trained explicitly on legal texts, in both the SQuAD V2.0 and

PolicyQA datasets. This suggests that significant subdomain variations can affect

model performance even within the legal domain. For example, PolicyQA focuses

on software development and privacy in applications, a subdomain that might not

be covered well by the legal texts used to train LEGAL-BERT. This highlights the

importance of domain specificity in model training and suggests that models may

need to be tailored more precisely to the specific legal subdomains relevant to software

systems for accurate legal compliance analysis. Also, similar findings were obtained

in the evaluation done with the CSIAC-DoDIN V1.0 dataset, where PrivBERT and

Legal-BERT were not better than general-domain LLMs.

The findings obtained from the CSIAC-DoDIN V1.0 dataset show significant

implications for legal compliance analysis. Organizations aiming to automate

compliance checks using NLP tools must be cautious in selecting and fine-tuning

models to ensure they are well-suited to the specific legal subdomains in which

they operate. This could involve training models from scratch on datasets that are

more representative of the legal issues related to software development and exploring

ensemble methods to boost performance.

3.4 Limitations

First, studying this chapter is restricted to these specific models, omitting

another transformer variant, such as GPT or T5, which may offer different insights.

Additionally, focusing solely on the PolicyQA and SQuAD V2.0 datasets limits the

63

scope of the findings, as these datasets may only partially capture the diversity of

legal texts or real-world software scenarios. The evaluation is based on standard

performance metrics for the Question-answering task without considering additional

criteria like robustness or practical usability.

Also, although the created dataset is limited to DoD cybersecurity policies,

a small subset of the global cybersecurity policy landscape, it has the potential to

serve as a representative English language dataset for future cybersecurity policy

datasets and possibly become a benchmark similar to Shankar et al. (2023). In its

current version, the dataset supports only English language evaluations and provides

Multiclass-Classification and Text-Co-Occurrence tasks. However, it can be expanded

with additional tasks in the future. Despite being built on a human knowledge

base, this dataset cannot yet be compared against human expert performance on the

provided tasks.

Regarding internal challenges, potential issues have arisen during the data

extraction process. Data extraction is inherently complex and could have led to

misclassified examples. The risk of misclassification using the DoD chart as a

knowledge base is mitigated by ensuring that categories are pre-defined and not

subject to annotator interpretation. The chart was adapted to a format suitable for

NLP algorithms. Additionally, the authors consulted with a legal expert to verify

classifications in cases of ambiguity.

The models evaluated on the dataset’s tasks represent only a small fraction of

the current transformer language models. The primary Hugging Face pipeline uses

the [CLS] token encoding for classification as a baseline approach, which inherently

carries certain limitations. Therefore, the results obtained for each model are subject

to the limitations of both the models and the approach taken. Any conclusions drawn

from this chapter should not be generalized to other NLP domains or beyond the

scope of this dataset.

64

3.5 Conclusions

This chapter found that domain-specific models like LEGAL-BERT variants

on the SQuAD V2.0 and PolicyQA datasets did not outperform general pre-trained

models such as BERT and ALBERT. ALBERT emerged as the best-performing model,

suggesting its suitability as a foundational contextual embedding encoder for future

complex model designs. The findings indicate that training ALBERT from scratch

on software development legal domain data could enhance its effectiveness as a base

encoder, making it a promising avenue for future research.

In parallel, this chapter emphasizes the critical role of cybersecurity policies in

the modern digital landscape and the need for dedicated datasets in this area, given the

progress in Legal NLP and the exploration of various legal subdomains. While much

of the research community has focused on privacy policies, this chapter broadens the

scope by introducing the CSIAC-DoDIN (V1.0) dataset, which compiles cybersecurity-

related policies and issuances developed by the DoD Deputy CIO for Cybersecurity.

The baseline performances of classic and domain-specific transformer models, including

BERT, RoBERTa, Legal-BERT, and PrivBERT, revealed good transferability from

legal domain-specific models to cybersecurity policies in Multiclass-Classification tasks.

However, this was not the case in Text-Co-Occurrence tasks.

These findings are significant for automating legal compliance in software

systems. By identifying general domain LLMs as currently leading models for Legal

NLP tasks and introducing the CSIAC-DoDIN dataset, this thesis not only enhances

understanding of transformer models in specialized legal domains but also provides

critical resources for the future development of models tailored to software development

and cybersecurity policies.

3.6 Credit

In this section, we will provide each author’s contributions to the work presented

in this chapter. For this, we will use the system CRediT(https://www.elsevier.

65

https://www.elsevier.com/researcher/author/policies-and-guidelines/credit-author-statement
https://www.elsevier.com/researcher/author/policies-and-guidelines/credit-author-statement

com/researcher/author/policies-and-guidelines/credit-author-statement)

from Springer to make it easier.

For the first paper : Caballero, Ernesto Quevedo, Mushfika Sharmin Rahman,

Tomas Cerny, Pablo Rivas, and Gissella Bejarano. “Study of Question Answering on

Legal Software Document using BERT based models.” In LatinX in Natural Language

Processing Research Workshop. 2022

Ernesto Quevedo Caballero: Conceptualization, Methodology, Software, Valida-

tion, Formal analysis, Investigation, Resources, Data Curation, Writing-

Original Draft, Writing-Review Editing, Visualization, Project administration.

Mushfika Sharmin Rahman: Validation, Investigation, Software, Formal analysis,

Writing-review and editing, Visualization.

Tomas Cerny: Writing-review and editing, Visualization, Supervision.

Pablo Rivas: Writing-review and editing, Visualization, Supervision.

Gissella Bejarano: Writing-review and editing, Supervision.

For the second paper: Quevedo, Ernesto, Ana Paula Arguelles, Alejandro

Rodriguez, Jorge Yero, Dan Pienta, Tomas Cerny, and Pablo Rivas. “Creation and

Analysis of a Natural Language Understanding Dataset for DoD Cybersecurity Policies

(CSIAC-DoDIN V1. 0).” In 2023 International Conference on Computational Science

and Computational Intelligence (CSCI), pp. 91-98. IEEE, 2023.

Ernesto Quevedo Caballero: Conceptualization, Methodology, Software, Valida-

tion, Formal analysis, Investigation, Resources, Data Curation, Writing-

Original Draft, Writing-Review Editing, Visualization, Project administration.

Ana Paula Arguelles: Validation, Investigation, Resources, Data Curation, Writing-

review and editing, Visualization.

66

https://www.elsevier.com/researcher/author/policies-and-guidelines/credit-author-statement
https://www.elsevier.com/researcher/author/policies-and-guidelines/credit-author-statement
https://www.elsevier.com/researcher/author/policies-and-guidelines/credit-author-statement

Alejandro Rodriguez: Validation, Investigation, Resources, Data Curation,

Writing-review and editing, Visualization.

Jorge Yero: Validation, Investigation, Resources, Data Curation, Writing-review

and editing, Visualization.

Dan Pienta: Conceptualization, Validation, Investigation, Visualization, Writing-

review and editing, Supervision.

Tomas Cerny: Visualization, Writing-review and editing, Supervision.

Pablo Rivas: Visualization, Writing-review and editing, Supervision.

67

CHAPTER FOUR

Survey in the Use of LLMs to Understand Software Systems

The advent of Large Language Models (LLMs) has opened new horizons in

software engineering, offering unprecedented capabilities in understanding and manag-

ing complex software systems. Traditionally, code generation, code summarization,

software design, and vulnerability detection tasks required significant human expertise

and manual effort. However, with the development of LLMs, there is a growing

potential for automating these tasks, leading to more efficient and intelligent software

development processes. LLMs are now being explored for their ability to generate code

or detect flaws and their potential to comprehend the intricate workings of software

systems holistically.

Understanding software systems is a multifaceted challenge that involves

grasping the underlying business processes, architectural structures, data flows, and

the interaction between various components. With their vast knowledge bases and

ability to process and generate human-like text, LLMs are increasingly being used

to analyze and reason about these complex systems. Their application in software

engineering extends beyond mere automation; LLMs have the potential to revolutionize

how developers and engineers approach system design, debugging, maintenance, and

compliance with legal and regulatory frameworks.

Additionally, the significance of LLMs in understanding software systems

extends beyond technical efficiency and plays a crucial role in the broader context of

ensuring legal compliance in software development. As software systems increasingly

operate within complex legal and regulatory frameworks, designing and maintaining

systems that adhere to these rules becomes imperative.

68

LLMs can facilitate this by automatically analyzing software systems for

compliance with legal regulations, identifying potential violations, and suggesting

corrective measures. By understanding the intricate interactions within a software

system, LLMs can map these interactions to relevant legal standards, ensuring that the

system functions correctly and operates within the bounds of the law. This capability

is vital for industries where regulatory compliance is mandatory, such as finance,

healthcare, and data protection, making LLMs a critical tool in mitigating legal risks

and enhancing the overall integrity of software systems.

Therefore, this chapter will provide a literature review on the current state of

the art of using LLMs to understand software systems.

4.1 Taxonomy of Software Engineering Area where LLMs have been applied

This section provides a summary of the research conducted on software

understanding across various aspects of the software development process. Figure 4.1

shows a summary of the findings of the literature review.

4.1.1 Software Requirements and Documentation

Requirement engineering is a foundational discipline in software engineering

that underpins the success of any software development project. Its significance lies in

bridging the gap between stakeholders’ abstract needs and a software system’s tangible

features. This process begins with a thorough understanding of stakeholder needs,

encompassing various inputs, including business objectives, user expectations, and

regulatory requirements. Effective requirement engineering ensures that these diverse

inputs are accurately translated into clear, actionable, and testable requirements that

guide the development process Jin et al. (2024).

A key aspect of requirement engineering is the thorough documentation of these

requirements. This documentation serves as a blueprint for the development team,

providing a detailed specification of what the software should do and how it should

69

Figure 4.1. Summary of the review on LLMs applied to Software Engineering

perform. The accuracy and clarity of this documentation are critical; any ambiguity or

error can lead to misunderstandings that might result in costly rework or project delays.

Therefore, the process of requirements specification must be meticulously managed,

with a focus on creating documents that are both comprehensive and accessible to all

stakeholders involved.

Moreover, requirement engineering is not a one-time activity but an ongoing

process that extends throughout the software development lifecycle. As projects evolve,

new needs may emerge, or existing requirements may change due to shifting business

goals, technological advancements, or regulatory updates. Requirement management,

therefore, involves continuously tracking these changes and assessing their impact on

the project. This proactive management ensures that the software remains aligned with

stakeholder expectations and that any changes are incorporated without compromising

the project’s integrity or quality.

70

Beyond documenting what needs to be built, requirement engineering is critical

in ensuring the final product meets its intended purpose. This is achieved through

rigorous requirement verification, validating that the software correctly implements

the requirements. This step is crucial to ensure that the development process is

not just focused on building a system that works but one that works in the way

stakeholders intended. This verification process can involve various techniques to

ensure the software delivers its promised value, including reviews, prototyping, and

testing.

Requirement engineering becomes even more critical in complex projects,

especially those with significant legal or regulatory considerations. The ability to

accurately capture, document, and manage requirements can be the difference between

a project that smoothly navigates regulatory compliance and one that faces costly

setbacks or legal challenges. Therefore, robust requirement engineering practices are

essential for meeting user needs and ensuring that software systems adhere to legal and

regulatory standards, safeguarding the project against potential risks and liabilities.

Here, some of the most essential works in this area are listed:

Luo et al. (2022) introduce a new approach to requirement classification

using prompt learning with BERT-based pre-trained language models (PRCBERT).

This method employs flexible, prompt templates to enhance classification accuracy

through experiments conducted on two existing small datasets (PROMISE and NFR-

Review) Hey et al. (2020); Wang et al. (2018) and a newly collected large-scale

dataset (NFR-SO). The authors demonstrate that PRCBERT performs slightly

better than both NoRBERT Hey et al. (2020) and MLM-BERT (BERT with a

standard prompt template). On the de-labeled NFR-Review and NFR-SO datasets,

the Trans PRCBERT variant (fine-tuned on PROMISE) achieves satisfactory zero-shot

performance, with F1-scores of 53.27% and 72.96% when using a self-learning strategy.

71

The research of Zhang et al. (2023) conducts an empirical evaluation of

ChatGPT’s performance in requirements information retrieval (IR) tasks to gain

insights that could inform the design and development of more effective requirements

retrieval methods or tools using generative LLMs. The authors created an evaluation

framework considering four combinations of two widely used IR tasks and two common

types of artifacts. The results from the zero-shot evaluation indicate that while

ChatGPT shows a solid ability to retrieve generally relevant requirements information

(high recall), it struggles to retrieve more specific requirements details (low precision).

This preliminary evaluation of ChatGPT in the context of requirements IR under a

zero-shot setting offers initial evidence for the potential to design or develop more

effective requirements IR methods or tools based on generative LLMs.

The study of Krishna et al. (2024) investigates the capability of LLMs to produce

accurate, coherent, and well-structured drafts of Software Requirement Specification

(SRS) documents to expedite the software development process. They evaluate the

performance of GPT-4 Achiam et al. (2023) and CodeLlama Roziere et al. (2023) in

drafting an SRS for a university club management system, comparing the outputs

against human-generated benchmarks across eight distinct criteria. The results

suggest that LLMs can achieve a quality of output comparable to that of an entry-level

software engineer, producing complete and consistent SRS drafts. Additionally, the

study assesses the ability of LLMs to identify and correct issues within an existing

requirements document. The experiments reveal that GPT-4 effectively detects

problems and provides constructive feedback for improvement, while CodeLlama’s

performance in validation tasks was less promising. The authors repeat the SRS

generation task across four different use cases to evaluate the time savings achieved

using LLMs. The findings demonstrate that LLMs can significantly reduce entry-level

software engineers’ development time. Consequently, the study concludes that software

72

engineers can effectively utilize LLMs to enhance productivity by saving time and

effort in generating, validating, and refining software requirements.

White et al. (2024) present prompt design techniques for software engineering,

specifically patterns, to address common challenges when using LLMs like ChatGPT

for automating typical software engineering tasks. These tasks include ensuring

code is decoupled from third-party libraries and generating API specifications from

requirement lists. Their work contributes to the field in two main ways: first, by

providing a catalog of prompt patterns that classify these patterns based on the types

of problems they solve, and second, by exploring how specific prompt patterns can

be applied to improve various aspects of software engineering, such as requirements

elicitation, rapid prototyping, code quality, deployment, and testing. The authors

emphasize that while much focus has been placed on the mistakes made by LLMs in

software engineering, applying prompt patterns can help mitigate these errors and

reduce the frequency of mistakes. The authors highlight several capabilities of LLMs,

such as simulating systems based on requirements and generating API specifications,

which are challenging to automate using traditional technologies. However, the authors

caution that significant human expertise and involvement are still required to effectively

leverage LLMs, mainly due to issues like “hallucinations” where LLMs confidently

generate incorrect output. While prompt patterns offer some mitigation, further

research is needed to address prompt engineering aspects, such as quality assurance

and versioning, to ensure that LLM-generated outputs are accurate and practical.

The research of Ronanki et al. (2022) investigates the use of ChatGPT

for evaluating user story quality and compares its performance with an existing

benchmark. The findings indicate that ChatGPT’s evaluations are consistent with

human evaluations, and the authors propose a “best of three” strategy to improve

the stability of its outputs. They also discuss the concept of trustworthiness in

AI and its implications for non-experts using ChatGPT’s unprocessed outputs. In

73

addition to evaluating ChatGPT’s performance, the paper addresses the broader

issue of trustworthiness in AI, particularly concerning non-expert users relying on

unprocessed outputs from ChatGPT. The study shows the importance of establishing

high-level trustworthiness standards to ensure that ChatGPT and similar AI systems

are integrated responsibly into Agile development processes. This includes considering

the potential impact of AI tools on the development process and ensuring that their

limitations are understood and managed effectively.

The research of Zhang et al. (2024) presents a novel AI-powered software

development framework called AISD (AI-aided Software Development), which

automates the construction of small programs from high-level user requirements.

This framework differs from existing approaches by maintaining user involvement

throughout the process, focusing on capturing feedback at multiple stages use cases,

system designs, and prototype implementations. AISD allows software engineers to

focus on more complex and interesting tasks, such as requirement engineering and

system testing, rather than low-level coding. The system takes vague or high-level user

inputs, generates detailed use cases, produces prototype system designs, and eventually

implements the system. The evaluation results indicate that AISD improves the success

rate of task completion while reducing resource consumption, specifically in terms of

tokens used. This suggests the potential for a future where much software development

is automated, with engineers focusing primarily on requirement engineering and system

validation. The research demonstrates the effectiveness of human-AI collaboration

in automating complex software tasks and offers a new perspective on the future of

software engineering.

4.1.1.1 Overall Conclusions. Integrating (LLM-based agents in requirements

engineering represents a transformative shift in how software requirements are

generated, refined, and validated. LLMs’ capabilities extend beyond merely producing

textual content; when embedded within multi-agent systems, they enable a more

74

holistic approach to automating and optimizing the requirements engineering process.

This shift is particularly impactful in environments where precision, consistency, and

adherence to regulatory standards are essential, such as in industries with extensive

legal compliance requirements.

In real-world applications, especially in high-level software design, simple LLMs

may need to catch up due to the complexity and specificity required in generating and

refining requirements. LLM-based agents, however, address these limitations through

their collaborative nature. These agents are designed to work together, leveraging

each agent’s strengths in the system. Utilizing a shared database allows them to

analyze and refine requirements from multiple professional perspectives, including

legal, technical, and user-centered viewpoints.

Integrating LLM-based agents in requirements engineering offers a unique

opportunity to embed legal compliance directly into the software development lifecycle.

Traditionally, legal compliance has been a separate, often manual, process conducted

after the initial requirements are defined. However, with LLM-based agents, legal

requirements can be automatically incorporated into the initial requirements generation

phase. These agents can be equipped to understand and apply legal texts, ensuring

that all generated requirements are technically sound and legally compliant from the

outset.

4.1.2 Code Generation and Software Development

Recent advancements in LLMs have significantly impacted code generation

and software development, two core areas within software engineering. The primary

goal of utilizing LLMs in these fields is to improve development efficiency and code

quality through automation, thereby meeting the needs of both developers and end

users. Over the past few years, applying LLMs in code generation has revolutionized

how developers work, leading to a shift in automated development processes Jiang

et al. (2024); Jin et al. (2024).

75

Compared to requirements engineering, where LLMs are still emerging, research

on applying LLMs and LLM-based agents in code generation and software development

is far more extensive and in-depth. LLMs, leveraging natural language processing and

generation technologies, have demonstrated the ability to understand and generate

complex code snippets, thus automating various stages of software development. This

includes tasks ranging from code writing and debugging to software optimization,

which are critical for improving development efficiency Jiang et al. (2024); Jin et al.

(2024).

Decoder-based LLMs, such as GPT-4, have shown considerable potential in code

generation by offering accurate code suggestions and automated debugging features.

These capabilities speed up the development process and enhance the software’s quality.

Tools like GitHub Copilot, which integrate LLMs, have proven their effectiveness in

boosting programming efficiency and ensuring higher code quality Jiang et al. (2024);

Jin et al. (2024).

The growing attention toward LLM-based agents in software development

marks a significant development in this field. These intelligent agents can perform

complex code-generation tasks while engaging in autonomous learning and continuous

refinement. This allows them to offer flexible assistance in dynamic development

environments, adapting to the evolving needs of the software development process Jiang

et al. (2024); Jin et al. (2024).

Moreover, integrating LLM-based agents in code generation brings about

several benefits, including handling tasks requiring a deep understanding of code and

natural language. For instance, these agents can be designed to comply with legal

and regulatory standards, ensuring that the generated code adheres to specific legal

requirements. This is particularly important in industries where software must meet

extensive compliance standards, such as finance, healthcare, or public administration.

76

Applying LLMs and LLM-based agents in code generation and software

development represents a significant advancement in software engineering. By

automating complex tasks and continuously refining their outputs through autonomous

learning, these technologies improve development efficiency and code quality and pave

the way for more sophisticated, legally compliant, and user-friendly software solutions.

As research continues to evolve, LLMs are likely to become even more integral to

the software development process, further transforming the landscape of this critical

industry.

Next, some of the most relevant work in this area are summarized.

Chen et al. (2021) introduce Codex, a GPT language model that has been

fine-tuned on publicly available code from GitHub, and examine its capabilities in

writing Python code. A distinct production version of Codex is the engine behind

GitHub Copilot. In their evaluation using HumanEval Chen et al. (2021), a newly

released dataset designed to measure functional correctness in synthesizing programs

from docstrings, Codex successfully solves 28.8% of the problems. In comparison,

GPT-3 solves 0%, and GPT-J solves 11.4% of the problems. The authors also discover

that repeated sampling from the model is an unexpectedly effective approach for

generating correct solutions to challenging prompts, achieving a 70.2% success rate

with 100 samples per problem. However, a thorough analysis of Codex reveals certain

limitations, such as difficulties with docstrings that describe long chains of operations

and challenges in binding operations to variables. The authors also discuss the potential

broader impacts of deploying advanced code generation technologies, considering safety,

security, and economic implications.

The research of Ni et al. (2023) highlights that LLMs, particularly those

pre-trained on code, have recently shown strong capabilities in generating programs

from natural language inputs, even in few-shot or zero-shot settings. Despite these

promising outcomes, more comprehensive evaluations must be conducted to assess

77

these models’ language-to-code generation abilities fully. Existing research often

focuses on specific tasks, model architectures, or learning paradigms, leading to

a fragmented understanding of their overall performance. The authors introduce

Language To Code Evaluation (L2CEval) to address this gap. This systematic

evaluation framework assesses the language-to-code generation capabilities of LLMs

across seven tasks, covering a wide range of domains, including semantic parsing,

math reasoning, and Python programming. They analyze various factors influencing

performance, such as model size, pretraining data, instruction tuning, and different

prompting methods. Beyond evaluating model performance, they also assess the

models’ confidence calibration and conduct human evaluations of the generated code.

This thorough analysis allows them to identify and explore typical failure modes across

different tasks and models.

The work of Sun et al. (2023) explores the transformative potential of LLMs in

the Text-to-SQL domain, where natural language is translated into Structured Query

Language (SQL). Their work introduces the SQL-PaLM framework, a comprehensive

approach to enhancing text-to-SQL tasks using LLMs, particularly in few-shot

prompting and instruction fine-tuning settings. In the context of few-shot prompting,

the authors examine the effectiveness of consistency decoding combined with execution-

based error filtering. This method helps in refining the accuracy of generated SQL

queries. For instruction fine-tuning, they delve into the key factors that affect the

performance of fine-tuned LLMs, investigating how improvements can be achieved

through expanded training data coverage, diverse and synthetic data augmentation,

and the integration of query-specific database content. To further enhance accuracy, the

authors propose a test time selection method that combines SQL outputs from multiple

paradigms, using execution feedback as a guide. They also address practical challenges

in navigating complex databases with numerous tables and columns by developing

78

efficient techniques for selecting relevant database elements, thereby improving text-

to-SQL performance.

The study of Hu et al. (2024) recognizes that while LLMs have made notable

advances in code generation tasks, they still struggle with programming problems

that involve complex data structures and algorithms. The authors propose an in-

context learning approach that guides LLMs in debugging by utilizing a “print

debugging” method to address this limitation. This method involves inserting

print statements to trace program execution and analyze logs to identify and fix

bugs. To test their approach, the authors collect a dataset of Leetcode problems

and evaluate their method’s effectiveness using the Leetcode online judging system.

Experiments conducted with GPT-4 demonstrate the success of this approach, showing

a performance improvement compared to rubber duck debugging. Specifically, the

method outperforms rubber duck debugging by 1.5% on easy Leetcode problems and

by 17.9% on medium level problems.

Peng et al. (2023) investigate the potential of generative AI tools to enhance

human productivity, focusing on GitHub Copilot, an AI-powered pair programming

tool. In a controlled experiment, software developers were recruited to implement an

HTTP server in JavaScript to complete the task as quickly as possible. The treatment

group, which had access to GitHub Copilot, completed the task 55.8% faster than the

control group that did not use the AI tool. The authors also observed heterogeneous

effects, indicating that AI pair programming tools like GitHub Copilot could be

particularly beneficial in helping individuals transition into software development

careers. These findings suggest that AI tools not only improve task efficiency but

also have the potential to support the development of new skills in aspiring software

developers.

The research of Dong et al. (2023) addresses the limitations of LLMs in

handling complex code generation tasks despite their notable achievements in simpler

79

scenarios. In real-world software development, complexity is often managed through

collaborative teamwork, simplifying the development process and improving software

quality. Drawing inspiration, the authors introduce a self-collaboration framework for

code generation using LLMs, with ChatGPT as a key example. In this framework,

multiple LLM agents are assigned specific roles as distinct “experts,” each focusing on a

particular subtask within a larger, complex task. These agents collaborate and interact

as a virtual team through predefined role instructions, working together to complete

code generation tasks without human intervention. The framework integrates software

development methodologies to organize and manage this virtual team efficiently. The

elementary team comprises three LLM roles: analyst, coder, and tester, who are

responsible for the analysis, coding, and testing stages of software development. The

authors conducted extensive experiments using various code generation benchmarks to

evaluate the effectiveness of this self-collaboration approach. The experimental results

demonstrate significant improvements, with the self-collaboration framework achieving

a 29.9% to 47.1% increase in Pass@1 performance compared to a single LLM agent.

Furthermore, the study highlights the potential of this self-collaboration framework to

enable LLMs to tackle complex repository-level tasks, which are typically beyond the

capabilities of a single LLM agent.

The work of Hong et al. (2023) discusses the significant advancements in

automated problem solving using societies of agents based on LLMs. While existing

LLM-based multi-agent systems can handle simple dialogue tasks, they encounter

difficulties when addressing more complex tasks due to logic inconsistencies and

cascading hallucinations that arise from naively chaining LLMs together. To overcome

these challenges, the authors introduce MetaGPT, an innovative meta-programming

framework that integrates efficient human workflows into LLM-based multi-agent

collaborations. MetaGPT encodes Standardized Operating Procedures (SOPs) into

prompt sequences, creating streamlined workflows that allow agents with human-like

80

domain expertise to verify intermediate results and minimize errors. The framework

employs an assembly line approach, assigning diverse roles to various agents, which

effectively breaks down complex tasks into manageable subtasks, enabling multiple

agents to collaborate efficiently. In collaborative software engineering benchmark

experiments, MetaGPT demonstrated its ability to generate more coherent solutions

compared to previous chat-based multi-agent systems.

4.1.2.1 Overall Conclusions. Traditional LLMs typically utilize a single

model to perform tasks such as code generation or completion. This approach faces

limitations related to context window size and the need for ongoing feedback, which

can hinder their ability to manage complex tasks effectively.

In contrast, LLM-based agents use a collaborative framework where multiple

specialized agents work together to address different aspects of a task. For instance, in

code generation, one agent might handle initial code generation, another could design

test cases, and a third might execute tests and provide feedback. This division of

labor facilitates iterative optimization and enhances efficiency. Similarly, in automatic

legal compliance analysis, LLM-based agents could split tasks like interpreting legal

texts, generating compliance reports, and verifying adherence to regulations, leading

to more comprehensive and accurate compliance assessments.

LLM-based agents offer a more scalable solution by simulating real-world

collaborative workflows. This system is adept at handling intricate software

development challenges and can also manage complex legal compliance tasks. LLM-

based agents can effectively handle broader and more complex compliance scenarios by

dividing tasks among multiple agents and integrating iterative testing and refinement.

This approach allows for better management of diverse legal requirements and ensures

more robust compliance analysis.

81

4.1.3 Software Design and Evaluation

Software design is a critical early phase in the software development lifecycle,

and its quality profoundly influences subsequent development stages. Modern

methodologies advocate for seamless integration of design and development to ensure

that design decisions translate into high-quality code. LLMs contribute significantly

to this integration by enhancing design and development processes through specialized

frameworks and architectures Jin et al. (2024).

In this context, LLMs automate and optimize various design tasks. Frameworks

incorporating LLMs for software design often involve iterative refinement processes

similar to code generation and development. For example, LLMs can assist in creating

initial design drafts, generating design documents, and iterating on these drafts based

on continuous feedback. This iterative approach ensures design outputs align closely

with development requirements and user expectations.

Requirement elicitation and specification are integral to software design and

intersect with LLM applications. LLMs assist in gathering and specifying requirements

by analyzing user inputs, generating requirement documents, and refining these

documents based on feedback. This role is pivotal in ensuring design outputs accurately

reflect user needs and project goals.

Integrating LLMs in software design and evaluation extends to automatic legal

compliance analysis. In this domain, LLMs can assist in interpreting legal requirements,

generating compliance reports, and verifying adherence to regulations. For instance,

LLM-based systems can automate the review of compliance documentation, assess

legal risks, and provide recommendations for improving compliance.

LLMs equipped with autonomous learning and decision-making capabilities can

enhance the accuracy and efficiency of legal compliance assessments. These systems

can adapt to evolving legal standards and improve compliance analysis by continuously

learning from new legal data and feedback.

82

Next, some of the most influential works related to this topic are summarized.

Sridhara et al. (2023) investigate the application of ChatGPT to common

software engineering tasks. The study examines fifteen tasks ChatGPT performed and

compares its outputs with state-of-the-art solutions and human expert evaluations.

They gathered ten random samples for each task and asked ChatGPT to perform

specific actions, such as determining if two provided code snippets were duplicates

(code clone detection). The outputs generated by ChatGPT were then compared

against human expert evaluations and, where available, state-of-the-art tool outputs.

The study calculated the accuracy of ChatGPT for each task. The results indicate

that ChatGPT performs credibly on many tasks, often providing detailed responses

and, in some cases, superior to those from human experts or current best practices.

However, there are specific tasks where ChatGPT’s current capabilities fall short,

leading to incorrect answers and highlighting areas where its application could be

improved.

The research of Wan et al. (2024) initially explores optimization techniques

to accelerate LLM performance, focusing on methods such as quantization, pruning,

and operation level adjustments. A distinctive approach discussed is optimizing LLM

inference through innovative software and hardware co-design strategies. Following

these optimization efforts, the paper investigates the performance of LLMs in the

context of circuit design and verification, with a particular focus on functional

verification. Utilizing automated prompt engineering, the paper leverages the

capabilities of the established LLM, GPT-4, to generate High-Level Synthesis (HLS)

designs with predefined errors. The study uses a comprehensive dataset of over 1000

function-level HLS designs, each with up to 45 error combinations injected into the

source code. This dataset, named Chrysalis, extends beyond existing HLS error

models, providing a valuable resource for enhancing LLMs’ ability to debug code

effectively.

83

Jalil et al. (2023) investigates ChatGPT’s performance in responding to common

questions within a widely used software testing curriculum. The findings reveal that

ChatGPT successfully addresses 77.5% of the questions examined, providing correct or

partially correct answers in 55.6% of cases and correct or partially correct explanations

in 53.0% of cases. Furthermore, using the tool in a shared question context slightly

improves the accuracy of answers and explanations. Based on these results, the paper

explores the potential benefits and drawbacks of employing ChatGPT in educational

settings, considering its impact on students and instructors.

The research of Suri et al. (2023) highlights the benefits of using context-rich

prompts for these autonomous agents. Employing various prompting strategies with

and without contextual information demonstrates that prompts containing context

significantly enhance the understanding of user requirements. This approach minimizes

irrelevant details that can impede task comprehension and degrade model performance,

especially when interacting with complex frameworks such as Spring Boot, Django, and

Flask. The investigation uses Auto-GPT (v0.3.0) Yang et al. (2023), an open-source

application that utilizes GPT-3.5 and GPT-4. Auto-GPT effectively integrates the

“thoughts” of LLMs to achieve assigned goals or tasks independently. This exploration

highlights the advantages of context-rich prompts in improving the performance and

efficiency of autonomous agents in software development.

The work of Qian et al. (2024) introduces ChatDev, a framework that integrates

chat-powered LLMs to streamline software development. ChatDev utilizes specialized

agents guided by LLMs to manage both the content and the manner of communication

through a chat chain and communicative dehallucination techniques. These agents

contribute to the design, coding, and testing phases by engaging in multi-turn dialogues

and providing unified language-based solutions. The research highlights the benefits

of using natural language for system design and programming language for debugging

within this framework. By facilitating multi-agent collaboration through linguistic

84

communication, ChatDev demonstrates how language can serve as a cohesive bridge

for autonomous task-solving among LLM agents, improving the overall efficiency and

coherence of the development process.

Weber (2024) proposes a taxonomy for LLM-integrated applications, providing a

framework for analyzing and describing these systems. The research showcases various

methods for integrating LLMs into applications and outlines different implementation

options. The study identifies relevant dimensions and evaluates the proposed taxonomy

against additional cases by analyzing a sample of recent LLM-integrated applications.

It finds that these applications often consist of multiple LLM integrations, referred

to as “LLM components.” To understand an application’s architecture, each LLM

component is examined individually. The study identifies thirteen dimensions for

characterizing these components, such as the specific LLM skills and output format.

The taxonomy effectively describes LLM-integrated applications, offering a structured

way to represent and visualize the integration of LLMs. This framework is intended

to advance theory in the emerging field of LLM-integrated application engineering

and support the development of such systems. Despite ongoing challenges, integrating

LLMs holds the potential to transform software system development through innovative

applications.

The study of Vallecillos Ruiz (2024) investigates using LLM-powered agents to

enhance software maintenance. These agents leverage LLMs’ iterative learning and

adaptability to address common challenges in code generation, mainly focusing on the

“last-mile problems” where errors occur during the final stages of code production. The

research proposes a collaborative framework wherein multiple agents, each equipped

with LLMs, interact to rectify and learn from each other’s mistakes. This iterative

feedback mechanism aims to refine the LLMs and improve their alignment with

automated software enhancement tasks. The project seeks to significantly advance

automatic software improvement by developing innovative tools and frameworks within

85

this collaborative environment. The ultimate goal is to enhance the efficiency and

reliability of software development processes through these new methodologies.

4.1.3.1 Overall Conclusions. The integration of LLMs into software design

and evaluation has the potential to significantly enhance the efficiency and quality

of these processes. Traditionally, LLM applications in these areas have concentrated

on automating specific tasks such as code generation and log summarization,

focusing primarily on evaluating the capabilities of these models rather than their

implementation during the design phases. This approach reflects a narrower scope,

often overlooking the broader impact that LLMs can have when applied to higher-level

design tasks and legal compliance. For instance, LLM-based agents can automate

compliance checks by analyzing legal requirements and comparing them with software

design specifications.

Applying LLM-based agents in software design extends beyond basic automation

to encompass sophisticated design tasks. These agents can dynamically adapt to

various application scenarios, significantly improving the flexibility and accuracy of

the design process. Frameworks like ChatDev exemplify this shift by utilizing role

distribution to separate the design phase from other development stages. This approach

enhances the efficiency of later development phases by integrating collaborative and

role-specific functionalities Jin et al. (2024).

Despite these advancements, LLM agents need help in certain areas. Regarding

text generation and vulnerability detection, LLMs have demonstrated superior

performance, but tasks such as software maintenance and root cause analysis demand

more intricate architectures. These tasks benefit from advanced techniques such as

multi-turn dialogues, knowledge graphs, and Retrieval Augmented Generation (RAG),

which can further refine the design and evaluation processes.

86

4.1.4 Code Summarization

Code summarization, often called code commenting, generates natural language

descriptions that explain the functionality and purpose of various components within

a computer program. By translating the logic of source code into human-readable text,

code summarization plays a critical role in enhancing program comprehension. This is

particularly important in the software maintenance phase, widely recognized as one of

the most resource-intensive and time-consuming stages in the software development

life cycle. High-quality summaries can significantly aid developers by reducing the

time required to understand complex codebases, improving the efficiency of code

searches, and supporting overall system maintainability Zhang et al. (2022); Steidl

et al. (2013); Xia et al. (2017).

However, the fast-paced evolution of software often leads to mismatched,

outdated, or missing code comments, which can hinder the maintenance process. As a

result, there is a growing need for reliable and automated methods to generate accurate

code summaries. This section will explore research efforts in code summarization,

focusing on the approaches and techniques to address these challenges.

Ahmed and Devanbu (2022) explore the potential of LLMs, specifically GPT-

based models like Codex, for code summarization tasks. The authors highlight the

effectiveness of few-shot learning, where the model can learn from only a few examples.

This ability is particularly valuable in software engineering, as code patterns and

terminologies are often project-specific. Still, relevant project data is often limited,

especially in the early stages of development. The authors investigate how few-shot

training with Codex can outperform traditional models trained on thousands of

examples, demonstrating that using just ten examples from the same project can

significantly improve code summarization. Their findings show that few-shot learning

performs better than using data from different projects when applied to project-specific

data and that the improvements are statistically significant. The authors suggest

87

that this approach is promising for software engineering tasks, as it allows for efficient

training even with minimal data early in the project lifecycle. They argue that

project-specific few-shot training could extend beyond code summarization to benefit

other tasks in software engineering as well.

The research of Sun et al. (2024) extensively studies using LLMs for code

summarization, aiming to cover various aspects of the LLM-based workflow. The

authors start by evaluating automated methods for assessing the quality of summaries

generated by LLMs, finding that the GPT-4 evaluation method aligns most closely

with human assessments. The paper also investigates five prompting techniques:

zero-shot, few-shot, chain-of-thought, critique, and expert to adapt LLMs to code

summarization tasks. Interestingly, the results show that simple zero-shot prompting

can perform better than or better than more advanced techniques. The study also

examines how different LLM model settings, particularly top-p and temperature

parameters, influence the quality of code summaries. The impact of these parameters

is found to vary depending on the base LLM and the programming language in

question, but the overall effect is similar across different languages. The authors also

assess how LLMs handle code summarization across different programming languages,

revealing that the models need help summarizing code written in logic programming

languages compared to procedural and object-oriented languages. Finally, the study

finds that CodeLlama-Instruct, with 7B parameters, outperforms the more advanced

GPT-4 model in generating summaries that describe code implementation details and

assert code properties. The authors hope that their findings will serve as a valuable

resource for future research, offering insights into the performance of LLMs in code

summarization and helping to drive advancements in this area.

The work of Kumar and Chimalakonda (2024) focuses on addressing the

limitations of applying LLMs to Software Engineering (SE) tasks such as code clone

detection, code summarization, and program comprehension. While LLMs have shown

88

promising results, their performance often requires fine-tuning with task-specific

datasets. However, the proprietary nature of SE data, particularly in closed-source

environments, presents a significant challenge, as most LLMs are trained exclusively on

open-source data. To tackle this issue, the authors propose a Federated Learning (FL)

approach combined with LLMs, specifically targeting code summarization. The study

introduces a Federated Large Language Model (FedLLM), which allows different clients

to collaboratively train a model by exchanging only model weights without sharing

the underlying private code data. The authors fine-tuned Llama-2 using Parameter

Efficient Fine-Tuning (PEFT) techniques such as Low-Rank Adaptation (LoRA) Hu

et al. (2021); Fan et al. (2023) and conducted experiments using a high-performance

GPU setup. Their results show that the federated model performs comparably to a

centrally trained one, even with minimal training epochs and only a small fraction of

the updated parameters.

Sun et al. (2023) address the challenge of adapting LLMs for code summariza-

tion, which involves generating natural language summaries for code snippets to help

developers better understand and maintain source code. While LLMs have shown suc-

cess in various fields, applying them to code summarization has primarily relied on two

strategies: instruction prompting and task-oriented fine-tuning. Instruction prompting,

which involves crafting prompts for zero-shot or few-shot learning, demands profes-

sional domain expertise, while task-oriented fine-tuning incurs high training costs. To

overcome these limitations, the authors propose a novel framework called PromptCS,

which introduces a prompt learning approach tailored for code summarization. Rather

than relying on manually designed prompts, PromptCS trains a prompt agent that

generates continuous prompts, allowing LLMs to better comprehend and summarize

code. By freezing the parameters of the LLM during prompt agent training, PromptCS

reduces the computational resources typically required for fine-tuning. The authors

evaluate PromptCS on the CodeSearchNet dataset Husain et al. (2019), which spans

89

multiple programming languages, and find that it significantly outperforms traditional

instruction prompting methods across several evaluation metrics. In certain LLMs,

such as CodeGen-Multi-2B and StarCoderBase-1B and -3B, PromptCS surpasses task-

oriented fine-tuning in performance. Additionally, PromptCS demonstrates superior

training efficiency, especially with larger LLMs. Human evaluations further confirm

that PromptCS generates higher-quality summaries compared to existing approaches.

4.1.5 Overall Conclusions

The integration of LLMs into code summarization has the potential to revolu-

tionize how software developers understand and maintain codebases. Traditionally,

code summarization efforts have focused on generating basic summaries or comments,

primarily addressing developers’ immediate need to comprehend code snippets quickly.

This traditional approach often emphasized simple automation without fully exploit-

ing the advanced capabilities of LLMs to enhance the depth and context of code

documentation.

Despite these advancements, applying LLMs to more complex code summariza-

tion presents challenges. While LLMs excel in generating coherent and contextually

relevant summaries, tasks such as handling ambiguous code or summarizing intricate

code interactions require more nuanced architectures. Advanced techniques like multi-

turn dialogues and Retrieval Augmented Generation (RAG) offer promising solutions

to refine these summaries by integrating additional context and iterative feedback,

further enhancing the effectiveness of code documentation.

An emerging and critical area of integrating LLMs into code summarization

is their role in improving documentation for diverse codebases and programming

languages. By leveraging LLM-based agents, developers can achieve more precise

and contextually relevant summaries, addressing the immediate and long-term needs

of code maintenance and understanding. This approach enhances code readability

90

and supports ongoing development and compliance with coding standards and best

practices.

More importantly, code summarization is critical in automatic legal compliance

as software becomes more intertwined with legal requirements—from data privacy

laws to industry-specific standards. LLMs can elevate code summarization from a

functional tool to a compliance mechanism by identifying code sections that may

introduce legal vulnerabilities. LLM-based summaries can flag code related to data

handling or encryption, ensuring adherence to regulations like GDPR. This is especially

valuable in industries such as healthcare and finance, where non-compliance can result

in severe penalties. By offering a layer of legal insight through summaries, LLMs

enable developers to address potential compliance issues early in the development

process, saving time and resources and reducing legal risk.

4.2 Discussion

Integrating LLMs into software systems understanding represents a profound

shift in the software engineering landscape. This transformation is particularly evident

in the growing trend of using LLMs like ChatGPT to evaluate and comprehend complex

software systems. This approach promises to revolutionize how software is designed,

developed, and maintained, including areas requiring extensive legal compliance.

Traditional software engineering has long relied on human expertise to

understand, design, and maintain complex systems. The introduction of LLMs into this

process marks a significant departure from this norm. These models, particularly when

deployed as LLM-based agents, are not merely tools for generating code or summarizing

logs; they represent a new paradigm for understanding software systems holistically.

By leveraging vast amounts of data and sophisticated Natural Language Processing

(NLP) capabilities, LLMs can analyze software requirements, design patterns, and

even codebases in previously unattainable ways.

91

However, the use of LLMs in this context has challenges. While these models

excel in generating text and automating specific tasks, they often need help with the

nuances and complexities inherent in high-level software design. The collaborative

nature of LLM-based agents offers a potential solution to these limitations. By

distributing tasks among multiple specialized agents, each focusing on a particular

aspect of the software development process, LLM-based systems can more effectively

manage the intricacies of software design. This collaborative approach allows for a more

accurate and efficient understanding of software systems, particularly in environments

where precision and consistency are critical.

The current trend of using ChatGPT for software system evaluations extends

this broader movement toward LLM integration. ChatGPT, with its conversational

capabilities, offers a unique advantage in evaluating and understanding software

systems. By engaging in dialogue with developers, ChatGPT can clarify requirements,

suggest improvements, and even identify potential issues in the code. This interactive

approach contrasts with more traditional, static methods of software evaluation, where

tools and processes are often limited by their need for adaptability and context

awareness.

However, the use of ChatGPT in this context also raises important consid-

erations. While the model’s ability to engage in multi-turn dialogues and provide

context-aware suggestions is valuable, it is still limited by its training data and un-

derlying architecture and hallucinations. For instance, ChatGPT may need help

understanding the broader implications of design decisions or the specific legal re-

quirements associated with certain software systems. This limitation shows the need

for more sophisticated LLM-based agents that can integrate multiple sources of in-

formation, including legal texts and domain-specific knowledge, to provide more

comprehensive evaluations.

92

The integration of LLMs, particularly in the context of automatic legal

compliance, represents a significant advancement in software engineering. Traditionally,

ensuring that software systems comply with legal regulations has been a labor-intensive

process, often conducted manually after the software has been developed. This

approach increases the risk of non-compliance and delays the software development

lifecycle, as compliance checks are performed as a separate, often isolated, phase.

LLM-based agents offer a transformative approach to this challenge. By

embedding legal compliance directly into the software development process, these

agents can automatically analyze legal requirements and ensure that the software

adheres to these standards. This capability is particularly valuable in industries

where legal compliance is critical, such as healthcare, finance, and defense. In

these environments, even minor deviations from legal standards can have significant

consequences, making the integration of LLM-based compliance checks not just a

convenience but an important step towards improvement.

The impact of this shift extends beyond mere efficiency gains. By automating

legal compliance, LLM-based agents can help ensure that software systems are more

robust, reliable, and secure. This is particularly important as software systems become

increasingly complex and interconnected, with greater potential for legal and regulatory

challenges. Moreover, by integrating continuous feedback and iterative refinement into

the compliance process, LLM-based agents can more effectively adapt to changing

legal standards and regulations than traditional methods.

4.3 Limitations

In this chapter on using LLMs to understand software systems, several

limitations were encountered that may have influenced the overall breadth of the

analysis. The chosen criteria for selecting research works could have unintentionally

omitted important works, resulting in an incomplete field view. As a result, the scope

of the review may be more restricted than intended. Furthermore, given the rapid

93

advancements in LLMs and software development, some insights from this review

might quickly become outdated as new methods and approaches emerge.

The review also emphasized tasks closely related to the early stages of developing

LLM-driven systems for software understanding, such as knowledge extraction, code

generation, and system evaluation. However, it did not address other important tasks

like debugging support, integration with legacy systems, and logging, which are crucial

for fully operational LLM-based solutions.

From the reviewed works, it became clear that hallucinations in LLMs present a

significant challenge to their full integration across all phases of software development.

The review highlighted the limited research on how this phenomenon specifically

impacts software development, which may be a limitation of the review but also

reflects the fact that addressing hallucinations in LLMs is still in its early stages.

Additionally, while the chapter covers applications of LLMs in various phases of

software development, there is a lack of studies that attempt to apply LLMs across all

phases and explore the combined results, such as in Hong et al. (2023).

The conclusions drawn here are specific to applying LLMs in software

understanding and may not be easily extended to other domains where LLMs are

applied. While some of the challenges highlighted may overlap with other areas, this

review does not attempt to generalize beyond its intended focus. Additionally, the

results presented across the various studies were not independently verified, meaning

any limitations in those original studies may have carried over into the analysis

provided in this review.

4.4 Conclusions

Integrating LLMs into software engineering marks a significant leap forward in

understanding, designing, and maintaining complex software systems. This chapter

has explored how LLMs are being applied across different domains within software

engineering, from requirements engineering to code generation, software development,

94

and design. The insights gained highlight the transformative potential of LLMs in

automating tasks traditionally reliant on human expertise and enhancing the overall

quality, efficiency, and compliance of software systems.

With their vast knowledge bases and sophisticated natural language processing

capabilities, LLMs are invaluable tools in the initial stages of software development.

They facilitate a more accurate and comprehensive gathering of requirements, ensuring

that all stakeholder needs, including legal and regulatory considerations, are addressed

early in the development process. This proactive approach to embedding legal

compliance into the requirements phase represents a fundamental shift in how software

is designed, moving from post-hoc compliance checks to a more integrated and

continuous process.

In code generation and software development, LLMs like Codex have

demonstrated their ability to significantly accelerate development processes, generating

code that meets functional requirements with increasing accuracy. However, challenges

still need to be addressed, particularly in managing the complexity and specificity of

tasks required in high-level software design. The collaborative nature of LLM-based

agents offers a promising solution, enabling a more modular and iterative approach

to development, where multiple agents work together to refine and optimize software

outputs.

The exploration of LLMs in software design and evaluation further illustrates

their potential to enhance the quality and consistency of software systems. By

integrating LLMs into design processes, developers can ensure that design decisions

are consistently translated into high-quality code, reducing the risk of errors and

improving overall system reliability. The ability of LLMs to provide continuous

feedback and iterative refinement during both design and evaluation phases is precious

in complex, compliance-heavy industries, where precision and adherence to standards

are critical.

95

Finally, the role of LLMs in automatic legal compliance analysis cannot be

overstated. As software systems increasingly operate within extensive regulatory

frameworks, the ability to automatically analyze and ensure compliance with legal

standards is crucial. With their capacity to interpret legal texts and generate

compliance reports, LLM-based agents offer a scalable solution to the growing

complexity of legal requirements in software development. By integrating these

capabilities into the software development lifecycle, organizations can mitigate legal

risks and ensure that their systems operate within the bounds of the law from the

outset.

Applying LLMs in software engineering is not just about automating routine

tasks; it represents a paradigm shift in how software systems are understood, designed,

and maintained. As LLMs evolve, their integration into software engineering practices

will likely lead to even more sophisticated tools and frameworks, further enhancing

software systems’ quality, efficiency, and compliance. This chapter has provided a

comprehensive overview of the current state of the art in using LLMs to understand

software systems, setting the stage for future research and development in this rapidly

advancing field.

96

CHAPTER FIVE

Assessing ChatGPT’s Ability to Comprehend and Respond to Microservice
Architecture Questions Using Source Code Insights

The work detailed in Chapter Five has been written mainly from the publica-

tion: Quevedo, Ernesto, Amr S. Abdelfattah, Alejandro Rodriguez, Jorge Yero, and

Tomas Cerny “Evaluating ChatGPT’s Proficiency in Understanding and Answering

Microservice Architecture Queries Using Source Code Insights” SN Computer Science

5, no. 4 (2024): 422.

After exploring the capabilities of state-of-the-art LLMs in the classification

and question-answering of software-related legal subdomains, such as privacy policies

and cybersecurity, this thesis has provided an analysis of the results on how to use

LLMs in the phase of understanding legal documents and identified the current gaps

that still exist. However, as mentioned at the start of this thesis, the focus is on

automatically interpreting legal documents and understanding how a software system

operates. This understanding is crucial to map legal regulations to software workflows

and determine whether the regulations are being complied with.

Therefore, this chapter will focus on the second problem: understanding a

software system. Given that the current state of the art in automatic software

understanding also relies on LLMs, the chapter aims to develop a tool based on an

agent capable of answering questions about a software system, demonstrating its

knowledge. This thesis will use ChatGPT as the LLM agent for the experiments. This

choice is based on its strong performance and extensive publications highlighting its

success across multiple domains, as discussed in Chapter 4.

The exploration of ChatGPT’s effectiveness in answering questions about

microservice systems directly aligns with the broader goal of auditing software

compliance with legal regulations. In both contexts, the ability of Large Language

97

Models (LLMs) like ChatGPT to comprehend, process, and accurately respond to

complex queries is crucial. For auditing software compliance, LLMs must navigate

intricate regulatory requirements, interpret legal language, and correlate it with the

technical details of the software systems. This requires a robust understanding of both

the code and higher level system interactions.

This chapter will focus on three research questions to analyze ChatGPT’s

performance in understanding software systems. Given the current trend of using

complex architectures like Microservices, this chapter will center the analysis on a

microservice-based project. The chapter is organized as follows: first, present the

research questions; next, the methodology followed; then, the experiments, results,

and statistical analysis. Finally, the chapter concludes with a discussion of the results

and limitations.

5.1 Research Questions

This chapter evaluates the service view and service interaction perspectives

while exploring how different knowledge sources (such as source code and intermediate

representation of the software system: Persistent Operation Component Call Graphs

PO-CCG) influence the model’s question-answering capabilities. Furthermore, it

identifies potential challenges and limitations that may emerge.

RQ1: Can ChatGPT leverage source code to answer questions about microservice

service and interaction views, and in the process, what levels of effectiveness

are achieved and what challenges are faced? This research question assesses

ChatGPT’s capability to answer structured questions about microservice

system views. It seeks to evaluate the model’s effectiveness and uncover any

limitations in its responses.

RQ2: Does ChatGPT show improved performance in answering questions about

microservice systems when using source code instead of PO-CCG? Given that

98

source code can include extraneous information and often requires processing a

large volume of tokens, the PO-CCG representation provides a more targeted

and manageable flow of information. This research question aims to determine

if ChatGPT can be more effective in answering questions by using source code

than the PO-CCG representation.

RQ3: Does integrating source code with PO-CCG enhance ChatGPT’s effectiveness

in answering questions about microservice systems? Following the assessment

of source code and PO-CCG knowledge bases separately, this research question

investigates whether combining these resources improves ChatGPT’s ability

to answer questions about microservice views.

5.2 Methodology

This section presents the methodology illustrated in Figure 7.1. This pipeline

demonstrates the interconnection of various phases, guiding how the ChatGPT model

supplies the necessary information and context to address questions about microservice

systems effectively. Next, each of the phases involved is listed.

Figure 5.1. Methodology Phases.

99

(1) Source Code Extraction: Extract source code components from microservice

projects.

(2) PO-CCG Construction: Extract PO-CCG representation from the microservice

source code.

(3) NL Transformation: Transform the PO-CCG to natural language.

(4) Question Generation: Generate questions for study evaluation.

(5) Prompt Engineering: Perform prompt engineering to construct a complete

prompt for each question.

(6) ChatGPT Question Answering Process: Provide the information and context

required to perform the study.

5.2.1 Source Code Extraction

The methodology adheres to enterprise architecture standards that organize

communications into distinct layers. Each project is categorized into Controller,

Service, and Data Repository components. The method begins by inspecting the

microservices’ codebases to extract their source code files. After identifying these

files, they are parsed to locate method declarations and their associated bodies. The

content from the method declaration and body is then extracted and labeled as the

method’s source code. In addition to the source code, supplementary information is

gathered as detailed in Table 5.1. For each method, it is identified its corresponding

class and collects essential details about that class, which are also included in Table

5.1.

The PO-CCG Construction process unfolds in two phases. First, the Component

Call Graphs (CCGs) are constructed and then enhanced to incorporate awareness

of persistent operations. Listing 1 illustrates a source code example from a Java

application.

100

Table 5.1. Information extracted during source code extraction phase

Extracted field Description
methodName The name of the method

methodSourceCode The source code of the method including method

declaration and method body

methodOffset The location in the file where the source code is

available, it contains the start and the end

methodModifiers The modifiers of the method including

accessibility and other available modifiers like

static

symbolId The complete identifier of the method including

the class identifier

className The name of the class in which the method is

declared

classComponentType The component type of the class, it could be

Controller, Service, Repository or Other

classDeclarationType The declaration of the class, it could be class,

interface, enum or others

classFilePath The file path where the class body is declared

classModifiers The modifiers of the class, similar to the method

modifiers

packageName The name of the package in which the class is

declared

microserviceName The name of the microservice in which the class

is declared

The CCGs are built using the methodology outlined in Abdelfattah et al.

(2023). This involves static analysis of the application’s source code to identify low-

level constructs, including methods and classes across the entire application or specific

modules. A method call graph is created by detecting method calls within each

method’s body, highlighting the relationships between methods.

Key to understanding the application are the entry point methods not called

by others. These are identified using a depth-first search technique. The initial call

graphs are then enhanced to form Component Call Graphs (CCGs), which include

component types and their properties. As shown in Figure 5.2, component types are

101

denoted in brackets ([]), and properties are illustrated with rectangles connected to

the respective components.

Figure 5.2. PO-CCG Example.

For example, Listing 5.1 depicts the getAllFood endpoint method in the

FoodController component, which calls the getAllFood method in the FoodService

component. The RecordService then makes two additional calls: to a third-party API

using restTemplate and the findAll method in FoodOrderRepository. The resulting

call graph, displayed in Figure 5.2, starts from the FoodController’s endpoint interface

and traces each method invocation to build the complete graph. Properties associated

with the findAll method in FoodOrderRepository, such as “CRUD Op” with a value

of “READ,” indicate the method’s involvement in persistent operations.

Listing 5.1. Source code example. Note FoodOrder, AllTripFood, Route are domain
objects.

@Controller

102

public class FoodController {

@Autowired

private FoodService service;

@GETMapping

public HttpEntity getAllFood(String date , String tripId) {

return service.getAllFood(date , tripId);

}

}

@Service

public class FoodService {

@Autowired

private FoodOrderRepository repository ;

public AllTripFood getAllFood(String date , String tripId) {

Route route = restTemplate

.getObject("/ts-travel -service/service/routes/"

+ tripId);

FoodOrder [] foodOrders = repository.findAll ();

return new AllTripFood(route , foodOrders)

}

}

@Repository

public interface FoodOrderRepository {

FoodOrder [] findAll ();

}

In the second phase, the CCGs are augmented to include persistence awareness.

This involves extracting endpoints from the entire system and analyzing their source

code to generate a call graph. Then, identify data entity accesses and CRUD operations

103

for each element in the graph. Extend this analysis to inter-service interactions

to provide a comprehensive view, incorporating the persistent operations used by

dependent endpoints in other microservices. This step ensures that the CCGs are

fully aware of persistence operations.

5.2.2 NL Transformation

The PO-CCG components are translated into natural language using a heuristic-

based approach. Specifically, the Control Flow Graph (CFG) is processed using a

Visitor pattern to navigate the graph’s structure. Currently, only flow paths are

parsed, meaning the structure visited is essentially a list. However, the Visitor pattern

is designed to be flexible and not tied to any specific traversal method.

Visiting a node may involve storing relevant information in the Visitor’s context

during traversal. For instance, when a node representing a controller is visited, its

details are stored for potential use by subsequent nodes. Additionally, each visited

node may generate a message that is appended to a sequence of messages maintained

by the Visitor class. The final natural language description is created by concatenating

all these generated messages.

Table 5.2 outlines which nodes in the graph produce messages and which merely

contribute information to the context.

Conversely, parsing the Partial Operations is more straightforward. First, a

header message is generated with the text: ‘‘CRUD operations are performed

over the following entities:". Following this, each entity’s itemized list of

CRUD operations is appended. For example, an entry might read ‘‘Person: GET,

PUT, POST", indicating that the Get, Put, and Post operations are performed on the

Person entity.

104

Table 5.2. Nodes in the Control Flow Graph that produce a message in natural
language.

Node Message
Controller Method The ’{controller name}’ has a ’{http method type}’

endpoint handled by the method

’{controller method}’. The endpoint returns an

’{return type}’ object.

Service Method The ’{controller method}’ method in the

’{controller name}’ controller calls the method

’{service method}’ of the ’{service name}’ service

through its field ’{service field}’. This call

returns a ’{return type}’ object.

Repository Method The ’{service method}’ method in the

’{service name}’ service calls the

method ’{repository method}’ of the

’{repository name}’ respository through its

field ’{repository field}’. This call returns

a ’{return type}’ object.

Rest Calls The ’{service method}’ method in the

’{service name}’ communicates with other

microservices in the following ways:

- It communicates with {endpoint message}
endpoint. This request expects ’{return type}’
object as response.

- It communicates with...

5.2.3 Questions Created

The methodology for preparing the questions revolves around assessing the

model’s accuracy in responding to queries about microservice systems from both service

view and service interaction perspectives. These questions were crafted to be neutral

and broadly applicable, ensuring they could be used across various scenarios without

bias. To maintain objectivity, the questions are designed to elicit consistent answers,

allowing for uniform evaluation of actual responses without subjective judgment. The

aim extends beyond simply testing the model’s knowledge but also seeks to gauge its

ability to provide insightful and practical solutions for the complexities inherent in

microservice systems.

105

The questions are divided into three categories: Endpoint Details, Remote

Calls, and Dependency. The Endpoint Details category addresses the service view

perspective, focusing on aspects such as the responsibilities of endpoints, their response

mechanisms, internal operations like CRUD operations, and the configured HTTP

methods. The Remote Calls category explores interactions between microservices,

including the sequence of requests and responses between different microservices or

endpoints. Lastly, the Dependency category examines the service dependency graph,

investigating how microservices rely on each other and identifying the endpoints

responsible for establishing these dependency relationships.

Additionally, each question requires data from several microservices to

provide a complete answer. Questions related to Endpoint Details generally need

information from just one microservice. In contrast, questions about Remote Calls

and Dependencies often necessitate data from multiple microservices to address the

interactions and dependencies involved fully.

The questions cover various aspects, including some focusing on specific

functions and others addressing their responsibilities. They also use particular

terminology and keywords with specific meanings; for instance, the term “communicate”

in the context of microservices indicates a remote call relationship between them.

Questions encompass various microservice variations to ensure unbiased results,

preventing skewing towards any specific use case. This approach ensures that the

findings reflect different aspects of the system and are not biased by any particular

scenario.

5.2.4 Prompt Engineering

To efficiently utilize ChatGPT for answering questions about microservices,

particularly those concerning code and static analysis, prompts were designed with

three key elements:

106

Role Prompt: As showed by the MetaGPT research by Hong et al. (2023) indi-

cates the role the agent has to play affects the performance of the LLM. The

decided role was of “a great developer with best practices in Microservices

project”. This foundational step ensures the model aligns its responses within

the specified role, offering insights relevant to microservices. In this case,

it was something like “Microservices Analyst” or “Code Reviewer” to test

its capabilities with any questions, not more specific ones. In addition, this

prompt also clarifies to ChatGPT that there will be a lot of upcoming messages

before the actual questions come along, and to save tokens and get feedback;

it is asked to answer only with “got it”.

Context Prompts: ChatGPT with a specific context to see if it could accurately

respond to a question based on that information. The whole context would

conform to the class file path on the source code project, the methods’ name,

the method’s source code, and also the PO-CCG in natural language form.

Depending on what to test, some information will be excluded or not. In

addition, not all the information was given in a single prompt, but a set of

prompts, one per method. In addition, this prompt reminded ChatGPT that

still more messages were coming before the actual questions and to refrain

from answering anything rather than “got it”.

Task Prompt: The task prompt asks the question after ChatGPT has all the context

injected. However, depending on the question, perform a more targeted prompt

engineering approach: (i) For questions that necessitated an understanding of

specific definitions, ChatGPT was asked to define the concept; if the answer was

correct, ChatGPT was prompted to rephrase the original question, including

at the beginning of this definition in a way that was clear to understand and

give that final answer as the Task Prompt. (ii) Additionally, technical words

were replaced with more natural language words like instead of “Microservice

107

A calls Microservice B,” which would be “Microservice A communicates

with Microservice B.” This step by step format aimed to facilitate deeper

comprehension and more accurate responses from ChatGPT.

The exact Role and Context Prompt are:

Role Prompt: “I want you to act as a great developer with best practices

in Microservices project. I will give you the information of a Microservice during

the following messages. I will expect that in each of those messages, you can answer

as simply as: got it. When I am finished I will let you know and start asking you

questions about it.”

Context Prompt: “In the path < classF ilePath >. There is a method called

< methodName >. With this code: < sourceCode >. Finally, this is information

about Crud and the Control Flow (sequence of calls): < PO − CCG >. Remember

that for this message, you must answer only got it.”

5.2.5 ChatGPT Question Answering Process

The approach for integrating the results from Source Code Extraction, PO-

CCG Construction, and subsequent Natural Language Transformation, along with

the Engineered Prompts, to consolidate and present the information to ChatGPT for

answering a specific question was as follows:

(1) Pass first to ChatGPT the Role Prompt.

(2) Next, given the predefined microservices involved in getting the answer to

the given question, filter the Source Code Extraction data and the PO-CCG

natural language information related to only those microservices. This filtering

specifically targets the methods within their controllers and services.

(3) The extracted information and PO-CCG in the natural language form

corresponding to each method is used to build the Context Prompt.

108

(4) Each Context Prompt is passed to ChatGPT as a separate message until no

Context Prompts are left. Every message corresponds to a single method from

the microservices involved.

(5) Finally, the task prompt is constructed based on the question and passed to

ChatGPT to generate the answer.

5.3 Experimental Design

This section comprehensively examines the experiment conducted and its related

artifacts. The experiment aims to evaluate the effectiveness of the ChatGPT model in

answering questions about microservice systems, which is central to addressing the

research questions outlined in this study.

The following subsections will cover several key elements. First, they describe

the testbench used in the study. Next, they detail the implementation of the proposed

methodology. They then explain the variations of the experiments carried out. Finally,

they discuss the analytical methods applied to the collected data and how these

contribute to answering the research questions.

5.3.1 Testbench

The TrainTicket1 is used, a widely recognized microservice testbench introduced

in Zhou et al. (2018). This testbench simulates a real world microservice architecture

and is well regarded in software engineering.

The system features a decentralized database architecture, where each

microservice is linked to its database. Most microservices use MongoDB, with

one exception utilizing MySQL. It also incorporates modern cloud-native features

such as containerization and advanced routing mechanisms. The setup includes 41

microservices and a dedicated UI project. Of these, 37 microservices are developed

in Java, 2 in Python, 1 in Go, and 1 in NodeJS. The Java microservices follow

1TrainTicket v0.1.0: https://github.com/FudanSELab/train-ticket/tree/0.1.0

109

https://github.com/FudanSELab/train-ticket/tree/0.1.0

enterprise conventions, with a layered architecture including controllers, services,

and repositories, and use the Spring Boot framework 2 along with standard Spring

annotations. Communication between services is handled via REST API calls.

The system’s Java codebase consists of 584 files with a total of 29,003 lines of

code and 4,445 lines of comments, according to cloc statistics from GitHub 3. The

total token count for these Java files is 263,846, as calculated using tiktoken 4 with the

’cl100k base’ encoding scheme. The source code is publicly available at this GitHub

repository5.

5.3.2 Customized Questions for TrainTicket Testbench

A set of generic questions was first used to align the evaluation with the

TrainTicket system, which was then customized to fit the specifics of the TrainTicket

microservice architecture. This adaptation resulted in a set of tailored questions.

The complete dataset of these questions, along with their categories and answers, is

available at this link6.

The study encompasses 33 questions, detailed in Table 5.3 and Table 5.4. These

questions are organized into three categories: 8 questions address endpoint details, 13

focus on remote calls, and 12 examine dependencies. This range of questions covers

various scenarios within the TrainTicket system, targeting different aspects of its

microservices.

The questions vary in complexity, with answers requiring anywhere from 1

to 4 microservices, as detailed in the table. The selection of microservices for each

question is carefully considered to avoid bias toward specific microservices and to

2Spring Boot: https://spring.io/projects/spring-boot

3Cloc: https://github.com/AlDanial/cloc

4Tiktoken: https://github.com/openai/tiktoken

5 Prototype: https://github.com/cloudhubs/Microservice-AI-Reasoning

6Dataset: https://zenodo.org/record/8358519

110

https://spring.io/projects/spring-boot
https://github.com/AlDanial/cloc
https://github.com/openai/tiktoken
https://github.com/cloudhubs/Microservice-AI-Reasoning
https://zenodo.org/record/8358519

Table 5.3. Experimental Questions

C
a
t.

In
d
ex

Question Involved microser-
vices

E
n
d
p
o
in
t
D
et
a
il
s

1 How many endpoints exist in ts-contacts-service microservice? Could you list
them?

1. ts-assurance-service

2 What are the input parameters for “modifyOrder” GET endpoint in ts-order-
service, and what do they represent?

1. ts-order-service

3 What is the expected output or result of modifyOrder GET endpoint in
ts-order-service? Give me the exact Response object built in every case.

1. ts-order-service

4 Which CRUD operations (CREATE, READ, UPDATE, DELETE) does the
“modifyOrder” GET endpoint in “ts-order-service” execute?

1. ts-order-service

5 Describe the data transfer object returned from the “findAllFoodOrder” GET
endpoint in ts-food-service request in the User microservice.

1. ts-food-service

6 What are the microservices and the endpoint for adding a new station? 1. ts-station-service
7 7. What is the endpoint for creating a new route? 1. ts-route-service
8 What HTTP methods are the path and the supported by the ts-assurance-

service microservice’s “modifyAssurance” endpoint?
1. ts-assurance-service

R
em

o
te

C
a
ll
s

9 How many total endpoint requests exist in ts-food-service microservice to
other microservices? Could you list them?

1. ts-food-service

10 How does “getAllFood” function endpoint in Microservice “ts-food-service”
interact with other functions or services within this microservice architecture?
And list the URLs.

1. ts-food-service

11 How does “getTrainTypeByTripId” function endpoint in microservice “ts-
travel2-service” interact with other functions or services within this microser-
vice architecture? Please specify the other function calls, rest api requests,
and the accessed data entities.

1. ts-travel2-service

12 Can you identify the chain of calls (call graph) from the getAllContacts
endpoint in ts-admin-basic-info-service to the findAll repository method in
the ts-contacts-service microservice?

1. ts-admin-basic-info-
service
2. ts-contacts-service

13 Which endpoints in the “ts-food-service” microservice make calls to the “ts-
station-service” microservice?

1. ts-food-service

14 14. Can you identify the inter-service calls from the “getAllFood” GET
endpoint in “ts-food-service” to the queryById GET endpoint in the “ts-route-
service” microservice? Could you list them?

1. ts-food-service
2. ts-travel-service
3. ts-route-service

15 Can you identify the chain of calls (call graph) between the “ts-food-service”
and “ts-route-service” microservices in the following scenario?: A user calls
the service in charge of showing all food on the user’s trip. Please include
services and controllers calls too.

1. ts-food-service
2. ts-travel-service
3. ts-route-service

16 Can you identify any cyclic dependencies in the call graph of the ts-food-service
microservice? If so, which endpoints are involved?

1. ts-food-service
2. ts-travel-service
3. ts-route-service

prevent the influence of a single microservice’s characteristics across multiple questions

within the same category. This approach ensures a fair and unbiased examination of

various aspects of different microservices in the system. Consequently, these questions

collectively address 15 distinct microservices, providing comprehensive coverage of the

main components and interactions in the examined TrainTicket system.

5.3.3 Prompt Engineering

The previous section on Prompt Engineering within the Methodology covered

the three types of prompts: Role, Context, and Task, and provided details on the

111

Table 5.4. Experimental Questions Cont.

C
a
t.

In
d
ex

Question Involved Microservices

17 How many endpoint routes exist between microservices ts-food-service
and ts-food-map-service? Could you list them?

1. ts-food-service
2. ts-food-map-service

18 How many endpoint routes exist between microservices ts-food-service
and ts-station-service? Could you list them?

1. ts-food-service
2. ts-station-service

D
ep

en
d
en

cy

19 How many endpoint routes exist between microservices ts-food-service
and ts-price-service? Could you list them?

1. ts-food-service
2. ts-price-service

20 How many distinct microservices are called from microservice ts-
preserve-service?

1. ts-preserve-service

21 How many distinct microservices are called from microservice ts-food-
service?

1. ts-food-service

22 Identify the microservice endpoints that the “ts-preserve-service”
microservice has a direct dependency on them.

1. ts-preserve-service

23 Identify the microservice endpoints that the ”ts-preserve-service”
microservice has a direct dependency on them.

1. ts-preserve-service

24 Which microservice endpoints are impacted if the ts-price-service
microservice’s endpoint for food ordering experiences an outage?

1. ts-basic-service
2. ts-food-service

25 Identify the microservice endpoints that directly or indirectly rely on
the “ts-user-service” microservice.

1. ts-preserve-service
2. ts-preserve-other-service

26 Describe the service dependency graph for ts-price-service.** 1. ts-price-service
2. ts-basic-service
3. ts-ticketinfo-service

27 Describe the service dependency graph for ts-food-service. ** 1. ts-food-service
2. ts-perserve-service
3. ts-perserve-other-service
4. ts-station-service

28 Identify the microservice endpoints that have a dependency on the
“ts-food-service” microservice’s endpoints. **

1. ts-food-service
2. ts-preserve-service
3. ts-preserve-other-service

29 Identify the microservice endpoints that the “ts-preserve-service”
microservice depends on when preserving an order ticket. **

1. ts-preserve-service

30 Identify the microservice endpoints that directly rely on the “ts-food-
service” microservice. **

1. ts-preserve-service
2. ts-preserve-other-service

31 Identify the microservice endpoints that the “ts-preserve-service”
microservice depends on when preserving an order ticket. **

1. ts-preserve-service

32 Identify the microservice endpoints that directly rely on the “ts-food-
service” microservice.**

1. ts-preserve-service
2. ts-preserve-other-service

33 Identify the microservice endpoints that the “ts-food-service” microser-
vice has a direct or indirect dependency on them. **

1. ts-food-service

** Indicates the questions necessitating contextual information related to the Task prompt, such as integrating the
definition of service dependency graph.

Role and Context Prompts. This section elaborates on how the Context Prompt is

adjusted for different experiments and illustrates how to transform an initial question

into the final Task Prompt.

Modifications are made to the Context Prompt based on the experiment’s

requirements. For example, if the experiment focuses solely on using source code, all

sections related to the PO-CCG are omitted. Conversely, the source code section is

excluded if the aim is to test responses based only on PO-CCG in natural language

112

form. Regardless of the modifications, the class file path and method name are

consistently included in the Context Prompt.

For the Task prompt, provide an example of a question (marked by ** in

Table 5.4) that it was going to turn out confusing to the model based on the

ambiguity of the term dependency and the adaptation by the Prompt Engineering

strategy described in the Methodology section:

Original Question: “Identify the microservice endpoints that directly rely

on the “ts-food-service” microservice.” This is question number 32 in Table 5.4

Then, ChatGPT was asked to define the term “service dependency graph”

and, with that definition and the original question, create a prompt that it could

understand, but always including the definition at the beginning.

Adapted Question: “A service dependency graph is a representation that

shows the interdependencies between various services in a system, especially in the

context of microservices architecture. Each node in the graph represents a microservice,

and the directed edges between nodes represent one service’s dependency on another.

In other words, if Microservice A calls Microservice B, there would be an edge from A

to B. Given that context answer, I want you to identify the microservice endpoints on

which the “ts-food-service” microservice is directly dependent.

Now, let’s also discuss this example because there is one more modification.

After some analysis, it was decided the word call was too technical, counterintuitive,

and potentially ambiguous for ChatGPT. Therefore, the call was replaced with

communicate and the final task prompt was:

Task Prompt: “A service dependency graph is a representation that shows

the interdependencies between various services in a system, especially in the context

of microservices architecture. Each node in the graph represents a microservice, and

the directed edges between nodes represent one service’s dependency on another. In

other words, if Microservice A communicates with Microservice B, there would be an

113

edge from A to B. Given that context, answer the following: I want you to identify the

microservice endpoints that the “ts-food-service” microservice has a direct or indirect

dependency on.”

5.3.4 Methodology Implementation

This section provides a technical overview of the implementation details for the

proposed methodology, covering the following phases: 1. Source Code Extraction,PO-

CCG Construction, NL Transformation, and ChatGPT Question Answering Process.

5.3.4.1 Source Code Extraction:. The prototype is tailored for Java

microservices designed around a layered application structure comprising controllers,

services, and repositories built atop the Spring Boot framework. The tool requires the

path to the source code to begin the analysis.

Java source files are identified using Apache Commons IO7, which filters files

by the “.java” extension. Each file is then analyzed using the javaparser8 library.

This static analysis process identifies key components of the code, including packages,

classes, interfaces, and specific methods, while excluding basic methods such as getters,

setters, and constructors.

A CSV file as output is generated, cataloging the methods detected and the

classes to which they’re associated, as referenced in Section 5.2.1. Although most

data points are directly extracted using the javaparser library, class categorization

is based on specific Spring annotations: classes with @Controller are classified as

controllers, @Service as services, @Repository as repositories, and classes without

these annotations are labeled as “other.” It’s important to note that the source code

extraction primarily targets methods, so the CSV file’s row count reflects the total

number of methods in the system.

7Apache Commons IO: https://commons.apache.org/proper/commons-io/index.html

8Javaparser: https://javaparser.org/

114

https://commons.apache.org/proper/commons-io/index.html
https://javaparser.org/

5.3.4.2 PO-CCG Construction:. The prototype for CCG extraction Abdelfat-

tah et al. (2023) (accessible at GitHub 9) was employed to generate the CCG in a

JSON format. Furthermore, the persistence operation extension prototype Abdelfattah

et al. (2023) (available at 10) was used to pinpoint persistent operations, which were

also outputted in a JSON format. The newly developed prototype tool takes these

two JSON files as input. It then associates each previously extracted method with

its corresponding CCG and persistent operation, provided they exist in the inputted

JSON files.

5.3.4.3 NL Transformation:. The implementation of the procedure described

in Section 5.2.2 was conducted in the Python programming language (the source code

is available at this repository 11). The script takes as input a Comma-Separated-

Values (CSV) file that contains columns for the Persistent Operations and the Control

Flow Graph and produces a new CSV file with an added column of the description.

5.3.4.4 ChatGPT Question Answering Process:. The experiments were

primarily conducted on Jupyter Notebook 12 using the Python programming language.

The main libraries used were the Pandas libraries 13 to handle the dataset of information

condensed in the CSV file 14 and the OpenAI 15 library as the primary tool for

interfacing with the ChatGPT model. This library facilitated real-time communication

and data processing with the model, enabling us to pose questions and receive responses

systematically.

9https://github.com/cloudhubs/Distributed-Systems-Semantic-Clone-Detector

10https://github.com/cloudhubs/authz-flow-analysis

11https://github.com/cloudhubs/Microservice-AI-Reasoning

12Jupyter: https://jupyter.org/

13Pandas Lib:https://pandas.pydata.org/

14https://zenodo.org/record/8358519

15OpenAI: https://github.com/openai/openai-python

115

https://github.com/cloudhubs/Distributed-Systems-Semantic-Clone-Detector
https://github.com/cloudhubs/authz-flow-analysis
https://github.com/cloudhubs/Microservice-AI-Reasoning
https://jupyter.org/
https://pandas.pydata.org/
https://zenodo.org/record/8358519
https://github.com/openai/openai-python

With the above tools, created a function called askMicroserviceExpertChat-

GPT(question, microservicesNames) that receives as input a set of microservice

names and a question, and the experimental workflow was the following:

(1) For each question, compile a list of the involved microservices and use this

list, along with the question text, as inputs for the function.

(2) Next, utilize Pandas to read the CSV file containing detailed information

about the Microservice Project, including class file paths, method names,

method source code, and PO-CCG in natural language form for each method

across all microservices in the project.

(3) Then, filter the CSV information based on the microservice names by

examining the class file path column.

(4) Apply an additional filter using the class file path to ensure that only methods

from the Controllers and Services of the involved microservices are included.

(5) Another filter was applied to exclude any methods related to testing.

(6) Next, create a list of messages and set the Role Prompt as the initial message.

(7) Then, iterate over each remaining row in the CSV (after applying the

filters). The classFilePath, methodName, methodSourceCode, and PO-CCG-

NL columns were used to construct a Context Prompt for each row. This

prompt was then added to the list of messages.

(8) Next, iterate through the list of messages, sending each one to ChatGPT using

the OpenAI library until all messages were processed.

(9) Finally, send the last message containing the Task Prompt and returned the

final answer.

116

5.3.5 Execution of the Experiments

For the experimental execution, ChatGPT’s “gpt-3.5-turbo-16k,” a variant of

OpenAI’s Generative Pre-trained Transformer (GPT) model Radford et al. (2018); Ray

(2023); Hörnemalm (2023) was used. This specific version is optimized for efficiency

and performance, making it suitable for various applications, from casual conversations

to specialized tasks requiring a nuanced understanding. One of the key features of

the “gpt-3.5-turbo-16k” variant is its ability to process up to 16,000 context tokens

in a single interaction. This extended context window enables the model to handle

longer conversations or detailed content more effectively, capturing intricate details

and providing coherent, context-aware responses throughout extended interactions.

The general experimental execution involved passing each question and the

corresponding microservice names to askMicroserviceExpertChatGPT(question,

microservicesNames) function to obtain the answers for further evaluation, as

described in the subsequent sections. Additionally, to ensure the stability and

repeatability of the results, this process was repeated for each question three times.

The primary objective was to confirm that the output remained consistent across

these iterations.

However, the description above applies only to the general case where included

all the information class file path, method name, method source code, and PO-CCG

in natural language form in the Context Prompt. In addition to this, two other

experiments were done: one using only the source code without the PO-CCG, and

another using only the PO-CCG in natural language form without the source code.

It’s important to note that ChatGPT has context limitations, with the

maximum available context length for API access being 16k tokens in the gpt-3.5-based

versions 16. Due to these constraints, the focus was specifically on the Services and

Controllers of each microservice involved. The inherent limitations associated with

16https://help.openai.com/en/articles/7102672-how-can-i-access-gpt-4

117

https://help.openai.com/en/articles/7102672-how-can-i-access-gpt-4

ChatGPT’s context capacity were addressed by deliberately narrowing the scope to

only Services and Controllers.

In summary, the experimental execution comprises three distinct scenarios to

assess the impact of various data types on the responses:

Source Code Context: In this scenario, remove from the Context Prompt the

PO-CCG information.

PO-CCG Context: In this scenario, remove from the Context Prompt the method’s

source code information and keep only the method’s name and class file path

beside the PO-CCG in natural language form.

Comprehensive Context: In the final scenario, integrate the source code and PO-

CCG in the Context Prompt as described previously in the Prompt Engineering

section.

All implementation and parameters set to reproduce these experiments can be

found on a GitHub repository 17.

5.3.6 Evaluation of Answers

The evaluation is started by thoroughly analyzing the source code to derive the

correct answers for each question directly from the system. Following this, compare

these actual answers with those provided by ChatGPT during the experiment. The

evaluation encompassed responses obtained from different knowledge bases: source

code, the PO-CCG approach, and a combination of both source code and PO-CCG.

Given that the questions were intentionally designed to elicit specific lists of

items, it was recognized that ChatGPT’s responses might occasionally include either

more or fewer items than anticipated. The focus was on assessing the accuracy of

the answers, particularly their effectiveness in identifying the expected responses.

In instances where ChatGPT generated additional correct answers unrelated to the

17https://github.com/cloudhubs/Microservice-AI-Reasoning

118

https://github.com/cloudhubs/Microservice-AI-Reasoning

specific question, they were excluded from the formal evaluation but considered in the

discussions. Consequently, the evaluation was guided by the following criteria:

• Correct: The number of items that the system correctly identified.

• Spurious: The number of items incorrectly predicted by the system.

• Missing: The number of items that the system was expected to mention but

failed to do so.

To quantify the evaluation, the F1 score was calculated, which measures the

answers’ accuracy. It combines the notions of correct, spurious, and missing into

Precision and Recall scores, which are then aggregated into a single F1 score. Here

are the equations that:

P =
C

C + M
R =

C

C + S
F1 =

2 · P ·R
P + R

(5.1)

Where C, M , S, P , and R represent Correct, Missing, Spurious, Precision, and

Recall, respectively.

The F1 score offers a balanced evaluation of a model’s performance by taking

into account both its precision how accurately it identifies positive predictions and its

recall how effectively it captures all relevant positive instances.

5.3.7 Analysis

To address RQ1, the focus was on evaluating the average F1 score achieved

across different scenarios and analyzing the standard deviation of these results. The

outcomes were examined based on the categories defined in Section 5.2.3 and considered

the results according to the number of microservices involved in the answer.

Subsequently, a statistical analysis was conducted to determine whether the

model performed better in certain question categories than others. The hypothesis

tests were designed as independent samples omnibus mean tests, as each category

119

contains different questions. In cases where the omnibus test yielded significant results,

post-hoc tests were performed.

For RQ2 and RQ3, another series of tests was conducted to investigate whether

statistical evidence supports the claim that the system performs better using one

knowledge base compared to others. These hypothesis tests were formulated as

paired samples omnibus mean tests, as different conditions (knowledge bases) were

tested across the same subjects (questions). Post-hoc tests were carried out if the

omnibus test indicated a significant result. Additionally, these tests were performed

independently across various categories to identify any significant differences within

specific categories rather than just the overall results.

Notably, several scenarios are used to evaluate the system and address the

research questions. Each scenario is based on a specific subset of the questions. These

scenarios include:

Overall: All the questions

Full Context: Questions where the Source Code-based scenario received the prompt

for the full context of the question, namely, the relevant Controller and Service

source code.

Non-full Context: The complement of Full Context.

Remote Calls: Questions in the Remote Calls category.

Endpoint Details: Questions in the Endpoint Details category.

Dependency: Questions in the Dependency category.

One Microservice: Question whose answer involved one microservice.

Two Microservices: Question whose answer involved two microservices.

More-than-two Microservices: Question whose answer involved more than two

microservices.

120

Figure 5.3. Boxplot graphs of the F1 score in each evaluation scenario.

Figure 5.3 shows bloxplot representations of the results in each evaluation

scenario described.

Note that in nearly all instances, the median result represents the highest

possible score. The most challenging questions seem to be those involving multiple

microservices. Although the 50th percentile scores are high, there is significant

variability in the quality of the answers. Based on these results and qualitative

assessment of the responses, this was the answer provided to RQ1.

RQ1 ChatGPT can leverage source code to answer questions about microservice

and interaction views at varying levels of complexity with differing performance

outcomes. When using only the source code, it achieves a mean F1 score of 0.794,

accompanied by a relatively high standard deviation of 0.307. The primary challenges

observed during the experimentation that impacted these results include: Context

Limitation: Even with a reduced context focused solely on Controllers and Services,

questions involving many microservices were challenging to test with source code alone.

Prompt Brittleness: The prompts used could yield incorrect results, with minor changes

121

potentially causing significant variations in the answers. Hallucinations: This issue

involves ChatGPT generating outputs that appear plausible but are factually incorrect

or not present in the provided context. The model might produce non-existent methods,

classes, or connections that were never included in the source code.

To illustrate the hallucination phenomenom that was experienced we provide

the following examples:

(1) When the task was: “Which CRUD operations (CREATE, READ, UPDATE,

DELETE) does the modifyOrder GET endpoint in ”ts-order-service” execute?”

The correct answer, in summary, was: “Read and Update”. However, we got

the hallucinated answer: “Create and Read”.

(2) When the task was: “Which endpoints in the ts-food-service microservice

make calls to the ts-station-service microservice?” The correct answer was

simply: “The GET endpoint getAllFood”. However, we got the hallucinated

answer: “getAllFood, updateFoodOrder, findByOrderId ”.

(3) When the task was: “Identify the microservice endpoints that directly or

indirectly rely on the ts-user-service microservice.” The correct answer was

in summary: “POST PreserveController.preserve and POST PreserveOther-

Controller.preserve”. However, we got a large hallucinated answer that lists

three microservices which is not part of the task and lists from them multiple

endpoints not involved in this like: calculate, updateUser, getAllUser, and

others.

Next, Table 5.5 shows the results of running a Friedman test Friedman (1937) to

test the null hypothesis that the means of all results are the same. Repeated-measures

ANOVA was not considered because the data failed to pass the Shapiro-Wilk normality

test.

It can be observed that for a significance of α = 0.05, there is no scenario

in which there exists evidence to reject the null hypothesis. Under a significance

122

Table 5.5. Results of Friedman’s test in several scenarios. In each case, the final
statistic and the p-value are reported.

Scenario Statistic P-value
Overall 2.10 0.350

Full Context 1.20 0.549
Non-full Context 2.80 0.247
Endpoint Details 3.50 0.174

Dependency 1.93 0.381
One Microservice 3.71 0.156
Two Microservices 1.75 0.417

More-than-two Microservices 4.80 0.091

Table 5.6. Friedman’s post-hoc tests for finding statistically relevant pairwise
differences among the three knowledge bases in the More-than-two Microservices

scenario.

Source Code PO-CCG Source Code+PO-CCG
Source Code 1.000000 0.648103 0.648103
PO-CCG 0.648103 1.000000 0.193400

Source Code+PO-CCG 0.648103 0.193400 1.000000
(a) Nemenyi test.

Source Code PO-CCG Source Code+PO-CCG
Source Code 1.000000 0.309092 0.450886
PO-CCG 0.309092 1.000000 0.087673

Source Code+PO-CCG 0.450886 0.087673 1.000000
(b) Conover test

of α = 0.1, the null hypothesis can be rejected in the More-than-two Microservices

scenario. Nemenyi Nemenyi (1963) and Conover Conover and Iman (1981) post-hoc

tests were done to assess the pairwise differences between system’s capabilities with

different knowledge bases. Pairwise p-values are shown in Tables 5.6a and 5.6b,

respectively.

The Conover test showed a significant result at the 0.1 level, indicating a

notable difference between using PO-CCG combined with source code and using only

PO-CCG. In contrast, the Nemenyi test, which is more conservative, did not show

a significant difference. This outcome aligns with expectations, as PO-CCG alone

provides clearer, more direct answers to service interaction and dependency questions.

123

When combined with source code, the additional information may introduce ambiguity

or confusion, potentially reducing the accuracy of ChatGPT’s responses. This is

consistent with the known limitation that large prompts and extensive contexts can

impair the accuracy of LLMs.

These results set the stage for answering the remaining research questions.

RQ2 The experiments did not find statistical evidence that ChatGPT’s

performance improves with the use of Source Code compared to PO-CCG knowledge.

However, the results suggest a slight advantage in using PO-CCG information.

RQ3 Overall, the experiments did not provide statistical evidence that combining

Source Code and PO-CCG improves ChatGPT’s performance on microservice-related

questions. Instead, in scenarios involving more than two microservices, the system

performed better using PO-CCG information alone.

5.4 Limitations

The metrics used to evaluate ChatGPT’s performance such as Completeness,

Relevance, Clarity, and Accuracy might not capture all aspects of an answer. The

questions designed for the study may only cover specific facets of the Service View and

Service Interaction perspectives, potentially limiting the evaluation. The study focused

on a particular microservice project, so the results might differ for more complex or

different projects. Additionally, the selected prompts might not be optimal for all

contexts, and the best prompt for every scenario may not have been identified. The

methodology was based on common Object-Oriented Programming (OOP) principles,

which might not apply to projects using different paradigms. Although the alignment

between source code and PO-CCG was validated manually, discrepancies could still

exist.

Human evaluators assessing ChatGPT’s responses could introduce biases or

inconsistencies. To mitigate this, evaluators were provided with clear criteria and

124

cross-checked their assessments. Despite these measures, some subjectivity might still

affect the results.

The findings may not generalize beyond the specific microservice project

evaluated, even though they represent typical microservice architectures. Results

might also be specific to the ChatGPT gpt-3.5-turbo-16 version and may not apply to

other versions or models. The prompts’ specificity could limit the results’ applicability

to different microservice types or contexts.

The number of questions used might be insufficient for drawing robust

conclusions, despite rigorous development and broad applicability. Even with repeated

questioning, the potential for variability in answers remains a concern. Prompt

brittleness, where minor changes in prompts can significantly alter responses, is a

known limitation of LLMs. Additionally, ChatGPT might produce hallucinatory

responses, such as non-existent connections or endpoints, which was not addressed in

the current study but will be considered in future work.

5.5 Discussion

The experiment highlighted the effectiveness of PO-CCG as a contextual source

for ChatGPT, particularly within the constraints of token limits. For 18 out of 33

questions, using only controller and service details exceeded ChatGPT’s token limit,

while PO-CCG data, which fits within these constraints, provided satisfactory answers.

However, PO-CCG struggled with questions requiring detailed implementation specifics

or data model descriptions, whereas source code could have been more effective in

extracting routes between microservices.

Effective prompt engineering significantly impacts ChatGPT’s responses.

Modifying keywords and clarifying concepts in prompts improved the model’s

understanding. For instance, explicitly defining the “service dependency graph”

led to more accurate answers. ChatGPT also adeptly connected technical terms like

125

“outage” to their context. However, without proper definitions, the model sometimes

misinterprets concepts.

ChatGPT showed a notable ability to infer correct answers from provided data,

even when not all details were explicitly included in the prompt. For example, it

accurately identified an endpoint from a related context. Yet, this adaptability can

lead to fabricated responses when data is insufficient. The model occasionally missed

parts of multi-faceted questions but performed well when questions focused on specific

aspects. This behavior reflects ChatGPT’s contextual adaptability and highlights

areas for prompt refinement.

Now, from the perspective of the higher topic of automatic compliance checks

of legal regulations in complex software systems, the results showed insights into the

challenges and potential of using ChatGPT or similar for the automatic auditing

of legal regulations in software systems. As evidenced by the varying performance

outcomes across the research questions, the effectiveness of LLMs like ChatGPT in

this context is contingent on several factors, including the system’s complexity, the

context provided, and the robustness of the prompts.

The finding that ChatGPT struggles with context limitations when analyzing

complex microservice architectures highlights a significant challenge for automatic

audits of legal regulations. In real-world applications, legal compliance often requires

a comprehensive understanding of how different software system components interact,

especially in complex architectures like microservices. The model’s difficulty in

managing and accurately interpreting many microservices based solely on source code

suggests that, without adequate contextual framing, the model may overlook critical

interactions that could indicate compliance or non-compliance with legal standards.

Besides, any approach that will attempt to pass the agent not only the software source

code, but lengthy legal regulations will be further affected by this limitation.

126

The brittleness of prompts and hallucinations are particularly concerning in

legal compliance auditing. Inaccurate responses generated due to slight changes

in prompts or fabricated information can lead to erroneous conclusions about a

system’s compliance status. Given the high stakes of legal audits, where incorrect

interpretations could result in legal liability, these issues show the need for meticulous,

prompt engineering and validation when using LLMs. The potential for hallucinations

further complicates using LLMs in this domain, as it raises the risk of generating

incorrect information that could mislead auditors, developers, or any user.

The results indicate that PO-CCG data generally performed better than source

code in answering questions about microservice systems, particularly in scenarios

involving multiple microservices. This finding suggests that more abstracted and

structured representations like PO-CCG might be more effective for tasks requiring

an understanding of high-level system interactions, which are often crucial in legal

audits. The lack of significant improvement when combining source code with PO-

CCG highlights the importance of selecting the right knowledge base for the task. For

auditing purposes, using targeted, high-level abstractions may be more beneficial than

relying on raw code, which may overwhelm the model with unnecessary detail and

increase the risk of errors.

5.6 Conclusion

This chapter examines the rapidly evolving software development landscape,

where microservice architecture has emerged as a dominant pattern. Microservices’

decentralized nature and intricate cross-service dependencies make understanding and

documenting such systems a complex task. While valuable, traditional documentation,

summarization, and semantic analysis methods often need help to keep pace with

these systems’ dynamic evolution.

The exploration of the potential of (LLMs), exemplified by ChatGPT, as

practical tools for understanding and querying microservice systems using source

127

code and the PO-CCG as a knowledge base, showed the following revealing findings:

PO-CCG demonstrated a significant advantage in accurately responding to a broader

range of questions within the constraints of the model’s token limitations. This

suggests a promising direction for organizations aiming to gain insights into their

microservices landscape without the extensive overhead associated with traditional

documentation methods.

However, while PO-CCG excelled in addressing service interactions and depen-

dencies queries, it encountered challenges when dealing with granular implementation

details or specific data model descriptions. ChatGPT’s versatility proved to be both

a strength and a limitation, as the model occasionally deduced answers beyond the

specificity of the query, sometimes resulting in fabricated or incomplete responses.

The findings highlighted the critical role of prompt engineering in guiding the model

toward more accurate and meaningful outputs.

This chapter shows the potential and challenges of integrating LLMs like

ChatGPT into software development, documentation, analysis, and legal compliance.

While these models can only partially replace traditional documentation or legal

human expertise, they are powerful tools for developers and architects, particularly

in complex microservice environments. As LLMs become increasingly integrated

into software development practices, their ability to assist in system comprehension,

provide insights, and answer queries could revolutionize how organizations manage

legal compliance. By working with human experts, LLMs can contribute to a more

efficient and accurate understanding of complex systems, ultimately leading to more

robust and compliant software architectures. Further research and exploration in this

domain could pave the way for innovative software development practices, where LLMs

play a critical role in ensuring legal and regulatory compliance across decentralized

and rapidly evolving systems.

128

5.7 Credit

In this section, we will provide each author’s contributions to the work presented

in this chapter. For this, we will use the system CRediT(https://www.elsevier.

com/researcher/author/policies-and-guidelines/credit-author-statement)

from Springer to make it easier.

Ernesto Quevedo Caballero: Conceptualization, Methodology, Software, Valida-

tion, Formal analysis, Investigation, Resources, Data Curation, Writing -

Original Draft, Writing-Review Editing, Visualization, Project administra-

tion.

Amr S. Abdelfattah: Conceptualization, Software, Validation, Formal analysis,

Data curation, Visualization, Writing-review and editing.

Alejandro Rodriguez: Conceptualization, Software, Validation, Formal analysis,

Visualization, Writing-review and editing.

Jorge Yero: Conceptualization, Software, Validation, Formal analysis, Visualization,

Writing-review and editing.

Tomas Cerny: Conceptualization, Investigation, Validation, Data curation, Visual-

ization, Writing-review and editing, Supervision.

129

https://www.elsevier.com/researcher/author/policies-and-guidelines/credit-author-statement
https://www.elsevier.com/researcher/author/policies-and-guidelines/credit-author-statement

CHAPTER SIX

LLMs Hallucinations Detection Survey

The rapid development of Natural Language Generation (NLG) has revolution-

ized the field of natural language processing, driven by advancements in deep learning

technologies, particularly Transformer-based Large Language Models (LLMs) like

BART, LLaMa, GPT-3.5, GPT-4. These models have captured significant attention

due to their impressive performance across various tasks, leading to an increased focus

on their potential and limitations. Among the critical concerns is the phenomenon

known as “hallucination,” where models generate nonsensical text, unfaithful to the

source content or factually incorrect. Such outputs pose significant risks, particularly

in sensitive domains like legal, medicine, or privacy-sensitive applications, where inac-

curate information can have severe consequences. For that reason, research interest in

understanding and mitigating hallucinations across different NLG tasks has sparked.

The growing body of research aims to detect and correct these errors and refine the

underlying models to reduce their occurrence.

Despite the progress made, a comprehensive understanding of hallucinations

across all major NLG tasks still needs to be completed. Chapters 2 and 4 clearly

show that hallucinations in LLMs are a significant barrier to achieving the pinnacle of

automatic legal compliance analysis in software systems. Therefore, detecting when an

LLM generates hallucinations is essential to prevent the production of nonsensical or

unfaithful answers. Such errors could lead developers or legal auditors to mistakenly

assume that a software system is compliant when it is not or that a legal violation

exists when it is not. Given its critical importance in the global landscape of machine

learning and Natural Language Processing (NLP) and the scope of this thesis, this

130

chapter provides a literature review on LLM hallucination detection methods in this

chapter.

Chapter 7 uses the insights gained from this review to address the challenging

problem of detecting hallucinations. However, this chapter will focus primarily on

methods devoted to detection. In contrast, Chapter 8 will delve into methods for

mitigation, which often complement the original detection methods.

6.1 Definition

Based on the classifications established in earlier studies Dziri et al. (2021); Ji

et al. (2023); Huang et al. (2023), hallucinations are divided into two main categories:

intrinsic and extrinsic.

Intrinsic hallucination: occurs when a generated text is inconsistent or nonsensical

based on the information within the text itself Ji et al. (2023). Example:

“Albert Einstein, renowned botanist, discovered the relativity laws of physics.”

Extrinsic hallucination: occurs when the generated output cannot be confirmed

or disproven by the source content (i.e., the output is neither supported nor

contradicted by the source) Ji et al. (2023). Example: “Albert Einstein

devoted much of his free time to thinking about creating a new intellectual

game.”

It is also important to differentiate hallucination errors from other types of

errors:

Biased outputs: emerge when an AI model’s training data or algorithms carry

embedded prejudices, resulting in outputs that mirror these biases, such

as stereotypes or discriminatory patterns. These outputs aren’t typically

hallucinations but rather accurate reflections of the biases in the data the

model was trained on. The model replicates aspects of reality, even when that

reality is flawed or problematic. Addressing biases in AI is a crucial challenge

131

for ensuring the safety and fairness of AI systems. However, it is a distinct

issue that can be addressed separately in the future.

Out-of-distribution errors: occurs when an AI model encounters input data vastly

different from what it was trained on; it can generate unpredictable or illogical

outputs. These situations reveal the model’s limitations, making it clear that

the input is beyond its capacity to handle effectively. This issue is essentially

a generalization error, indicating either that the model’s hypothesis space is

too limited to encompass the true distribution of data fully or that the data

and training methods used are inadequate for identifying a sufficiently broad

hypothesis.

Hallucinations are more problematic than out-of-distribution errors because

they occur within the input distribution, where the model is expected to perform

reliably. Unlike biases, hallucinations involve the model generating information entirely

fabricated or detached from reality, making detection much more challenging. The

stochastic nature of generative models exacerbates this issue, as hallucinations can

happen randomly once in 100 instances for the same input, rendering them nearly

impossible to evaluate or debug consistently. The model’s confident and coherent

responses further complicate the identification of these errors, as there are no clear

indicators for human evaluators to detect them easily.

6.2 Taxonomy of Hallucination Detection Methods

The analysis will be divided to present current works in hallucination detection,

and the present works will correspond to the method used. Figure 6.1 illustrates the

summary of the methods used to detect hallucinations in LLMs found in this chapter.

6.2.1 Retrieval methods

One intuitive strategy for pinpointing factual inaccuracies in LLM outputs

is to compare the model-generated content against reliable knowledge sources.

132

Figure 6.1. Summary of the review on Hallucination Detection in LLMs

This approach has gained significant attention in hallucination detection, where

retrieval-based methods play a pivotal role. By leveraging external databases, search

engines, or specialized corpora, these methods aim to verify the truthfulness of LLM-

generated statements by cross-referencing them with authoritative sources Saxena and

Bhattacharyya (2024); Huang et al. (2023); Ji et al. (2023).

This section reviews notable research efforts that utilize retrieval methods

to detect hallucinations in LLM outputs. These studies explore various retrieval

techniques, ranging from simple keyword-matching systems to more sophisticated

neural retrieval architectures, each offering distinct advantages in enhancing the factual

reliability of generative models. By integrating retrieval with LLMs, these works aim

to balance efficiency and accuracy in identifying factual inconsistencies, demonstrating

promising pathways for improving the trustworthiness of LLM-generated content.

Retrieval-based approaches for hallucination detection involve comparing the generated

text against relevant information retrieved from external databases or knowledge

sources. These methods identify potential hallucinations by cross-referencing the

generated content with verified data, ensuring that the information aligns with known

133

facts. The content is flagged as a potential hallucination if discrepancies between

the generated output and the retrieved data are found. This approach leverages the

vast amount of information available in external sources to enhance the accuracy of

detecting factually incorrect or unsupported content in the generated text Saxena and

Bhattacharyya (2024).

Chen et al. (2023), the authors tackle the challenge of automating fact-checking

for real-world claims by creating a pipeline that retrieves raw evidence from the

web. Traditional methods for fact-checking often make unrealistic assumptions, such

as having access to curated evidence or information published after a claim has

been made. In contrast, this study restricts the retrieval process to documents

that were available before the claim was made, which better reflects real-world

scenarios where claims emerge and must be verified in real time. The proposed

pipeline comprises five key components: claim decomposition, raw document retrieval,

fine-grained evidence retrieval, claim-focused summarization, and a final veracity

judgment. Tested on complex political claims from the CLAIMDECOMP dataset Chen

et al. (2022), the system demonstrated that aggregating retrieved evidence could

improve the accuracy of fact-checking. Human evaluations further validated that the

system’s claim-focused summaries were reliable and relevant, without hallucinating

information, thus supporting fact-checkers by providing useful summaries even if the

full evidence set wasn’t available. The study highlights the limitations of web searches

in capturing all the necessary information to verify claims, emphasizing the complexity

of evidence retrieval in real-world contexts. The authors suggest that integrating

human oversight into the automated fact-checking process would further improve

reliability, pointing toward a future where human-in-the-loop systems enhance the

effectiveness of automated fact-checking workflows.

In the research Min et al. (2023), authors perform extensive human evaluations

to calculate FACTSCOREs for biographies generated by several leading LLMs, such

134

as InstructGPT, ChatGPT, and PerplexityAI, revealing that models like ChatGPT

achieve only 58%. To address the cost of human evaluation, the paper also presents

an automated model for estimating FACTSCOREs using retrieval and a robust

language model, achieving less than a 2% error rate. This automated metric is then

applied to assess 6,500 generations from 13 recent LLMs, providing insights into model

performance, such as GPT-4 and ChatGPT being more factual than public models

and Vicuna and Alpaca ranking among the best public models.

The work of Galitsky (2023) presents “Truth-O-Meter,” a fact-checking system

designed to improve the factual accuracy of content generated by LLMs like GPT-4.

LLMs often produce texts that contain inaccuracies or hallucinations, and Truth-O-

Meter addresses this by comparing the generated text against web data and other

information sources. The system uses text mining and web mining techniques to find

correct corresponding sentences and employs syntactic and semantic generalization

to enhance content quality. The system relies on defeasible logic programming

for argumentation analysis to manage inconsistencies in the sources it analyzes.

The authors compare Truth-O-Meter’s performance to alternative methods, such as

reinforcement learning-based approaches and token-based hallucination detection,

and find that the system significantly enhances LLM-generated content’s factual

correctness and meaningfulness. Additionally, the system leverages advancements

in content correction algorithms, which have improved alongside developing more

sophisticated LLMs.

Huo et al. (2023) investigates whether LLMs can detect their hallucinations

by verifying generated answers using an information retrieval system. The proposed

pipeline presents a question to an LLM, receives the generated answer, and then

queries a corpus combining the question and answer to retrieve supporting evidence.

The LLM is then prompted to assess whether the retrieved evidence supports the

generated response. The experiment is based on the MS MARCO (V1) test collection,

135

using various retrieval approaches, from the simple BM25 Robertson et al. (1995) to a

more advanced question-answering stack with an LLM-based reader. The study finds

that in most cases, the LLM can verify its responses when provided with relevant

supporting material, achieving an accuracy of 70-80% in detecting hallucinations.

However, the LLM needs help with answers involving numbers. While this method

shows promise, it cannot be solely relied upon to detect hallucinations consistently.

The retrieval method is crucial in improving answer verification, with more effective

methods yielding higher-quality responses but often at the cost of efficiency. The

research demonstrates that even a computationally inexpensive method like BM25

can perform acceptably in this task.

The research of Chern et al. (2023) introduces FACTOOL, a task and domain-

agnostic framework designed to address the growing challenge of detecting factual

errors in texts generated by LLMs, such as ChatGPT. It highlights key issues with

generative models, including (1) the increasing risk of factual inaccuracies across a

wider range of tasks, (2) the tendency for generated texts to be lengthy and lacking

clear granularity for individual facts, and (3) the scarcity of explicit evidence available

for fact-checking. With these challenges in mind, FACTOOL aims to provide a

comprehensive and adaptable solution for identifying factual errors across various

domains. FACTOOL is a five-step tool-augmented framework comprising claim

extraction, query generation, tool querying, evidence collection, and verification. It

integrates external tools such as Google Search, Google Scholar, code interpreters, and

Python to detect errors in generated content. The framework also leverages LLMs

themselves for fact-checking when applicable. The authors demonstrate the efficacy

of FACTOOL through experiments across diverse tasks, including knowledge-based

question answering (QA), code generation, mathematical reasoning, and scientific

literature review writing. The results indicate that FACTOOL can detect factual

136

errors across different domains, and the framework can be easily extended to other

use cases.

6.2.2 Uncertainty-based

Several techniques focus on detecting hallucinations without depending on

external knowledge sources. These approaches are based on the idea that hallucinations

arise from the model’s inherent uncertainty. By measuring this uncertainty in the

generated factual content, it is possible to identify hallucinations without retrieving

additional evidence. The internal states of LLMs can reveal their uncertainty,

which is often reflected in metrics such as token probability or entropy Saxena and

Bhattacharyya (2024).

Varshney et al. (2023) propose a method for actively detecting and mitigating

hallucinations during text generation. Their approach involves identifying potential

hallucinations using the model’s logit outputs, validating these candidates, and

mitigating the detected issues while continuing with the generation. Experiments

with GPT-3.5 demonstrate that their detection method achieves about 88% recall,

and their mitigation technique successfully addresses 57.6% of detected hallucinations

without introducing new errors. The overall hallucination rate is reduced from 47.5%

to 14.5% on average. The approach is also tested on different question types, and

another LLM, Vicuna, shows its broad effectiveness. This work advances the reliability

and trustworthiness of LLMs, which is crucial for their practical deployment.

The research of Manakul et al. (2023) introduces “SelfCheckGPT,” a

straightforward sampling-based technique designed for fact-checking responses from

black-box models without needing an external database. The core idea is that if an

LLM genuinely knows a concept, its responses will be consistent, whereas hallucinated

facts will lead to varied and conflicting responses. The approach was tested by

generating passages about individuals using GPT-3 and manually assessing their

factual accuracy. The results show that SelfCheckGPT effectively identifies factual

137

and non-factual sentences and ranks passages based on their factuality. By comparing

SelfCheckGPT against various baseline methods, the authors show that their approach

achieves significantly higher AUC-PR scores for sentence-level hallucination detection

and higher correlation scores for passage-level factuality assessments than other fact-

checking methods, including grey-box approaches.

The study Agrawal et al. (2023) focuses on hallucinated book and article

references, which are particularly useful for investigating hallucinations due to their

clear and identifiable nature. The critical insight is that a model should have adequate

information if it cites a reference. The researchers demonstrate that hallucinated

references can be detected by querying the model about the details of these references

without needing external resources. These queries, or “consistency checks,” reveal that

while LLMs like GPT-4 often produce inconsistent information for fictitious references,

they usually recall accurate details for genuine ones. This approach provides a method

to understand and analyze the nature of hallucinated references in LLMs.

Cohen et al. (2023) propose Language Model Versus Language Model (LMVLM),

a novel evaluation framework inspired by legal cross-examination techniques. The

author’s approach identifies inconsistencies in a model’s claims by using a secondary

LLM as an examiner who questions the original model. This multiturn interaction helps

uncover discrepancies and factual errors. The authors empirically evaluate LMVLM

on factual claims made by various recent LMs across four different benchmarks.

Their findings indicate that LMVLM significantly outperforms existing methods and

baselines in detecting factual errors, often achieving superior results by a considerable

margin. They tested this method on several recent LLMs across four benchmarks and

found that it significantly outperforms existing methods. Their findings highlight the

effectiveness of using interacting LLMs to detect factual inaccuracies.

The research of Chen et al. (2024) introduces a novel method that explores

the dense semantic information preserved within the internal states of LLMs for

138

hallucination detection, termed INSIDE (Internal States for Hallucination Detection).

Central to this method is the EigenScore metric, a simple yet effective tool for

evaluating the self-consistency of model responses by analyzing the eigenvalues of the

responses’ covariance matrix, thereby assessing semantic consistency and diversity

within the dense embedding space. Additionally, the authors propose a test time

feature clipping technique aimed at truncating extreme activations in the internal states,

which reduces overconfident predictions and enhances the detection of overconfident

hallucinations. The authors demonstrate their proposed approach’s effectiveness

through extensive experiments and ablation studies on several popular LLMs and

question-answering (QA) benchmarks: CoQA Reddy et al. (2019), SQuad Rajpurkar

et al. (2016), TriviaQA Joshi et al. (2017) and NaturalQA Kwiatkowski et al. (2019).

6.2.3 Prompting-based

LLMs’ remarkable ability to adhere to instructions has demonstrated their

potential for automating various tasks, including evaluating factual accuracy in

generated content Chiang and Lee (2023). This inherent capability has led to

innovative approaches in hallucination detection through prompting-based methods.

By leveraging the LLM’s capacity to interpret and act on specific instructions,

researchers have developed techniques that utilize well-designed prompts to guide the

model in identifying and addressing potential inaccuracies within its outputs.

This section explores research on prompting-based methods for detecting

hallucinations in LLM-generated content.

Luo et al. (2023) investigate ChatGPT’s ability to evaluate factual inconsistency

in text summarization within a zero-shot setting, focusing on coarse-grained and fine-

grained tasks. Recognizing the issue of factually inconsistent summaries generated by

pre-trained language models, the authors explore ChatGPT’s performance on three

key tasks: binary entailment inference, summary ranking, and consistency rating.

The results indicate that ChatGPT generally outperforms previous state-of-the-art

139

evaluation metrics across six out of nine datasets, showcasing its potential as an

effective factual inconsistency evaluator. However, despite its strong performance, the

authors identify several limitations in ChatGPT’s evaluation process. These include a

bias toward lexically similar candidates, instances of false reasoning, and occasional

misunderstandings of instructions. To further improve ChatGPT’s performance, the

authors test the chain-of-thought (CoT) prompt, significantly enhancing the model’s

evaluation capabilities. However, they also note limitations in the CoT approach,

emphasizing the need for continued research in model alignment to address these

shortcomings.

The research Gao et al. (2023) investigates ChatGPT’s ability to perform

human-like text summarization evaluations using four established human evaluation

methods: Likert scale scoring, pairwise comparison, Pyramid Nenkova and Passonneau

(2004), and binary factuality evaluation. Conducted across five datasets, the results

show that ChatGPT can smoothly complete annotation tasks and, in some cases,

outperform widely used automatic evaluation metrics. The authors highlight that

ChatGPT’s effectiveness in summarization evaluation is highly dependent on the design

of prompts. Key findings include ChatGPT’s strong correlation with human judgments

in some instances, particularly compared to existing evaluation metrics. The model’s

evaluations were more cost-effective and reproducible than human assessments and

demonstrated consistency between the generated explanations and scoring. However,

the authors emphasize that prompt design is crucial in determining ChatGPT’s

performance, underlining the importance of careful prompt engineering in achieving

optimal results.

The work Adlakha et al. (2023) examines the effectiveness of retriever-

augmented instruction following models in information-seeking tasks like question

answering (QA) as an alternative to fine-tuned models. These models adapt to various

domains by prepending retrieved documents with an instruction without additional

140

fine-tuning. Although the model outputs are generally natural and fluent, their

verbosity makes traditional QA metrics, like exact match (EM) and F1, less reliable

for evaluating performance. The authors use automatic and human evaluations to

assess these models across three QA tasks. They focus on two key aspects: correctness

(how well they meet the user’s information needs) and faithfulness (whether they base

their responses on the provided knowledge). The study finds that traditional metrics

fail to capture the actual performance of these models, leading the authors to propose

new token overlaps and model-based metrics that better reflect their capabilities.

While the instruction-following models often perform as well as or better than fine-

tuned models in terms of correctness, they need help maintaining faithfulness and

frequently produce hallucinations. The authors advocate for a more comprehensive

evaluation of these models in QA tasks.

Jain et al. (2023) explore the potential of LLMs to serve as multi-dimensional

evaluators using in-context learning, eliminating the need for extensive training

datasets. Their experiments demonstrate that evaluators based on in-context learning

are competitive with traditional learned evaluation frameworks, achieving state-of-the-

art results in relevance and factual consistency for text summarization. The research

also examines how factors like the selection and number of in-context examples

influence performance. Additionally, the authors investigate the effectiveness of in-

context learning-based evaluators in assessing zero-shot summaries generated by LLMs

like GPT-3.

The research of Laban et al. (2023) proposes a new protocol for creating

benchmarks focused on inconsistency detection and introduces a 10-domain benchmark

called SummEdits. This benchmark is 20 times more cost-effective per sample than

previous ones and demonstrates high reproducibility, with an estimated inter-annotator

agreement of about 0.9. However, most LLMs perform poorly on SummEdits, with

results close to random chance. Even the best model, GPT-4, lags by 8% behind

141

estimated human performance, highlighting significant challenges in LLMs’ ability to

reason facts and detect inconsistencies accurately.

6.2.4 Facts Overlapping

It is essential for LLMs to accurately follow the context or user instructions in

practical applications like summarization and interactive dialogue systems. Detecting

faithfulness hallucinations centers on ensuring the generated content aligns with the

provided context, avoiding irrelevant or conflicting information. To assess faithfulness,

a typical approach involves comparing the overlap of key facts between the generated

output and the source material Saxena and Bhattacharyya (2024); Huang et al. (2023).

Maynez et al. (2020) investigate the shortcomings of standard training and

decoding methods in neural text generation models, particularly for tasks like

abstractive document summarization. They found that these models often generate

unfaithful content in the input document. To explore this issue, the authors conducted

a large-scale human evaluation of various neural abstractive summarization systems,

revealing that all models produced significant amounts of hallucinated content.

However, they also found that pre-trained models performed better regarding standard

metrics like ROUGE and generated more faithful and factual summaries according

to human evaluations. Additionally, their analysis suggests that textual entailment

measures correlate better with faithfulness than traditional metrics, pointing to

potential improvements in automatic evaluation and training methods.

The research of Wang et al. (2020) addresses the challenge of generating text

from a knowledge base while ensuring that the generated descriptions remain faithful

to the original content. They identify that many existing methods fail to maintain this

faithfulness, often resulting in text that includes information not in the source table.

To solve this, the authors introduce a novel Transformer-based generation framework

incorporating two key techniques: a table-text optimal-transport matching loss and a

table-text embedding similarity loss designed to enforce faithfulness. They also propose

142

a new automatic metric for evaluating faithfulness in table-to-text generation. The

authors demonstrate through detailed experiments and analyses that their framework

significantly outperforms existing state-of-the-art methods, according to automatic

and human evaluations.

The work of Nan et al. (2021) introduces new metrics specifically designed

to measure the entity-level factual consistency of summaries called precision-source

score (precs) to quantify entity hallucination and additional metrics (prect and recallt)

to assess entity accuracy in generated summaries. The study finds that existing

datasets, like XSUM Narayan et al. (2018), contain a high level of entity hallucination

in ground truth summaries. To address this, the authors propose a data filtering

technique that removes hallucinated entities from training data. Their experiments

demonstrate significant improvements in entity-level factual consistency, with the precs

score increasing from below 94% to above 98% on the XSUM dataset. Additionally,

the paper explores multi-task learning and joint sequence generation approaches to

improve entity accuracy further. These combined methods effectively reduce entity

hallucination while maintaining strong ROUGE scores, offering a robust solution to

improve factual consistency in abstractive summarization.

Goodrich et al. (2019) introduce a model-based metric designed to assess

the factual accuracy of the generated text, complementing standard scoring metrics

like ROUGE and BLEU. They create and release a large-scale dataset derived from

Wikipedia and Wikidata, which is used to train relation classifiers and end-to-end fact

extraction models. These models effectively extract complete fact sets from full-text

datasets. The authors then evaluate various models for estimating factual accuracy

in the context of Wikipedia text summarization and demonstrate their effectiveness

compared to ROUGE and other model-free methods through a human evaluation

study.

143

The study of Shuster et al. (2021) investigates using neural retrieval-based

architectures to enhance knowledge-grounded dialogue systems, addressing a common

issue in current dialogue models: factual inaccuracies and hallucinations. They explore

various architectures incorporating components like retrievers, rankers, and encoder-

decoders to improve knowledge accuracy while maintaining conversational fluency.

Their best models achieve state-of-the-art performance on two knowledge-grounded

dialogue tasks, showing solid conversational skills, effective generalization to new

scenarios, and a significant reduction in knowledge hallucination, as confirmed by

human evaluations.

6.2.5 Entailment methods

Leveraging Natural Language Inference (NLI) to evaluate the trustworthiness

of text has become a widely adopted approach. This method involves analyzing the

logical relationship between statements to determine their validity and coherence.

By applying NLI techniques, it can be assessed whether the content of a text aligns

with facts or other reliable information sources, helping to identify discrepancies and

potential inaccuracies. This approach is precious in distinguishing between credible

and unreliable information, enhancing the overall quality and reliability of text-based

assessments Ji et al. (2023); Saxena and Bhattacharyya (2024); Huang et al. (2023).

Falke et al. (2019) evaluates the summaries generated by leading models through

crowdsourced assessments, revealing frequent factual inaccuracies, especially with

more abstractive approaches. The authors investigate whether textual entailment

predictions can help detect these errors and whether reranking alternative summaries

can improve accuracy. They find that current entailment models, trained on Natural

Language Inference (NLI) datasets, still need to meet performance expectations for

this task. To address this, they provide their annotations as additional test data to

support future evaluations of entailment models.

144

The work of Mishra et al. (2021) explores why by examining the multiple-

choice reading comprehension (MCRC) and factual correctness checking of textual

summarization (CFCS) tasks. The research reveals that traditional NLI datasets,

which contain shorter premises, pose a challenge for downstream tasks that benefit

from longer contexts. The authors propose converting extensive reading comprehension

datasets into NLI datasets with more extended premises to address this. They find

that models trained on these newly created longer-premise datasets perform better

downstream tasks than those trained on traditional short-premise NLI datasets. This

improvement is attributed to the length of the premises used in training.

The research of Goyal and Durrett (2020) introduces a novel approach to

entailment by breaking it down into dependency arcs within sentences. Instead of

making overall judgments, the proposed method examines whether the input supports

each dependency arc in the generated text. Since obtaining human judgments

for this task is challenging, the authors suggest creating automatic data from

existing entailment or paraphrase corpora. Their experiments demonstrate that

this dependency arc entailment model, trained on this data, is more effective at

detecting and localizing factual inconsistencies in paraphrasing and summarization

tasks than traditional sentence-level methods or those based on question generation.

6.2.6 Supervised Learning methods

Supervised learning methods for hallucination detection in LLMs leverage

labeled datasets to train classifiers that identify incorrect or misleading outputs

generated by these models. These approaches involve training a model on a corpus

where hallucinations are annotated, allowing the system to learn patterns and features

associated with erroneous content. One advantage of supervised learning is its ability

to create highly specialized detectors tailored to specific hallucinations by learning

from real-world examples. However, these methods require extensive labeled data,

which can be costly and time-consuming to produce. Additionally, the effectiveness

145

of supervised models can be limited by the quality and representativeness of the

training data, potentially resulting in detectors that may not generalize well to novel

or unforeseen types of hallucinations

Zhou et al. (2020) propose a task that predicts whether each token in the

generated sequence is a hallucination (i.e., not found in the input). They also create

new manually annotated evaluation sets for this task. Additionally, they introduce

a method that detects hallucinations by fine-tuning pre-trained language models on

synthetic data containing automatically inserted hallucinations. Through experiments

on machine translation (MT) and abstractive summarization, they show that their

approach consistently outperforms strong baselines across all benchmark datasets.

Moreover, they demonstrate that token-level hallucination labels allow loss calculation

over the target sequence in low-resource MT, leading to significant improvements over

solid baseline methods. The authors also apply their method to word-level quality

estimation in MT, proving its effectiveness in supervised and unsupervised scenarios.

The research of Dziri et al. (2021) introduces the Benchmark for Evaluation of

Grounded Interaction (BEGIN). BEGIN includes 8,113 dialogue turns generated by

LLM-based systems and human annotations describing the relationship between the

system’s responses and the background information. These annotations are based on

an extended natural language inference framework. The authors use this benchmark to

show how adversarially generated data can enhance an evaluation metric derived from

existing natural language inference datasets. Using BEGIN, the authors evaluate eight

automatic metrics commonly used for response attribution. Their analysis reveals

that these metrics rely heavily on spurious correlations, such as word overlap, and fail

to distinguish between attributable and unattributable abstractive responses reliably.

Furthermore, they perform significantly worse when the knowledge source is longer,

highlighting their limitations in more complex contexts. The study emphasizes the

146

need for more sophisticated and robust evaluation metrics for knowledge-grounded

dialogue systems.

The work of Santhanam et al. (2021) investigates factual correctness in

knowledge-grounded neural response generation models. They introduce a human

annotation framework to categorize responses into three types: those that are factually

consistent with the input knowledge, those that include hallucinated knowledge,

and non-verifiable chitchat-style responses. Using this framework, they annotate

responses generated by various state-of-the-art models, knowledge snippets, and

decoding strategies. To further aid the development of a factual consistency detector,

they created a new Conv-FEVER dataset, adapted from the Wizard of Wikipedia

dataset, which contains both factually consistent and inconsistent responses. The

authors show that models trained on the Conv-FEVER dataset perform well in

detecting factually inconsistent responses relative to the provided knowledge, as

demonstrated by evaluations of their human-annotated data.

Azaria and Mitchell (2023a) present evidence that the internal states of LLMs

can be leveraged to assess the truthfulness of statements. This assessment applies to

statements provided to the LLM and those generated by the LLM itself. The proposed

approach involves training a classifier that predicts the likelihood of a statement being

truthful based on the hidden layer activations of the LLM as it processes or generates

the statement. Experimental results demonstrate that the trained classifier achieves

an accuracy rate between 71% and 83% in distinguishing true statements from false

ones, depending on the base LLM model used. The authors further investigate the

relationship between their classifier’s performance and traditional methods that rely on

the probability assigned to a sentence by the LLM. They find that while LLM-assigned

probabilities correlate with truthfulness, they are also influenced by sentence length

and word frequency factors. As a result, their trained classifier offers a more reliable

147

method for detecting truthfulness, showcasing its potential to improve the reliability

of LLM-generated content and its practical applicability in real-world settings.

6.3 Discussion

The phenomenon of hallucination in LLMs has emerged as a significant

challenge, particularly in fields where accuracy and fidelity are essential, such as

legal compliance and the assessment of software systems. As the deployment of LLMs

in these domains becomes more widespread, the risks associated with hallucinations

cannot be overstated. Hallucinations, which can manifest as factually incorrect,

misleading, or nonsensical outputs, can undermine the reliability and credibility of

automated systems, leading to severe legal and financial consequences.

Hallucinations pose unique and complex challenges in the context of automatic

legal compliance and software assessment. Legal texts are often characterized by their

precision, specificity, and reliance on established precedents. An LLM generating

hallucinatory legal advice or misinterpreting compliance requirements can lead to

flawed legal interpretations, resulting in incorrect compliance reports or misguided

legal actions. Such errors compromise the integrity of legal processes and expose

organizations to significant risks, including regulatory penalties, legal disputes, and

reputational damage.

The detection of hallucinations in LLM outputs is, therefore, a critical area

of research, with direct implications for the reliability of LLM-driven legal systems.

Several detection methodologies have been proposed, each with its own strengths

and limitations. Fact overlap-based methods, for instance, are effective in identifying

hallucinations by comparing the generated output against a reference source. However,

these methods may struggle with the nuanced language of legal texts, where slight

variations in wording can have significant implications.

Entailment-based approaches offer a more sophisticated mechanism by evaluat-

ing whether the generated output logically follows from the input text. This method

148

is particularly relevant in legal contexts, where the logical coherence of arguments

is crucial. However, the complexity of legal reasoning, which often involves multiple

layers of interpretation and context, can pose challenges for entailment-based systems,

leading to false positives or negatives in hallucination detection.

Classifier-based methods, which rely on pre-trained models to identify

hallucinations, offer scalability and adaptability across different tasks. These models

can be fine-tuned on legal datasets to enhance their detection capabilities. Nevertheless,

detection quality is heavily dependent on the training data, and in domains like Legal

NLP, where annotated datasets are scarce, the effectiveness of classifier-based methods

may be limited.

Recent advancements in question-answering and retrieval-based methods

provide promising avenues for hallucination detection, particularly in legal applications.

By cross-referencing generated outputs with external knowledge bases or legal

repositories, these methods can verify the accuracy of LLM outputs in real time.

However, the dynamic and evolving nature of legal knowledge and jurisdictional

differences necessitates continuous updates to these knowledge bases, which can be

resource-intensive.

Uncertainty-based approaches, which measure the confidence level of LLM

outputs, offer an additional layer of hallucination detection by flagging outputs with

low confidence scores. In the legal domain, where the stakes are high, integrating

uncertainty measures can serve as a valuable tool for legal practitioners, alerting them

to potential inaccuracies that require human verification.

Prompting-based methods introduce innovative dimensions to hallucination

detection. Prompting strategies, which involve crafting specific input prompts to elicit

more accurate outputs, can be tailored to the legal domain by incorporating legal

terminology and context.

149

The impact of hallucination detection on automatic legal compliance and

software assessment is profound. Effective detection mechanisms enhance the reliability

of LLM-driven systems and pave the way for more robust and trustworthy automated

legal tools. By mitigating the risks associated with hallucinations, these methods

contribute to developing legal AI systems that can be confidently relied upon for

critical decision-making processes.

6.4 Limitations

The criteria applied in this review may have unintentionally excluded some

relevant research, which could result in an incomplete or biased representation of

the field of hallucination detection in LLMs. Moreover, given the rapid pace of

advancements in LLM technology, findings may quickly become outdated as new

methods and innovations emerge. The fast-evolving nature of this field necessitates

ongoing updates to the review to incorporate the latest developments and provide a

more comprehensive understanding of hallucination detection strategies.

This review has focused on initial strategies for detecting hallucinations in

LLM outputs. However, it has yet to extensively cover other significant aspects, such

as advanced techniques for managing and mitigating hallucinations or applying these

methods across various domains and types of tasks. Chapter 8 of this thesis covers

mitigating hallucinations.

The review covers research utilizing various methodologies; however, few works

were found that attempt to combine multiple approaches to address hallucinations

in LLMs comprehensively. This gap may be due to the early stage of research on

hallucination detection in LLMs, where most studies focus on isolated techniques

rather than integrative solutions. Alternatively, it could be a limitation of this review,

as it may have yet to capture all possible interdisciplinary or hybrid approaches.

The lack of a unified framework to tackle hallucinations across different stages of

LLM deployment highlights an area for future research, emphasizing the need for

150

multi-faceted strategies that combine the strengths of various methodologies for more

robust outcomes.

The conclusions drawn from this review are specific to hallucination detection

and may not be broadly applicable to other areas where LLMs are involved. While some

challenges identified here may be shared across LLM research, the review concentrates

on detecting hallucinations. The lack of cross-validation of results from the presented

works means that limitations in these studies may also influence this review’s findings.

6.5 Conclusions

This chapter delves into the multifaceted challenge of hallucination detection

in LLMs, a critical issue at the intersection of advanced natural language processing

and real-world applications. A literature review of various detection methodologies,

each offering unique advantages and facing specific challenges, was done. The review

has highlighted the diversity and adaptability of current detection methods, from fact

overlap-based methods that compare outputs to reference sources to entailment-based

approaches that assess logical coherence and classifier-based techniques that leverage

pre-trained models. Additionally, question-answering, retrieval-based, uncertainty-

based, and prompting-based detection methods have shown promise in enhancing the

accuracy of hallucination detection across different tasks.

The insights gained from this literature review provide a solid foundation for

advancing the field of hallucination detection. Future research can contribute to

developing more reliable, trustworthy, and legally compliant LLMs by addressing

the outlined challenges and continuing to innovate detection methodologies. These

advancements will improve the practical utility of LLMs across various domains and

ensure that they meet the accuracy and reliability required in critical applications

such as legal and regulatory compliance.

151

CHAPTER SEVEN

A Token Probability Method for Detecting Hallucinations in Large Language Model
Outputs

The work detailed in Chapter Seven has been written mainly from the pending

for publication: Quevedo, Ernesto, Jorge Yero, Rachel Koerner, Pablo Rivas, and

Tomas Cerny “Detecting Hallucinations in Large Language Model Generation: A

Token Probability Approach” arXiv preprint arXiv:2405.19648 (2024).

As stated at the beginning of this thesis, Chapter 6 already conducted a

limited study on how current state-of-the-art methods perform in understanding

legal documents related to software systems and has examined how top-performing

chat-based Large Language Models (LLMs) like ChatGPT can understand workflows

in complex software systems. Chapters 2, 4, and 6 clearly show that hallucinations

in LLMs pose a significant problem with implications for performance and ethical

considerations across all domains where LLMs are used, including the legal domain.

Given the gravity of this issue, this will be the main topic for the remainder of the

thesis, before the concluding chapter, to study this problem and provide contributions

to detecting hallucinations in LLMs.

Detecting hallucinations in LLMs has significant implications for the automatic

auditing of legal regulations in software systems. In legal audits, where the accuracy

of the LLM’s responses is essential, detecting and flagging hallucinations ensures

that the conclusions drawn about a software system’s compliance are based on

reliable information. This contributes significantly to the robustness and credibility

of automated auditing systems, reducing the risk of misinterpretation and erroneous

compliance assessments.

152

This chapter explores a methodology for detecting hallucinations in LLMs,

followed by the experiments and results obtained. It closes with a discussion of the

limitations and a summary of everything presented.

7.1 Methodology

Two classifiers were implemented, Logistic Regression (LR) and a Simple Neural

Network (SNN), utilizing four numerical features derived from token and vocabulary

probabilities obtained during a forward pass through an LLM using the conditional

generation approach Zhang et al. (2023). This section outlines a comprehensive

methodology for detecting hallucinations in text generated by an LLM based on a

given text.

Figure 7.1. General Pipeline of the Proposed Methodology.

7.1.1 Problem Statement

Given a pair of texts (condition-text, generated-text) that represent the text used

to condition the LLM to its generation. The objective is to detect if a given generated-

text is a hallucination.

7.1.2 General Pipeline

Given a set of pairs of texts of the type (condition-text, generated-text) from

an LLM (called the LLM-Generator (LLMG)), four numerical features are extracted

153

based on the generated tokens and vocabulary tokens probabilities from another LLM

that is called the LLM-Evaluator (LLME).1

Then, using these four features, two different classifiers are trained: a Logistic

Regression (LR) and a Simple Neural Network (SNN). Finally, these classifiers were

evaluated on a test set they did not see before. Figure 7.1 illustrates the process.

7.1.3 Features Description

This section provides more details on each feature extracted. Every feature

is computed using token probabilities and the vocabulary probability distribution

corresponding to each token on the generated-text. These can be formally defined

as follows: (i) The token probability of each token of the Vocabulary of the LLME

corresponding to ti as PLLMEi
(vk) = (vk|ti−1, ..., t1, cm, ..., c1; θ) for every k. (ii) The

token with the highest probability at position i in the generated-text according to

LLME as the v∗ = arg maxk PLLMEi
(vk). (iii) The token with the lowest probability

at position i according to LLME as the v− = arg mink PLLMEi
(vk).

Next is a natural language description of the four features and, the mathematical

definition:

• Minimum Token Probability (mtp): Minimum of the probabilities that

the LLME gives to the tokens on the generated-text.

• Average Token Probability (avgtp): Average of the probabilities that the

LLME gives to the tokens on the generated-text.

• Maximum LLME Probability Deviation (mpd): Maximum from all the

differences between the token with the highest probability according to LLME

at position i and the assigned probability from LLME to ti which is the token

generated by LLMG.

1Which could be the same as LLMG.

154

• Minimum LLME Probability Spread (mps): Maximum from all the

differences between the token with the highest probability according to LLME

at position i (v∗) and the token with the lowest probability according to

LLME at position i (v−).

Formally, these features can be defined as:

mtp = min
i

PLLME
(ti) avgtp =

∑n
i=1 PLLME

(ti)

n

mpd = max
1≤i≤n

(PLLME
(v∗) − PLLME

(ti))

mps = min
1≤i≤n

(PLLMEi
(v∗) − PLLMEi

(v−))

These four numerical features are inspired by the mathematical investigation

of the GPT model in Lee (2023), and recent results in Manakul et al. (2023); Su et al.

(2024), suggesting there is a correlation between the minimum token probability on

the generation, the average of the token probabilities, and the average and maximum

entropy.

Lee (2023) proposes that a reliable indicator of hallucination during GPT

model generation is the low probability of a token being generated. This is based

on the assumption that forcing the model to generate such a low-probability token

occurs when the difference between the token with the highest probability and all

other tokens is less than a small constant δ. Here, mps is an estimator to avoid the

cost of calculating differences across a large vocabulary and generated text.

Additionally, Azaria and Mitchell (2023b) trained a simple classifier called

Statement Accuracy Prediction, based on Language Model Activations (SAPLMA)

that outputs the probability that a statement is truthful, based on the hidden layer

activations of the LLM as it reads or generates the statement. The authors showed that

SAPLMA, which leverages the LLM’s internal states, performs better than prompting

the LLM to state explicitly whether a statement is true or false. Different from Azaria

and Mitchell (2023b), Su et al. (2024) introduced MIND, an unsupervised training

155

framework that leverages the internal states of LLMs for hallucination detection

requiring no manual annotations.

Diverging from previous studies Azaria and Mitchell (2023b); Lee (2023);

Manakul et al. (2023); Su et al. (2024), this chapter presents an empirical approach

rather than a theoretical one. Unlike Manakul et al. (2023), Self-Consistency is

not used, and the method is not based on zero-shot or few-shot learning. Instead,

a supervised learning approach is adopted similar to Azaria and Mitchell (2023b),

focusing on four features derived from token and vocabulary probabilities rather

than contextual embeddings or hidden layers. A simpler logistic regression classifier

alongside a simple dense neural network will be used to evaluate this approach.

Additionally, the method considers using different LLM-Evaluators (LLME)

alongside the generating model (LLMG). Varying LLM-E models, differing in

architecture, size, parameters, context length, and training data, might provide reliable

but quantitatively distinct results compared to LLMG’s probabilities. To account

for this, a new numerical feature is introduced, mpd (Maximum LLME Probability

Deviation), which measures the deviation between the maximum probability token in

LLME’s vocabulary and the token generated by LLMG.

Using different LLMs as evaluators leverages the diversity in training data

and linguistic patterns across various models. By analyzing probability distributions

from multiple LLMs, detecting hallucinations in outputs from a given model, such

as LLMG may be possible. This approach addresses the potential limitations of

individual models, which might miss specific patterns or hallucinations that other

models, specialized in certain topics, could detect. Evaluations from multiple LLMs

enhance the robustness and reduce biases inherent in the training data of any single

model.

156

7.1.4 Feature Extraction

The LLME models suitable for the Conditional Generation Task are used to

extract these features. In this case, the process involves forced decoding because the

tokens of the generated-text may have been produced by a different LLM (LLMG).

Instead of allowing LLME to generate the answer token-by-token based solely on the

condition-text, the tokens predicted by LLMG at each step are provided. This method

forces LLME to replicate the generation path of LLMG, enabling us to extract token

probabilities from LLME for that specific sequence. These probabilities are then used

to compute the four numerical features previously described.

7.1.5 Models Specification

A Logistic Regression (LR) and a Simple Neural Network (SNN) are the

classifiers employed. Both classifiers use the four numerical features extracted from

the (condition-text, generated-text) pairs for their analysis. The LR was chosen for its

simplicity, rapid training, and effectiveness in binary classification tasks. In contrast,

the SNN was implemented to capture complex non-linear relationships in the data.

The SNN architecture includes an input layer with four neurons, each representing one

of the features, two hidden layers with 512 neurons, each using the ReLU activation

function, and an output layer with a single neuron activated by a sigmoid function,

which is appropriate for binary classification tasks.

7.2 Experimental Setup and Results

This section describes the details of the experimental setup, the dataset used

and the results obtained.

7.2.1 Datasets

• HaluEval: Hallucination Evaluation for Large Language Models (HaluEval)

benchmark is a collection of generated and human-annotated hallucinated

samples for evaluating the performance of LLMs in recognizing hallucinations.

157

HaluEval includes 5,000 general user queries with ChatGPT responses and

30,000 task-specific examples (10,000 per task) from three tasks: question

answering, knowledge-grounded dialogue, and text summarization Li et al.

(2023).

• HELM: Hallucination detection Evaluation for multiple LLMs (HELM)

benchmark is a list of 3582 sentences from randomly sampling 50,000 articles

from WikiText-103 Merity et al. (2016) where the selected LLMs were

tasked with prompt-based continuation writing. The resulting sentences

were annotated as hallucination or not Su et al. (2024).

• True-False: Comprises 6,084 sentences divided into the topics of “Cities,”

“Inventions,” “Chemical Elements,” “Animals,” “Companies,” and “Scientific

Facts.” All sentences in each category are conformed of true statements and

false statements Azaria and Mitchell (2023b). Unlike HaluEval, this dataset

only has generated-text and does not include any condition-text.

7.2.2 LLM Evaluators Used

The LLMs selected as evaluators to study the impact of factors such as

architecture, training method, and training data include GPT-2, its large version

(gpt2-large) Radford et al. (2019); Bidirectional and Auto-Regressive Transformers

(BART), its CNN-Large version (bart-large-cnn) Lewis et al. (2020); Longformer

Encoder-Decoder (LED) Beltagy et al. (2020), with the version fine-tuned on the arXiv

dataset (led-large-16384-arxiv). Also, four bigger LLMs were used like OPT-6.7B

(OPT) Zhang et al. (2022), GPT-J-6.7B (GPT-J) Wang and Komatsuzaki (2021),

LLaMA-2-Chat-7B (LLC-7b) Touvron et al. (2023) and Gemma-7b (Gemma) Team

et al. (2024). The known transformers library was also used.2 In most cases, the

Conditional Generation setup was used. For GPT-2, the GPT2LMHeadModel setup

2https://huggingface.co/

158

https://huggingface.co/

was employed. Additionally, when forwarding inputs to these models with a pair

of (condition-text, generated-text), the challenge of context limitation came to light,

which varied depending on the LLM. To address this issue, the generated-text was not

truncated if possible. Instead, if truncation was necessary (with a truncation length

of truncate len), the excess from the condition-text was removed. If additional

knowledge was included, the truncation between the knowledge and the condition-text

was evenly split.

7.2.3 Training Process of the Classifiers

To train LR, the sklearn library was used 3 with the Limited-memory Broyden-

Fletcher-Goldfarb-Shanno Algorithm solver Saputro and Widyaningsih (2017) and

default parameters. The SNN was trained during 104 epochs. The Adam Kingma and

Ba (2014) optimizer was used with learning rate of 10−3. All experiments, including

feature extraction, training, and evaluation of the classifiers, were conducted on an

NVIDIA L40S GPU core with 48GB of memory. Given a dataset and a single LLME,

training takes anywhere from 30 minutes (HELM) to 4.5 hours (HaluEval), depending

on the size of the training data and the length of the condition-text and generated-text.

7.2.3.1 HaluEval. Both classifiers were trained for each of the tasks in the

HaluEval benchmark. Each data point is split into two data points: (condition-text,

right-answer) and (condition-text, hallucinated-answer). Therefore, the datasets would

be of 20,000 examples for each of the Question Answering (QA), Knowledge-Grounded

Dialogue (KGD), and Summarization tasks where in each case half of the dataset is

comprised of data points of the type (condition-text, right-answer) and the other half

are of the type (condition-text, hallucinated-answer). In the case of the General-User

Queries, the dataset is already in that format, with each data point classified as a

hallucination. Therefore, the dataset size is the same, which is 5,000.

3https://pypi.org/project/sklearn/

159

https://pypi.org/project/sklearn/

Then, with this adaptation of the HaluEval benchmark dataset when

approaching a given task, 10% of the data points were sampled (half with the right-

answer and the other with a hallucinated-answer) randomly. These 10% data points

are used to train both classifiers, and test the model capabilities on the remaining

90% of the dataset for a given task.

7.2.3.2 HELM. In the HELM dataset Su et al. (2024) the sentences were

separated into categories depending on which LLM generated them. Therefore, to

evaluate the sentences generated by a given LLM, like LlaMa-Chat-7b (LLC-7b) all

other sentences produced by other LLMs were used for training.

7.2.3.3 True-False. The same process as Azaria and Mitchell (2023b) was

followed. In all other categories, a category like “animals” is picked for testing and

training.

7.2.4 Results

7.2.4.1 HaluEval. Each classifier was trained on 10% of the data, using the

remaining 90% for testing. The metrics selected for evaluation are Accuracy, F1 Score,

and Precision-Recall Area Under Curve (PR AUC). Table 7.1 presents the state-of-

the-art results from HaluEval, as reported in the papers by Li et al. (2023) and Li

et al. (2024), which introduced the HaluEval benchmark and discussed factuality

hallucination in LLMs.

Table 7.2 displays the accuracy results on the test set for each task using various

LLME models and Logistic Regression as the classifier. The results demonstrate that

Logistic Regression performs strongly compared to previous approaches on 90% of the

dataset. Finally, Table 7.3 provides the average results derived from three random

sampling runs across different models and metrics for Summarization, QA, and KGD

tasks.

160

Table 7.1. Results taken from Li et al. (2024) measured in Accuracy (%) on the
Halu-Eval dataset.

Models QA KGD Summ. GUQ
ChatGPT 62.59 72.40 58.53 79.44
Claude 2 69.78 64.73 57.75 75.00
Claude 67.60 64.83 53.76 73.88
Davinci-003 49.65 68.37 48.07 80.40
Davinci-002 60.05 60.81 47.77 80.42
GPT-3 49.21 50.02 51.23 72.72
Llama-2-Ch 49.60 43.99 49.55 20.46
ChatGLM 6B 47.93 44.41 48.57 30.92
Falcon 7B 39.66 29.08 42.71 18.98
Vicuna 7B 60.34 46.35 45.62 19.48
Alpaca 7B 6.68 17.55 20.63 9.54

Table 7.2. Results for each LLME and task using the LR classifier and measure in
accuracy on the test set.

Model Summ. QA KGD GUQ
GPT-2 0.66 0.77 0.62 0.77
BART 0.65 0.94 0.49 0.54
LED 0.55 0.87 0.62 0.52
OPT 0.73 0.75 0.61 0.80
GPT-J 0.90 0.75 0.61 0.81
LLC-7b 0.70 0.74 0.55 0.81
Gemma 0.52 0.73 0.53 0.80

The classifiers, trained on just 10% of the data, show strong performance on

the test set for Summarization and Question Answering (QA) tasks, using GPT-J

and BART respectively as LLME. The best results achieve over 98% accuracy and

F1 scores with the SNN classifier in both tasks and over 90% accuracy and 95% F1

scores with the LR classifier in Summarization and QA. These results surpass those of

previous methods on the same test set, indicating a significant improvement.

Although state-of-the-art performance was not achieved for the dialogue task,

the results remain competitive. In the GUQ task, results for the SNN classifier across

different LLME models showed overfitting to the negative class, with an accuracy of

81%, F1 of 1%, and PRAUC of 10%. This overfitting is likely due to data imbalance,

161

Table 7.3. Average results in the test set for each task in the HaluEval benchmark
given the selected LLME. NCA stands for accuracy without condition-text and KA

for accuracy including extra knowledge. Here, AUC is the PRAUC.

Summarization Question Answering KGD

Models Acc F1 AUC NCA Acc F1 AUC NCA KA Acc F1 AUC NCA KA

GPT-2 0.82 0.78 0.89 0.90 0.82 0.82 0.86 0.78 0.88 0.62 0.60 0.70 0.64 0.62
BART 0.77 0.78 0.83 0.99 0.95 0.95 0.97 0.96 0.94 0.66 0.63 0.74 0.65 0.60
LED 0.97 0.76 0.81 0.97 0.88 0.88 0.91 0.86 0.87 0.62 0.61 0.70 0.62 0.60
OPT 0.98 0.98 0.99 0.99 0.79 0.78 0.85 0.76 0.79 0.66 0.67 0.74 0.67 0.61
GPT-J 0.98 0.98 0.99 0.99 0.77 0.78 0.84 0.73 0.83 0.66 0.67 0.74 0.67 0.66
LLC-7b 0.67 0.68 0.69 0.77 0.73 0.69 0.81 0.75 0.77 0.60 0.54 0.64 0.63 0.61
Gemma 0.51 0.51 0.52 0.57 0.76 0.73 0.82 0.79 0.71 0.58 0.58 0.66 0.62 0.55

with only about 20% of the examples being non-hallucinations. Attempts to address

this with a balanced training set of 500 positive and 500 negative examples still

resulted in suboptimal performance, with a maximum accuracy of 69% and an F1

score of 0.23%.

In the QA and KGD tasks, incorporating knowledge in the condition-text

generally improved accuracy, though the benefit could have been more consistent.

Surprisingly, when LLME models provided probabilities for the generated-text alone,

unusually high results in Summarization and QA tasks were observed, reaching up

to 99% accuracy with GPT-J and 96% with BART. This anomaly was not due to

data leakage or errors, as similar results did not occur in KGD and GUQ or with all

LLME models. This may indicate a probabilistic pattern in the dataset generation

for Summarization and QA. Therefore, methods that learn from the probabilities may

achieve high results due to this pattern, leading to incorrect interpretations of the

method’s generalization across all cases. However, the HaluEval dataset can still be

valuable for evaluating unsupervised methods, as these do not rely on learning from

the sequence probabilities.

Although choosing specific LLME models led to notable improvements in

certain tasks, other LLME models still delivered competitive outcomes, with some

even exceeding state-of-the-art benchmarks. For instance, when paired with the SNN

162

classifier, OPT achieved a 79% F1 score in the QA task, and GPT-2 reached an 82%

F1 score.

Table 7.4. Results of the approach and previous methods in the HELM benchmark
measured in PRAUC.

Baselines Falcon GPT-J LLB -7B LLC -13B LLC -7B OPT

PE-max 0.648 0.750 0.685 0.444 0.493 0.726
SCG-NLI 0.685 0.868 0.764 0.583 0.657 0.810

SAPLMA 0.513 0.699 0.578 0.305 0.407 0.621
MIND 0.790 0.877 0.788 0.604 0.676 0.884

Ours

GPT-2 0.683 0.847 0.759 0.618 0.616 0.850
BART 0.710 0.828 0.695 0.569 0.568 0.825
LED 0.683 0.809 0.722 0.527 0.548 0.829
OPT 0.719 0.839 0.773 0.634 0.637 0.864
GPT-J 0.702 0.808 0.751 0.642 0.588 0.834
LLC-7b 0.727 0.855 0.785 0.563 0.644 0.842
Gemma 0.738 0.850 0.786 0.601 0.651 0.843

7.2.4.2 HELM. Table 7.4 presents the results of the method applied on

the HELM benchmark Su et al. (2024). Overall, the approach did not outperform

MIND Su et al. (2024) except for LLC-13B sentences. Nevertheless, despite using

only four features, the method achieves better results than other approaches such as

SAPLMA Azaria and Mitchell (2023b) and, in some instances, SelfCheckGPT with

Natural Language Inference (SCG-NLI) Manakul et al. (2023) and other methods

reported in Su et al. (2024).

Unlike MIND, which uses unsupervised training data without annotations, the

method is trained with the annotated data provided in the HELM benchmark.

7.2.5 HELM results without condition-text

In this section, Table 7.5 displays the results of the method on the HELM

benchmark using only the token probabilities from the generated-text. The impact on

163

Table 7.5. Results of the approach and previous methods in the HELM benchmark
measured in PRAUC without condition-text.

Baselines Falcon GPT-J LLB-7B LLC-13B LLC-7B OPT

PE-max 0.6479 0.7497 0.6851 0.4439 0.4931 0.7263
SCG-NLI 0.6846 0.8680 0.7644 0.5834 0.6565 0.8103

SAPLMA 0.5128 0.6987 0.5777 0.3047 0.4066 0.6212
MIND 0.7895 0.8774 0.7876 0.6043 0.6755 0.8835

Ours

GPT-2 0.7110 0.8097 0.7384 0.5194 0.6085 0.7994
BART 0.6853 0.8129 0.7139 0.5624 0.5686 0.8258
LED 0.7017 0.8424 0.6931 0.5194 0.5494 0.8204
OPT 0.7163 0.7748 0.6695 0.5608 0.6751 0.7773
GPT-J 0.7051 0.7873 0.6984 0.6121 0.5856 0.7989
LLC-7b 0.6968 0.8403 0.7423 0.5464 0.6370 0.8395
Gemma 0.6872 0.8256 0.7319 0.5788 0.6428 0.8265

performance when comparing these results to those in Table 7.4 can be seen. This

comparison shows the importance of the condition-text. Further, it suggests that the

anomaly observed in the HaluEval dataset for Summarization and QA tasks might be

due to a probabilistic pattern in the generated-text.

7.2.5.1 True-False. The results achieved with any of the selected LLMs on

this dataset fell short of the baseline set by Azaria and Mitchell (2023b) and were

considerably lower than their approach. This indicates a significant limitation in

the methodology and highlights the need to utilize hidden layers as features. Future

methods should be evaluated on this challenging dataset to address this gap.

Table 7.6 presents the specific numerical results of the method on the True-

False dataset. Despite demonstrating competitive performance on many HaluEval

and HELM tasks using only four features, the approach performed poorly on this

dataset. Therefore, future evaluations of hallucination using supervised methods could

be conducted on datasets like this one or similar datasets where rapid methods like

164

Table 7.6. Results of the approach and previous methods in the True-False dataset
measured in accuracy. The SALPMA results shown are using the 16th hidden layer

with LLC-7b.

Model Cities Invent. Elem. Anim. Comp Facts

BERT-5-shot 0.5416 0.4799 0.5676 0.5643 0.5540 0.5148
SAPLMA 0.9223 0.8938 0.6939 0.7774 0.8658 0.8254

Ours

GPT-2 0.4312 0.5353 0.4924 0.4920 0.5041 0.5049
BART 0.3846 0.5365 0.5172 0.4920 0.4550 0.4607
LED 0.4985 0.4954 0.5182 0.5357 0.5191 0.4787
OPT 0.4950 0.5479 0.5118 0.4573 0.5050 0.5392
GPT-J 0.5023 0.5308 0.5268 0.4871 0.5283 0.5408
LLC-7b 0.5182 0.5216 0.5267 0.5287 0.5208 0.5669
Gemma 0.5091 0.5205 0.4870 0.4692 0.4983 0.4705

the one developed in this chapter have been tested to avoid any potential probabilistic

patterns.

7.2.5.2 Overall Conclusions from Results. Overall, the results show that the

supervised learning approach, using only four features, performs competitively with

current methods and even surpasses state-of-the-art techniques across various tasks

and datasets.

In the HaluEval benchmark, which involves generations from ChatGPT using

GPT-3.5, some of the top-performing models were GPT-2 and GPT-J, closely related

to the LLM-Generator tested. Interestingly, other models not based on the LLM-

Generator, such as OPT, BART, and LED, achieved comparable or even superior

results in some tasks. Notably, smaller models like BART outperformed all other

LLM evaluators in the QA task, indicating that model size alone does not determine

performance, but rather training data and architectural differences play a significant

role.

165

Finally, the True-False dataset highlighted the weaknesses of the method,

revealing that the features used are insufficient for effectively detecting hallucinations

in this type of data.

7.2.6 Feature Importance Analysis - Ablation

Experiments using individual numerical features were done to assess their

impact on results. Table 7.7 displays how accuracy for three tasks in HaluEval and

three LLME models varied depending on which features were included. In most cases,

using all features yielded the best results. When evaluating each feature individually, it

was found that mtp and avgtp were the most significant, particularly for Summarization

and QA. However, in the KGD task, the newly introduced feature mpd proved more

critical for larger models like GPT-J and LLC-7b.

Table 7.7. Feature importance based on accuracy for three tasks in the HaluEval
benchmark given three LLME.

Features Summarization Question Answering KGD

mtp avgtp mpd mps GPTJ BART LLC7b GPTJ BART LLC7b GPTJ BART LLC7b

✓ ✓ ✓ ✓ 0.98 0.77 0.69 0.76 0.95 0.74 0.66 0.65 0.60
✓ 0.50 0.79 0.50 0.64 0.92 0.50 0.56 0.60 0.50

✓ 0.98 0.64 0.57 0.69 0.95 0.51 0.62 0.66 0.50
✓ 0.50 0.61 0.54 0.72 0.90 0.73 0.62 0.58 0.61

✓ 0.51 0.62 0.60 0.62 0.64 0.57 0.53 0.53 0.52

7.3 Discussion

The proposed method’s competitive performance compared to current state-of-

the-art techniques highlights its potential for improving the reliability of LLM-based

systems in legal compliance audits. This approach can help ensure that automated

audits yield accurate and trustworthy results by effectively identifying hallucination

instances where LLMs produce incorrect or misleading information. This is crucial in

legal contexts where the correctness of the information directly impacts compliance

assessments and regulatory decisions.

166

The observation that different LLMs, including smaller models like BART, can

outperform or match the performance of larger models in specific tasks highlights the

importance of evaluating hallucination detection across diverse LLM architectures.

This suggests that incorporating a range of LLMs, regardless of size, can enhance

the robustness of detection methods. For legal audits, this means that the choice of

LLM for generating and evaluating compliance-related information should be carefully

considered to optimize performance. The same principle applies to any domain, not

only legal.

The finding that using different LLMs as evaluators often yield similar or

superior results compared to using the LLM-Generator itself indicates a potential

advantage in employing a diverse set of evaluators. This approach can improve the

accuracy and reliability of hallucination detection by leveraging the strengths of

various models. It also suggests that employing multiple evaluators can provide a more

comprehensive compliance assessment, reducing the risk of overlooking critical legal

issues in a software system. Once again, the same principle applies to any domain,

not only legal.

When applied to the True-False dataset, the method’s weakness reveals an

area for improvement. The lack of significance in certain features for detecting

hallucinations in this dataset suggests that further refinement is needed to enhance

the method’s applicability across different data types. Addressing these limitations

will make the approach more versatile and effective in real world auditing scenarios.

7.4 Limitations

One limitation concerns the numerical features and models chosen as LLME.

While the current approach has proven effective for certain tasks, it may only partially

capture the depth and complexity of some types of textual content. Specifically,

the derived features may be less meaningful for tasks such as Knowledge-Grounded

Dialogue (KGD), which involve nuanced context and real-time interactions.

167

Although the method showed superior performance in tasks like Summarization

and Question Answering in HaluEval, it delivered competitive yet not leading results

in KGD and General User Queries. This might suggest that the approach could be

overly specialized or that task-specific feature engineering is required. The limitations

may also stem from the inherent constraints of the LLMs used as LLME.

Additionally, due to the limitations on context length for some LLMs, the

condition-text had to be shortened or supplementary knowledge, which might result in

losing the crucial context needed for accurate token probability classification. Some

LLMs require more context length to fully utilize the information without omitting

details.

Another key limitation is that the effectiveness and results of the approach may

be affected by the datasets’ characteristics. If the datasets contain inherent biases

or lack diversity, it could skew the model’s performance. For instance, the patterns

found in the HaluEval benchmark may make these four numerical features effective for

detecting particular hallucinations. Nevertheless, this does not change the fact that

advanced state-of-the-art methods have yet to demonstrate comparable performance

under similar conditions.

Although the method showed competitive results in the HELM benchmark,

it’s noteworthy that, except for SALPMA, most other methods used unsupervised

techniques. Since the approach relies on supervised learning, it depends on well-curated

and annotated data, which presents a limitation. Additionally, the performance issues

observed with the True-False dataset indicate that the approach might need further

refinement with additional features to be effective in a broader range of scenarios.

Finally, this method is based on binary classification. In practical situations,

hallucinations can be more complex and vary in severity, which the current approach

may not fully address. Additionally, there is a lack of interpretability; while numeri-

cal features can provide some insight, they do not explain the specific erroneous or

168

fabricated information being introduced. This could be mitigated by using a more

flexible evaluation framework, such as analyzing the Receiver Operating Characteristic

(ROC) curve across varying positive-class thresholds. This would allow for a deeper

examination of how accuracy, precision, and recall fluctuate with different thresh-

olds, providing more nuanced insights into model performance. By exploring different

threshold values, we could assess how the model’s behavior changes and identify the

optimal balance between precision and recall, ultimately improving the understanding

of hallucination detection. A study focusing on ROC curves would also clarify how

well the model generalizes across cases with different degrees of hallucinations, offering

a more comprehensive evaluation of its robustness and effectiveness. In this chapter,

we presented results from the Precision-Recall Curve AUC on the HaluEval dataset

but did not investigate the behavior of this curve or the ROC curve on any of the

datasets, which is recommended for future methods based on this type of approach.

7.5 Conclusions

This chapter presents a supervised learning approach for identifying hallucina-

tions in conditional text generated by LLMs. By leveraging just four features derived

from conditional token probabilities, this approach demonstrated competitive perfor-

mance across various tasks and datasets, offering a promising direction for enhancing

the reliability of LLM outputs. The results revealed that excluding the conditional

text or prompt reduced performance, showing the critical importance of context in the

evaluation process. Furthermore, extensive evaluation across three datasets provided

valuable insights into the method’s effectiveness, mainly when different LLMs were

used as evaluators. This exploration emphasized the benefits of employing diverse

models for evaluation purposes, with results indicating that alternative models can

yield comparable or even superior outcomes compared to the LLM-Generator itself.

The implications of this chapter extend far beyond the technical field,

particularly in domains that rely heavily on LLMs, such as medical, legal, educational,

169

and financial sectors. By enhancing the reliability of LLM outputs, this work

contributes to the ethical use of these models in sensitive applications where accuracy

and trustworthiness are vital. In the context of automatic legal compliance for software

systems, this chapter attempts to develop reliable methods to detect hallucinations

in LLM-generated text, thereby improving the integrity and dependability of Legal

Natural Language Processing (Legal NLP) applications. As LLMs become increasingly

integrated into various aspects of software development and regulatory compliance,

ensuring the accuracy and reliability of their outputs will be crucial in navigating

complex legal landscapes and meeting extended compliance requirements. This

chapter’s findings represent a significant step toward achieving these goals, paving the

way for more robust and trustworthy LLM-based systems across multiple domains.

7.6 Credit

In this section, we will provide each author’s contributions to the work presented

in this chapter. For this, we will use the system CRediT (https://www.elsevier.

com/researcher/author/policies-and-guidelines/credit-author-statement)

from Springer to make it easier.

Ernesto Quevedo Caballero: Conceptualization, Methodology, Software, Valida-

tion, Formal analysis, Investigation, Resources, Data Curation, Writing -

Original Draft, Writing-Review Editing, Visualization, Project administra-

tion.

Jorge Yero: Software, Formal analysis, Writing-review and editing.

Rachel Koerner: Software, Validation, Formal analysis, Writing-review and editing.

Pablo Rivas: Visualization, Writing-review and editing, Supervision.

Tomas Cerny: Visualization, Writing-review and editing, Supervision.

170

https://www.elsevier.com/researcher/author/policies-and-guidelines/credit-author-statement
https://www.elsevier.com/researcher/author/policies-and-guidelines/credit-author-statement

CHAPTER EIGHT

LLMs Hallucinations Mitigation Survey

As discussed in the last two chapters, addressing hallucinations extends beyond

merely detecting and correcting errors after they have occurred. In many applications,

particularly those involving high-stakes decision-making or the processing of sensitive

information, the consequences of hallucinations can be severe. For instance, in medical

applications, a hallucinated output could lead to incorrect diagnoses or treatment

recommendations, potentially endangering lives. In legal systems, hallucinations could

result in flawed advice or ruling, leading to significant life and economic losses.

Moreover, the challenge of mitigating hallucinations is not just about preventing

errors but also about fostering trust and reliability in LLM-based systems. As these

models become more integrated into critical infrastructures and decision-making

processes, ensuring their outputs are grounded in reality and free from fabrication is

essential for their adoption and effective use. Users must be able to trust that the

information provided by LLMs is accurate and transparent in its derivation, allowing

for informed decision-making.

The stakes are particularly high in the domain of automatic legal compliance

in software systems. Legal compliance involves interpreting, applying, and enforcing

complex regulatory frameworks that govern software development, data privacy, cyber-

security, and more. Hallucinations in this context can have far reaching implications.

A fabricated legal interpretation or an incorrect compliance recommendation could

lead to violations of regulations, legal disputes, and significant financial penalties.

Furthermore, the complexity and specificity of legal texts make them particularly

vulnerable to hallucinations, as LLMs might need help to correctly interpret nuanced

legal language or resolve ambiguities in regulatory documents.

171

Mitigating hallucinations in LLMs used for legal compliance is not only about

ensuring the accuracy of the model’s outputs but also about maintaining the integrity

of the entire compliance process. Inaccuracies in this domain can undermine the

credibility of the compliance system, leading to a loss of trust among stakeholders

and potentially jeopardizing the organization’s legal standing. Therefore, developing

robust methods to mitigate hallucinations is crucial for successfully deploying LLMs

in legal compliance workflows. This includes detection and correction mechanisms and

strategies to prevent hallucinations from occurring in the first place, such as improving

the quality of training data, refining prompt engineering techniques, and leveraging

ensemble approaches to enhance the robustness of the model’s outputs.

Therefore, although this thesis does not experiment with or present results

on a specific method for hallucination mitigation, it still provides a literature review

of current state-of-the-art methods for readers who wish to explore this challenging

problem further. Additionally, this chapter concludes with an in-depth discussion

about the problem of hallucinations in LLMs, based on the findings from Chapters 6

and 7.

8.1 Taxonomy of Hallucination Mitigation Methods in LLMs

This section provides a detailed overview of current methods to mitigate

hallucinations in LLMs. Building on the insights discussed in Chapter 5, these

methods are classified according to the root causes of hallucinations. Figure 8.1

illustrates the summary of the methods used to mitigate hallucinations in LLMs found

in this chapter.

8.1.1 Mitigating Misinformation and Biases

The most straightforward way to reduce misinformation and biases is to gather

high-quality factual data to prevent the introduction of false information and perform

data cleansing to remove biases.

172

Figure 8.1. Summary of the review on Hallucination Mitigation in LLMs

Lin et al. (2022) proposes a benchmark designed to evaluate the accuracy of

language models in providing truthful answers to questions. This benchmark includes

817 questions across 38 categories, such as health, law, finance, and politics. The

questions were crafted to reflect answers some humans might give due to misconceptions

or false beliefs. To achieve high performance, models must produce correct answers

based on learned imitations of human text. Testing was conducted with GPT-3,

GPT-Neo/J, GPT-2, and a T5-based model. The best-performing model was accurate

in 58% of cases, whereas human accuracy was 94%. The models often produced

incorrect answers that mirrored common misconceptions, with larger models generally

needing more accuracy. This finding diverges from other Natural Language Processing

(NLP) tasks where larger models typically perform better. The result is anticipated

if inaccurate answers are learned from the training data. The authors suggest that

improving truthfulness may require more than simply scaling up models and might

benefit from fine-tuning with training objectives beyond merely imitating web text.

173

The research of Ladhak et al. (2023) investigates how sociocultural and other

biases identified in pre-trained LLMs transfer to downstream tasks, explicitly focusing

on name nationality bias. Their study traces this bias from the pre-training phase to

its effects on summarization tasks, examining various summarization models. They

demonstrate that these biases can lead to hallucinations, resulting in factually incorrect

summaries. The study also reveals that the extent to which biases propagate depends

on the summarization model used: more abstractive models tend to allow biases to

transfer more directly as incorrect information. Additionally, the authors analyze how

adjustments to adaptation methods and fine-tuning datasets impact name nationality

biases. They find that while such modifications can reduce the overall occurrence of

hallucinations, they do not alter the types of biases that emerge.

The work of Viswanath and Zhang (2023) presents a detailed quantitative

evaluation of various biases related to race, gender, ethnicity, and age in widely-used

pre-trained language models like BERT and GPT-2. They discuss how these biases,

which models inherit from their training data, can be identified and measured using

mathematical tools. Additionally, they introduce a toolkit designed to facilitate this

process. The toolkit offers plug-and-play interfaces that connect these mathematical

tools with popular language models, allowing users to evaluate biases in both existing

and custom models. It also provides options for applying current debiasing techniques

to mitigate these biases.

8.1.2 Retrieval Augmented Generation (RAG)

Retrieval Augmented Generation (RAG) is a hybrid approach designed to

mitigate the problem of hallucinations by combining the generative capabilities of

LLMs with a retrieval-based mechanism that pulls in relevant information from external

sources. This approach enhances the factual accuracy of generated text by grounding

it in real, retrievable data Gao et al. (2023).

174

RAG operates through two main components: the retriever and the generator.

The retriever searches for and retrieves relevant information from a knowledge base

or external documents, using embeddings or other similarity metrics to identify the

most contextually appropriate passages. Once relevant information is retrieved, it

is fused with the original query and fed into the generator, which is the LLM itself.

The generator uses this external information as context, grounds its responses, and

reduces the likelihood of hallucination. The process begins with a user query, which

the retriever processes to find related data. This data is then integrated into the

input for the LLM, which generates the final output, which is now anchored in verified

information. This approach ensures that the output is coherent and factually accurate,

thereby addressing one of the significant limitations of LLMs Gao et al. (2023).

Next, some of the most relevant works that use this methodology are

summarized.

Kang et al. (2023) introduce a new method called Real-time Verification and

Rectification (Ever). Rather than correcting hallucinations after the text has been fully

generated, Ever employs a real-time, incremental approach to both generating text and

rectifying hallucinations as they emerge. This strategy aims to identify and correct

inaccuracies throughout the text generation process. Compared to existing retrieval-

based and non-retrieval-based methods, Ever significantly enhances the reliability and

factual accuracy of the generated content across various tasks, including short-form

question answering, biography creation, and multi-hop reasoning.

The research of Peng et al. (2023) proposes a system called LLM-Augmenter.

This system enhances a black-box LLM by integrating modular, plug-and-play

components. These modules enable the LLM to generate responses grounded in

external knowledge sources, such as task-specific databases. Additionally, LLM-

Augmenter iteratively refines the LLM’s prompts, using feedback from utility functions

like the factuality score of the generated responses to improve accuracy. The authors

175

empirically validate the effectiveness of LLM-Augmenter in two use cases: task-

oriented dialogue and open-domain question answering. In both scenarios, the

system significantly reduces hallucinations in ChatGPT-generated responses. The

framework also integrates Reinforcement Learning (RL) techniques, optimized using

policy gradient, to further improve model performance.

The work of Vu et al. (2023) introduces FreshQA. This dynamic question-

answering benchmark includes a wide range of question types, such as those requiring

knowledge of rapidly changing information and those with false premises that need to

be corrected. The study benchmarks various closed and open-source LLMs using a

two-mode evaluation procedure designed to assess both the correctness of responses

and the presence of hallucinations. Through human evaluations involving over 50,000

judgments, the study highlights the significant limitations of these models, particularly

their difficulties with questions that involve fast-changing knowledge and false

premises, regardless of model size. In response to these findings, the study introduces

FreshPrompt. This straightforward few-shot prompting technique significantly

enhances LLM performance on the FreshQA benchmark by incorporating up-to-

date information retrieved from a search engine into the prompt. The experiments

demonstrate that FreshPrompt outperforms other search engine-augmented prompting

methods, such as Self-Ask Press et al. (2022) and commercial systems. Further analysis

of FreshPrompt reveals that the quantity of retrieved evidence and the sequence in

which it is presented play a crucial role in improving the accuracy of LLM-generated

answers. Additionally, instructing the LLM to provide concise and direct responses

reduces hallucinations compared to prompts encouraging more verbose answers.

The work of Varshney et al. (2023) their approach begins by identifying

potential hallucination candidates using the model’s logit output values. These

candidates are then validated for accuracy through a specialized procedure, and

any detected hallucinations are mitigated before the generation process continues.

176

Extensive experiments with GPT-3.5 (text-davinci-003) on the article generation task

demonstrate the proposed techniques’ effectiveness. The detection method achieves a

recall rate of approximately 88%, and the mitigation technique successfully addresses

57.6% of the correctly identified hallucinations. Notably, the mitigation process does

not introduce new hallucinations, even in cases of false positives (incorrectly detected

hallucinations). The combined approach of active detection and mitigation reduces

the hallucination rate in the GPT-3.5 model from 47.5% to 14.5% on average. The

study also highlights the broad applicability and effectiveness of the approach through

additional evaluations, including its performance on different types of questions, such

as multi-hop and false premise questions, and with another LLM from a different

model family, Vicuna. Overall, this work significantly enhances the reliability and

trustworthiness of LLMs, an essential advancement toward their widespread adoption

in real-world applications.

Cao et al. (2023) presents the “Decompose-and-Query” (D&Q) framework,

designed to address the challenge of hallucinations in LLMs during question-answering

(QA) tasks. LLMs often struggle with multi-hop relations in complex questions or lack

the required knowledge to provide accurate answers, leading to hallucinated responses.

D&Q aims to mitigate this by guiding the model to decompose complex questions

and query external knowledge in a structured, reliable manner. Experimental results

highlight the effectiveness of D&Q. On the ChitChatQA dataset, D&Q performed

on par with ChatGPT in 67% of cases, and on the HotPotQA Yang et al. (2018)

question-only setting, it achieved an F1 score of 59.6%. The research introduces

ChitChatQA, a new dataset, and demonstrates how D&Q enhances LLM performance

by improving factual accuracy and reducing hallucinations in multi-hop QA tasks.

The research of Gao et al. (2023) introduces RARR (Retrofit Attribution using

Research and Revision), a system designed to address the problem of unsupported or

misleading content generated by language models (LMs). While LMs excel at tasks

177

such as question answering, reasoning, and dialogue, they often produce outputs that

need more attribution to external evidence, making it difficult for users to assess the

trustworthiness of the content. RARR aims to bridge this gap by offering a solution

that automatically finds and integrates external attribution for generated text while

preserving the original output as much as possible. RARR operates in two key phases:

first, it retrieves attribution for the LM-generated output, and second, it post-edits

the output to correct any unsupported content without significantly altering its style

or structure. The system can be applied to various state-of-the-art LMs and performs

well across different generation tasks, showing significant improvements in attribution

while maintaining the original qualities of the text. Additionally, RARR requires

minimal training examples and relies on standard web searches to retrieve evidence,

making it adaptable and efficient. The study highlights the limitations of existing

LMs in retaining factoid knowledge and demonstrates how RARR addresses this issue

by refining outputs to be more attributable to external sources. While RARR is a

promising solution for improving factual reliability, the paper acknowledges that there

is still substantial room for improvement in integrating attribution mechanisms into

LMs.

The work of Rawte et al. (2023) thoroughly analyzes hallucinations by

categorizing them based on degree, orientation, and type and by proposing

corresponding mitigation strategies. They define two primary orientations of

hallucinations: (i) factual mirage (FM) and (ii) silver lining (SL). They further

divide these orientations into intrinsic and extrinsic categories, with three levels

of severity: (i) mild, (ii) moderate, and (iii) alarming. Additionally, the authors

classify hallucinations into six types: (i) acronym ambiguity, (ii) numeric nuisance,

(iii) generated golem, (iv) virtual voice, (v) geographic erratum, and (vi) time wrap.

The authors introduce the HallucInation eLiciTation (HILT) dataset, which comprises

75,000 samples generated by 15 contemporary LLMs and human annotations for the

178

identified categories to support their analysis. Furthermore, the authors propose the

Hallucination Vulnerability Index (HVI), a method for quantifying and ranking LLMs

based on their susceptibility to generating hallucinations. HVI could be a valuable

tool for the broader NLP community and play a role in AI policy-making.

Lewis et al. (2020) explore integrating pre-trained models with a differentiable

access mechanism to explicit non-parametric memory, which has been primarily

investigated for extractive downstream tasks. The authors propose a general-purpose

fine-tuning approach for Retrieval Augmented Generation (RAG) models, combining

pre-trained parametric and non-parametric memory for language generation. In their

approach, the parametric memory consists of a pre-trained seq2seq model. In contrast,

non-parametric memory is a dense vector index of Wikipedia that can be accessed

using a pre-trained neural retriever. The authors compare two RAG formulations: one

that conditions the same retrieved passages throughout the generated sequence and

another that utilizes different passages for each token. They fine-tune and evaluate

these models across a broad range of knowledge-intensive NLP tasks. Their results set

a new state-of-the-art on three open-domain QA tasks, surpassing both parametric

seq2seq models and task-specific retrieve-and-extract architectures. The RAG models

produce more specific, diverse, and factual language for language generation tasks

compared to a leading parametric-only seq2seq baseline.

8.1.3 Self-Improvement through reasoning and feedback

Self-improvement through reasoning and feedback methods for hallucination

mitigation in LLMs involves enabling models to refine their outputs by leveraging

internal reasoning processes and external feedback. These techniques encourage LLMs

to evaluate their responses critically, incorporate feedback to correct errors and adapt

over time. An advantage of this approach is its capacity for continuous learning and

refinement, potentially leading to more accurate and reliable outputs as the model

evolves. However, challenges include the risk of the model overfitting to specific

179

feedback and potentially reinforcing incorrect patterns if the feedback is not well-

calibrated. Additionally, the effectiveness of reasoning and feedback methods depends

on the quality and consistency of the feedback provided, which can be variable and

may require careful management to avoid unintended consequences.

The research of Mündler et al. (2023) notes that LLMs are prone to generating

text with hallucinated content, a key issue being self-contradiction, where the model

produces two contradictory statements within the same context. In this study, the

authors extensively investigated self-contradiction across various instruction-tuned

LMs, focusing on evaluation, detection, and mitigation. The primary evaluation

involves open-domain text generation, with the approach also applicable to shorter

question-answering tasks. The analysis highlights the significant occurrence of self-

contradictions, such as 17.7% of all ChatGPT’s sentences. The authors introduce

a novel prompting-based framework that effectively detects and mitigates self-

contradictions. Their detection method achieves high accuracy, for instance, with

an F1 score of around 80% when applied to ChatGPT. The proposed mitigation

algorithm iteratively refines the generated text to eliminate contradictory content

while maintaining its fluency and informativeness. Crucially, the entire framework

applies to black-box LMs and does not require the retrieval of external knowledge,

offering a complementary approach to retrieval-based methods, particularly since a

significant portion of self-contradictions (e.g., 35.2% for ChatGPT) cannot be verified

using online text.

The work of Ji et al. (2023) highlight the potential of LLMs for generative

and knowledge-intensive tasks, including question-answering (QA). Despite this

promise, practical deployment faces significant challenges, particularly the issue

of “hallucination,” where models produce information that sounds plausible but

is inaccurate or nonsensical. This problem is especially critical in the medical domain

due to the specialized professional concepts and the potential social risks. In this

180

work, the authors analyze the phenomenon of hallucination in medical generative

QA systems using widely adopted LLMs and datasets. Their investigation focuses

on identifying and understanding common problematic answers, with a particular

emphasis on hallucination. The authors introduce an interactive self-reflection

methodology integrating knowledge acquisition and answer generation to address this

challenge. Through this iterative feedback process, their approach steadily improves the

factuality, consistency, and entailment of the generated answers. The method produces

accurate responses by leveraging LLMs’ interactivity and multitasking capabilities.

Experimental results from both automatic and human evaluations demonstrate the

superiority of this approach in reducing hallucinations compared to baseline methods.

Yan et al. (2024) emphasize the importance of comparative reasoning in

text preference prediction, noting that LLMs often show inconsistencies. Although

techniques like Chain-of-Thought have improved accuracy in various settings, they

need help consistently identifying the similarities and differences in complex texts. In

response, the authors introduce Structured Comparative (SC), a prompting approach

designed to predict text preferences by generating structured intermediate comparisons.

SC begins by proposing comparison aspects and then generates textual comparisons

for each aspect. Consistent comparisons are selected using a pairwise consistency

comparator, ensuring that each aspect’s comparisons highlight the differences between

texts, significantly reducing hallucination and improving consistency. The authors

demonstrate that SC enables LLMs to achieve state-of-the-art performance in text

preference prediction through comprehensive evaluations across various NLP tasks,

including summarization, retrieval, and automatic rating.

The study of Liu et al. (2023) notes that these models’ enormous scale and

computational demands pose substantial challenges for their practical deployment

in resource-constrained environments. Although techniques like chain-of-thought

(CoT) distillation have shown promise in creating small language models (SLMs) from

181

LLMs, there is a concern that distilled SLMs might still inherit flawed reasoning

and hallucinations from the original LLMs. To address these issues, the authors

propose a twofold approach: First, they introduce a novel method for transferring

the self-evaluation capability from LLMs to SLMs, aiming to reduce the negative

effects of flawed reasoning and hallucinations. Second, they suggest distilling more

comprehensive thinking by incorporating multiple distinct CoTs and self-evaluation

outputs, ensuring a more thorough and robust knowledge transfer into SLMs.

Experiments conducted on three NLP benchmarks: SVMAP Patel et al. (2021),

CQA Talmor et al. (2019) and ANLI Nie et al. (2020); show that their method

significantly enhances the performance of distilled SLMs, providing a new perspective

on developing more effective and efficient SLMs for resource-constrained settings.

The research of Dhuliawala et al. (2023) investigates the potential for language

models to reflect on their responses and correct their errors. To tackle this, they

develop the Chain-of-Verification (CoVe) method. The CoVe method begins with

the model drafting an initial response. The model then plans a set of verification

questions to fact-check its draft. These questions are answered independently to

prevent bias that might arise from the draft response or other answers. Finally, the

model generates a revised, verified response based on this process. Experimental

results show that CoVe effectively reduces hallucinations across various tasks, including

list-based questions from Wikidata 1, closed-book MultiSpanQA Li et al. (2022), and

long-form text generation.

Lei et al. (2023) propose a hierarchical framework to detect and mitigate

ungrounded hallucinations. The framework employs Chain of Natural Language

Inference (CoNLI) to detect hallucinations and utilizes post-editing to reduce them.

The framework is designed as a plug-and-play solution, requiring no fine-tuning or

domain-specific prompt engineering, making it easy to integrate into existing systems.

1https://query.wikidata.org/

182

https://query.wikidata.org/

The framework demonstrated state-of-the-art performance in hallucination detection

through extensive experiments across various text-to-text datasets. Additionally, it

significantly improved text quality through rewriting without compromising fluency

or coherence. The approach incorporates sentence-level and entity-level judgments to

detect hallucinations, offering interpretable outputs for hallucination reduction. This

generalizable framework effectively improves the factual accuracy of LLM-generated

content while preserving its overall quality.

8.1.4 Prompt Engineering

Prompt engineering methods for hallucination mitigation in LLMs involve

designing and refining input prompts to guide the model toward producing more

accurate and reliable outputs. By crafting prompts that provide clear context,

constraints, or specific instructions, users can reduce the likelihood of generating

misleading or incorrect information. The advantage of prompt engineering lies in

its simplicity and flexibility; it allows users to adapt the model’s behavior without

altering the underlying architecture. However, the effectiveness of this approach can

be limited by the model’s inherent capabilities and the challenge of creating universally

effective prompts. Additionally, over-reliance on prompt engineering might lead to

inconsistent results if the prompts are not carefully tailored or if the model encounters

novel scenarios not covered by the prompts Sahoo et al. (2024).

The research of Si et al. (2023) breaks down reliability into four key aspects

that align with the established framework of machine learning safety: generalizability,

social biases, calibration, and factuality. The authors’ primary contribution is the

development of simple and effective prompts designed to enhance GPT-3’s reliability

in these areas. Their approach focuses on: 1) improving generalization to out-of-

distribution data, 2) addressing social biases by balancing demographic distribution

and incorporating natural language instructions, 3) calibrating output probabilities

to ensure more accurate predictions, and 4) updating the model’s factual knowledge

183

and reasoning processes. With these tailored prompts, GPT-3 demonstrates greater

reliability across all facets compared to smaller-scale supervised models. The authors

publicly make their processed datasets, evaluation scripts, and model predictions

available. Their systematic empirical study provides new insights into the reliability

of prompting LLMs and offers practical strategies for practitioners to use LLMs like

GPT-3 more reliably.

Cheng et al. (2023) present UPRISE, a method for tuning a lightweight and

versatile retriever that automatically generates prompts for a given zero-shot task

input. They demonstrate the universality of this approach through a cross-task and

cross-model evaluation. Specifically, the retriever is tuned using diverse tasks and

tested on unseen task types. The tuning is performed with a small, frozen LLM,

GPT-Neo-2.7B, while the performance of the retriever is evaluated on much larger

models, such as BLOOM-7.1B, OPT-66B, and GPT-3-175B. The results indicate that

UPRISE effectively mitigates the hallucination problem, as evidenced by experiments

with ChatGPT. This suggests that UPRISE can potentially enhance the performance

of even the most advanced LLMs.

The work of Jones et al. (2023) introduces SynTra, a method that uses a

synthetic task to reduce hallucination. SynTra begins by designing a synthetic task

where hallucinations are easily elicited and measured. It then optimizes the LLM’s

system message through prefix-tuning on this synthetic task. This optimized system

message is subsequently transferred to more complex, real-world tasks that are difficult

to optimize. The authors demonstrate that SynTra effectively reduces hallucination

in two 13B-parameter LLMs across three real-world abstractive summarization tasks,

using only the synthetic retrieval task for supervision. They also find that focusing on

optimizing the system message, rather than fine-tuning the entire model, is crucial, as

fine-tuning the model on the synthetic task can unexpectedly increase hallucination.

184

SynTra illustrates that leveraging synthetic data can provide valuable flexibility to

mitigate undesired behaviors in practical applications.

8.1.5 Decoding Strategies

Decoding strategies for hallucination mitigation in LLMs involve adjusting the

algorithms used to generate text to minimize inaccuracies and misleading information.

Techniques such as beam search, sampling, and temperature control guide the model’s

output towards more reliable responses. The advantage of decoding strategies is that

they can enhance the quality and coherence of the generated text by controlling various

aspects of the output process, potentially reducing the likelihood of hallucinations.

However, these methods often involve trade-offs between creativity and accuracy, and

fine-tuning the decoding parameters can take time and effort. Additionally, while

decoding strategies can help reduce certain types of hallucinations, they may need to

fully address the root causes of inaccuracies, particularly those stemming from the

model’s training data or inherent limitations Shi et al. (2024).

Shi et al. (2023) introduce context-aware decoding (CAD). This method employs

a contrastive output distribution to enhance the difference between output probabilities

when a model is used with and without context. Their experiments demonstrate

that CAD, which does not require additional training, significantly improves the

faithfulness of various LLMs families, including OPT, GPT, LLaMA, and FLAN-

T5, on summarization tasks. For instance, CAD achieves a 14.3% gain in factuality

metrics for LLaMA. Moreover, CAD proves particularly effective in overriding a model’s

prior knowledge when it contradicts the provided context, resulting in substantial

improvements on tasks where resolving such knowledge conflicts is crucial.

The research of Chuang et al. (2023) develops a method called Decoding by

Contrasting Layers (DoLa), which involves obtaining the next token distribution by

contrasting the differences in logits projected from later versus earlier layers to the

vocabulary space. This approach leverages the observation that factual knowledge

185

in LLMs is often localized to specific transformer layers. The results show that

DoLa effectively enhances surface-level factual knowledge and reduces the generation

of incorrect facts. The method consistently improves truthfulness across various

tasks, including multiple-choice and open-ended generation tasks. For instance, it

improves the performance of LLaMA models on TruthfulQA Lin et al. (2022) by 12-17

absolute percentage points, demonstrating its potential to make LLMs more reliable

in generating truthful information.

The study of Li et al. (2024) introduces Inference-Time Intervention (ITI), a

technique aimed at enhancing the “truthfulness” of LLMs. ITI works by adjusting

model activations during inference through specific directions applied to a limited

number of attention heads. This intervention notably improves the performance

of LLaMA models on the TruthfulQA Lin et al. (2022) benchmark. For instance,

ITI increases the truthfulness of an instruction finetuned LLaMA model, Alpaca,

from 32.5% to 65.1%. The authors also identify a tradeoff between truthfulness

and helpfulness and demonstrate how to balance this by tuning the strength of

the intervention. ITI is minimally invasive and computationally efficient, requiring

only a few hundred examples to identify truthful directions, unlike methods such as

Reinforcement Learning with Human Feedback (RLHF), which demand extensive

annotations. The findings suggest that LLMs may have an internal representation of

truthfulness, even though they sometimes produce incorrect information.

8.1.6 Using Knowledge Graphs

Knowledge graph-based methods for hallucination mitigation in LLMs utilize

structured representations of knowledge to enhance the accuracy and reliability

of generated content. These methods provide contextual information and factual

verification by integrating knowledge graph databases that represent relationships

between entities and concepts into the model’s decision-making process. The advantage

186

of using knowledge graphs is their ability to offer a rich, organized source of real-

world information that can help correct or prevent erroneous outputs. However,

challenges include the need for comprehensive and up-to-date knowledge graphs

and the complexity of integrating these graphs into the model’s inference process.

Additionally, the effectiveness of this approach depends on the quality and coverage of

the knowledge graph, which might only encompass some relevant domains or emerging

information Pan et al. (2024).

Ji et al. (2023) present RHO ρ, which utilizes representations of linked entities

and relation predicates from a knowledge graph (KG). Their approach includes two key

strategies: (1) local knowledge grounding, which combines textual embeddings with

corresponding KG embeddings, and (2) global knowledge grounding, which enhances

RHO with multi-hop reasoning abilities through an attention mechanism. Additionally,

they introduce a response re-ranking technique that leverages walks over KG sub-

graphs to improve conversational reasoning. Experimental results on the OpenDialKG

dataset Moon et al. (2019) demonstrate that their approach significantly outperforms

state-of-the-art methods, particularly in reducing hallucinations. According to

automatic and human evaluations, their method achieves a 17.54% improvement

in FeQA Durmus et al. (2020).

The research of Bayat et al. (2023) introduces FLEEK, a prototype tool

designed to automatically detect factual errors in textual information generated by

LLMs or humans. Recognizing the challenge of manually verifying factual accuracy,

FLEEK extracts factual claims from text, gathers evidence from external knowledge

sources, evaluates each claim’s factuality, and suggests revisions for any identified

errors based on the collected evidence. The tool aims to reduce the labor involved in

error detection and correction. Initial empirical evaluations of FLEEK show promising

results, with F1 scores between 77-85% for detecting factual errors. Despite these

encouraging results, the authors acknowledge several limitations. First, FLEEK relies

187

on initial responses from LLMs, which can introduce inaccuracies. Second, the current

evaluation is conducted on small-scale, manually annotated datasets.

8.1.7 Faithfulness loss functions

This section covers research that introduced a faithfulness-based loss func-

tion Chrysostomou and Aletras (2021). The focus is ensuring that a model’s outputs

align closely with the input data or ground truth, minimizing errors, omissions, and

distortions. By creating a metric to gauge how faithfully a model reflects its input, this

approach aims to enhance the reliability of model outputs, particularly in high-stakes

fields like legal compliance, where accuracy is critical.

Yoon et al. (2022) addresses the challenge of Video-grounded Dialogue (VGD),

where the goal is to generate an answer to a question based on a video and the

surrounding dialogue. Although recent advancements in multi-modal reasoning have

improved answer generation, many dialogue systems still suffer from text hallucination

where irrelevant text is copied from input sources without fully understanding the

question. This issue arises because the models tend to learn superficial patterns, as

answers in the dataset often contain words from the input. Consequently, VGD systems

rely too much on copying text, hoping those words match the correct answers. To tackle

this, the authors introduce the Text Hallucination Mitigating (THAM) framework,

which uses a Text Hallucination Regularization (THR) loss based on an information-

theoretic approach to measure hallucinations. When applied to current dialogue

systems, THAM improves performance on VGD benchmarks like AVSD@DSTC7 and

AVSD@DSTC8 Alamri et al. (2019), enhancing the system’s interpretability.

The research of Qiu et al. (2023) introduces a new metric, mFACT, which

assesses the faithfulness of non-English summaries by leveraging translation-based

transfer from various English faithfulness metrics. They also propose a straightforward

but effective method to reduce hallucinations in cross-lingual transfer by weighting

the loss of each training example based on its faithfulness score. Through extensive

188

experiments in multiple languages, they show that mFACT is the best metric for

detecting hallucinations. Additionally, their loss weighting method significantly

improves performance and faithfulness, as confirmed by automatic and human

evaluations, compared to strong baselines like MAD-X Pfeiffer et al. (2020).

8.1.8 Supervised Fine-tuning

Supervised Fine-Tuning (SFT) is a crucial process in developing LLMs, aimed

at optimizing their performance for specific downstream tasks by leveraging labeled

datasets. This technique involves adjusting the LLM’s weights through gradient

descent, guided by a task-specific loss function that quantifies the discrepancy between

the model’s predictions and the true labels. The effectiveness of SFT largely hinges on

the quality of the training data, which directly impacts the model’s ability to generate

accurate and reliable outputs Xu et al. (2023); Touvron et al. (2023). By refining the

model’s parameters through this targeted approach, SFT enhances its adaptability,

enabling it to perform more effectively on new or previously unseen tasks Jin et al.

(2024); Chung et al. (2024); Wang et al. (2022).

Elaraby et al. (2023) focuses on evaluating and mitigating hallucinations in

BLOOM 7B Le Scao et al. (2023), a notable example of these smaller, publicly

available LLMs used for research and commercial purposes. The authors introduce

HaloCheck, a lightweight, BlackBox, knowledge-free framework that quantifies the

extent of hallucinations in such models. They also investigate methods like knowledge

injection and teacher-student training to reduce hallucinations in low-parameter LLMs.

They reduce reliance on expensive instructions from larger models by fine-tuning

the models with domain-specific knowledge and leveraging more powerful models

like GPT-4 to generate detailed question answers. The experimental results show

significantly decreased hallucinations, especially in challenging domains for these

models.

189

The research of Köksal et al. (2023) addresses the concept of attribution in

LLMs, which is crucial for managing information sources and enhancing the factual

accuracy of the models. Existing methods often rely on open-book question answering

(QA) to improve attribution. Still, factual datasets may cause models to recall

information from their pretraining data rather than truly improving attribution. In

contrast, the authors suggest that counterfactual open-book QA datasets, where

answers must be strictly based on the provided text, enhance attribution more

effectively. To create these counterfactual datasets, they introduce hallucination-

augmented recitations (HAR), a method that leverages hallucinations in LLMs.

Using open book QA as a case study, they show that models fine-tuned with their

counterfactual datasets improve text grounding and achieve up to an 8% increase in

F1 score. Their counterfactual datasets outperform human-annotated factual datasets,

even when using models and datasets that are four times smaller. The improvements

hold across different model sizes and datasets, including multi-hop, biomedical, and

adversarial QA tasks.

The study of Tian et al. (2023) fine-tuned LLMs to enhance factual accuracy

without relying on human labeling, focusing on more open-ended generation tasks

than previous work. The authors build on two key innovations in NLP: (1) recent

methods for assessing factuality by comparing outputs to external knowledge bases or

using a model’s confidence scores, and (2) direct preference optimization, a technique

that fine-tunes models based on preference rankings rather than supervised imitation.

The authors use these automatically generated factuality preference rankings—created

either from existing retrieval systems or a novel retrieval-free approach to significantly

improve the factual accuracy of Llama-2 on held-out topics. Compared to Llama-2-

chat, at the 7B scale, they achieve a 58% reduction in factual errors when generating

biographies and a 40% reduction when answering medical questions, outperforming

methods like RLHF and decoding strategies aimed at improving factuality.

190

Zhang et al. (2024) propose a novel approach called Refusal-Aware Instruction

Tuning (R-Tuning). This method identifies the mismatch between the knowledge

stored in the pre-trained parameters and the instruction-tuning data. Based on this,

they create refusal-aware data that teaches LLMs to avoid answering questions beyond

their parametric knowledge. Experiments show that R-Tuning effectively improves

models’ ability to accurately answer known questions and refuse when faced with

unknown ones. Notably, this refusal ability generalizes well to out-of-domain datasets,

functioning as a meta-skill applicable to other tasks. Moreover, their analysis reveals

that learning uncertainty through R-Tuning enhances a model’s calibration and ability

to estimate uncertainty better than traditional uncertainty-based testing methods.

The work of Qiu et al. (2023) introduces TWEAK (Think While Effectively

Articulating Knowledge), a decoding-only method that can be applied to any LLM

generator without retraining. TWEAK treats each generated sequence and its future

possibilities as hypotheses and ranks them based on how well they align with the input

facts using a Hypothesis Verification Model (HVM). Initially, the authors demonstrate

the method’s effectiveness using a Natural Language Inference (NLI) model as the

HVM, showing that it improves faithfulness with minimal impact on output quality.

They then enhance the HVM by training it on a novel dataset created by the authors,

called FATE (Fact-Aligned Textual Entailment), which pairs input facts with accurate

and altered descriptions. Testing TWEAK on two different generators, the authors

report that the best TWEAK variants increase faithfulness by an average of 2.24/7.17

points (FactKB) in in/out-of-distribution settings, with only a minor 0.14/0.32-point

decrease in quality (BERTScore) Zhang et al. (2019).

8.2 Discussion

Since the thesis already provides a detailed literature review in Chapter 6

and discusses the developed methodology for hallucination detection in Chapter 7,

this section will also include an overarching discussion that integrates the content of

191

Chapters 6, 7, and 8. The focus will be on hallucinations in LLMs, the reasons they

occur, and finally, how to mitigate them.

8.2.1 Hallucinations in LLMs

The occurrence of hallucinations in Artificial Intelligence (AI) systems,

particularly within LLMs, presents significant risks, mainly when applied to critical

domains such as healthcare, finance, and public safety. In healthcare, for instance, a

hallucinated response by an AI model that incorrectly identifies a malignant lesion

as benign could have life-threatening consequences for a patient. Conversely, falsely

identifying a benign lesion as malignant might lead to unnecessary and potentially

harmful medical interventions. In the financial sector, the implications of hallucinated

outputs could result in misguided investment decisions, potentially leading to severe

economic losses.

Even in applications deemed less critical, the deceptive nature of hallucinations

poses a substantial barrier to the broader adoption of AI. Suppose the model

occasionally fails to extract an essential item or introduces a spurious one. In that

case, it becomes virtually impossible for users to detect these errors without manually

reviewing the entire transcript. This undermines the utility of AI in such applications,

as the need for constant human oversight nullifies the supposed efficiency gains.

In the context of automatic legal compliance for software systems, the risks

associated with hallucinations are further amplified. Legal compliance often requires

adherence to regulations, where any deviation can result in significant legal and

financial repercussions. Hallucinated outputs in this domain could lead to incorrect

interpretations of legal requirements, potentially exposing organizations to legal

liabilities and regulatory penalties. The challenge is compounded by the difficulty

in effectively communicating the limitations of LLMs to end-users, who may need

more expertise to assess the AI’s outputs critically. As a result, errors introduced by

hallucinations can propagate through an organization’s decision-making processes,

192

leading to flawed decisions that appear entirely plausible due to the AI’s seemingly

coherent outputs.

Addressing the causes of hallucinations in LLMs requires a commitment to

responsible AI development practices. This includes prioritizing transparency and

accountability in AI systems, implementing robust testing and validation protocols

before deployment, and establishing ongoing monitoring mechanisms to detect and

mitigate hallucinations as they occur. Ethical considerations must be at the forefront

of AI development, particularly in applications with significant consequences for public

safety, financial stability, and legal compliance.

Moreover, it is crucial to recognize that current generative AI systems cannot

guarantee the absence of hallucinations. This inherent unreliability requires developers,

users, and stakeholders to remain vigilant, understanding that hallucinations are

not anomalies but rather intrinsic to how these models function under the current

paradigm. Unlike traditional software, where failures are typically categorized as

bugs, hallucinations are a byproduct of the stochastic nature of generative models.

Consequently, stakeholders must implement guardrails and contingency plans to

manage the output of these systems, acknowledging that hallucinations, while insidious,

are an expected feature rather than an exception.

This is also supported by the research of Xu et al. (2024), which formalizes

the problem and demonstrates that eliminating hallucinations in LLMs is impossible.

The authors define a formal world where hallucination is identified as inconsistencies

between a computable LLM and a computable ground truth function. Using learning

theory, they show that LLMs cannot learn all computable functions, meaning

hallucinations are inevitable. Since this formal world is a simplified representation of

the natural world, hallucinations are unavoidable in real-world LLMs.

193

8.2.2 Why Hallucinations Happen

After a deep dive into chapters 6 and 7 and this chapter on hallucinations in

LLMs, let’s discuss why they happen.

Various surface-level factors contribute to hallucinations, such as issues with

data, modeling, and prompting. However, the fundamental reason behind all

hallucinations in LLMs lies in the very nature of the current language modeling

paradigm. This paradigm, by its very design, inherently produces hallucinations.

An essential contributor to hallucinations in LLMs is their inherent random-

ness, a byproduct of the generative process they follow. When these models generate

text, they don’t deterministically produce the same response each time. Instead, they

rely on probabilities assigned to various word sequences based on patterns learned dur-

ing training. This probabilistic nature means that even when presented with the same

prompt, the model might generate slightly different outputs on different occasions.

Without this stochastic element, LLMs would produce repetitive and overly

rigid text, limiting their ability to generate diverse or contextually nuanced responses.

However, this randomness comes with a trade-off: while it allows for more varied and

adaptive outputs, it also increases the risk of hallucinations.

In situations where the model has insufficient data or conflicting information,

the randomness in selecting probable next words can lead to the generation of sentences

that sound plausible but are not factually accurate. The model is essentially making

an educated guess based on statistical patterns rather than a grounded understanding

of reality.

Additionally, generative AI models, including LLMs, create outputs by

identifying and reproducing statistical patterns in their training data. Instead of

storing explicit factual information, LLMs encode relationships between words and

phrases based on these patterns. This approach means that the models don’t have

194

a concrete understanding of what is true or false; they produce text that sounds

plausible.

This approach generally works because generating plausible text often results

in something true, especially if the model is trained on predominantly accurate data.

However, LLMs are trained on vast amounts of text from the Internet, including

correct information and inaccuracies, biases, and fabrications. Consequently, while

these models have learned to generate many accurate sentences by recognizing patterns

associated with truth, they have also been exposed to numerous variations of sentences

that are partially or entirely incorrect.

One of the main reasons hallucinations occur in LLMs is their need for more

grounding in authoritative sources of knowledge. With a firm base in verified, factual

information, these models find it easier to differentiate between truth and falsehood,

generating hallucinated content. However, this issue goes beyond just the absence of

factual grounding. Even if a model were trained exclusively on accurate data, which

presumes the availability of such high-quality information, the statistical nature of

language models still makes them prone to hallucinations.

Consider a scenario where a model has only encountered truthful sentences

and has learned the relationships between the words in these sentences. If there are

two nearly identical sentences, both factually correct but differing by just a few words

like a date and a name, for instance, “Legal event A happened in year X” and “Legal

event B happened in year Y” the model might generate a mixed-up sentence such as

“Legal event B happened in year X.” The probability of this error is only marginally

lower than producing either of the original, correct sentences, which highlights the

inherent risk of hallucination in these systems.

The underlying issue is that statistical language models assume that minor

variations in the input (i.e., the sequence of words) will result in slight variations

in the output (i.e., the probability of generating a particular sentence). Technically

195

speaking, these models assume a smooth distribution, which is essential because the

amount of data they need to encode vastly exceeds the model’s memory capacity (the

number of parameters). As a result, these models must compress the training data,

which inevitably leads to some loss of information.

Statistical language models assume that sentences similar to those in the

training data are also plausible. They create a smooth representation of language,

which works well as long as plausibility isn’t confused with factual accuracy. The

critical issue is that these models were not designed initially with factual accuracy.

They were built for tasks like translation, where coherence and plausibility are the

primary concerns. The problem arises when these models are repurposed for tasks that

require factual accuracy, such as answering questions, where the distinction between

plausible and factual becomes critical.

The issue is that facts are not smooth or variable, and a statement is either

true or false. LLMs, however, need to be equipped to draw a clear line between factual

and non-factual sentences. Their inherent design creates blurred boundaries, making

it impossible to establish a definitive threshold where a sentence can be deemed false

based on its perplexity value. Even if such a threshold could be determined, it would

vary across different sentences.

You might wonder why using this smooth representation cannot be avoided.

The reason is that generating new sentences that weren’t explicitly in the training

data requires the model to infer that some unseen sentences are also plausible. This

inference necessitates certain assumptions, and the smoothness hypothesis is reasonable

and computationally efficient. These models are trained using gradient descent, which

depends on smoothness in the loss function. This approach works well if factual

accuracy is not the primary concern. With this smooth, loose compression of the

training data, the model would retain the ability to generate novel sentences altogether.

196

This is why the current generative AI paradigm is inherently prone to

hallucinations, regardless of how good the training data is or how sophisticated

the training methods and safeguards are. The statistical language modeling approach

generates plausible-sounding sentences by recombining words that have appeared

together in similar contexts in the training data. It lacks an inherent understanding of

whether a sentence is true or false; it only recognizes patterns that resemble sentences

in the training set.

Providing the model with vast amounts of high-quality data could reduce the

likelihood of generating false sentences to an almost negligible level. Unfortunately,

this isn’t the case. Recent research Wei et al. (2024); Yu et al. (2024); Zhang et al.

(2024) indicates that if a sentence can be generated at all, no matter how low its initial

probability, there exists a prompt that can elicit that sentence with near certainty.

This means that even with the best safeguards, the system remains vulnerable to ma-

nipulation, and users can never be entirely confident that it won’t be “jailbroken” Wei

et al. (2024); Yu et al. (2024) by a malicious actor.

8.2.3 Hallucination Mitigation

Hallucinations in LLMs remain an inherent challenge due to their reliance on

statistical patterns rather than a true understanding of factuality. Despite this, several

strategies have been developed to mitigate the impact of these inaccuracies in practice.

One prominent approach is the incorporation of external knowledge bases

and fact-checking systems. By grounding LLMs in authoritative sources, the risk of

generating inaccurate or fabricated outputs is significantly reduced. This strategy

involves integrating models with databases that provide verified information, allowing

cross-referencing and generating content validation. However, while effective, this

approach requires constant updates and maintenance of knowledge bases to ensure

relevance and accuracy.

197

Another key strategy involves enhancing model architectures and training

paradigms. Researchers are exploring ways to develop more robust models that

are less susceptible to hallucinations. This includes increasing model complexity,

integrating explicit reasoning capabilities, and using specialized training data and loss

functions to minimize errors. These advancements aim to improve the model’s ability

to distinguish between accurate and fabricated information, yet they also introduce

challenges related to model scalability and computational resources.

Transparency and interpretability of AI models are crucial for addressing

hallucinations. Making models’ decision-making processes more transparent makes

diagnosing and correcting the sources of inaccuracies easier. Techniques such as

interpretability tools and visualization methods can help understand how models

generate outputs and identify potential areas where hallucinations might occur.

However, balancing model complexity and interpretability remains a significant

challenge.

Standardized benchmarks and test sets for hallucination assessment are essential

for quantifying the prevalence and severity of hallucinations. These benchmarks enable

researchers and developers to measure and compare different models’ performance

systematically. By establishing clear metrics and evaluation criteria, it becomes

possible to identify which models perform better in reducing hallucinations and make

informed decisions about their deployment. Nevertheless, creating comprehensive and

representative benchmarks is an ongoing effort that requires continuous refinement.

Interdisciplinary collaboration is also critical for advancing the understanding

and mitigation of hallucinations. Engaging with experts from scientific reasoning,

legal argumentation, and other relevant disciplines fosters a broader perspective on the

problem. This collaboration can lead to the development of more nuanced approaches

and solutions that address the complexities of hallucinations in various contexts.

198

Looking ahead, the development of hybrid models that integrate multiple

mitigation strategies presents a promising direction. These models combine various

techniques, such as external knowledge integration, improved training paradigms, and

advanced verification methods, to provide a more robust defense against hallucinations.

Additionally, exploring unsupervised or weakly supervised learning techniques could

enhance scalability and flexibility in mitigating inaccuracies.

Addressing hallucination mitigation strategies’ ethical implications and societal

effects is also crucial. It is a significant concern to ensure these strategies promote

user trust and do not introduce new biases or inaccuracies. Researchers, practitioners,

and ethicists must collaborate to establish standards and guidelines prioritizing user

comprehension and authenticity.

8.2.4 Proposals

Based on these arguments, the following ideas in the scope of legal compliance

are proposed.

First, grounding LLMs in authoritative legal texts, regulations, and case law

can significantly enhance the accuracy of their outputs. By integrating comprehensive

and up-to-date legal knowledge bases, LLMs can better align their responses with

current laws and regulatory standards. This approach reduces the risk of generating

incorrect legal advice and ensures the system complies with evolving legal frameworks.

For example, an LLM designed to assess software compliance with GDPR could be

integrated with a knowledge base containing the latest GDPR amendments and case

law, improving its accuracy and relevance.

Second, in the legal domain, where accountability and transparency are vital,

enhancing the interpretability of LLMs is crucial. By making the decision-making

processes of these models more transparent, legal professionals can better understand

and trust the model’s outputs. This transparency facilitates the identification of errors

or biases in the model’s reasoning, which is essential for ensuring that automated

199

compliance assessments are accurate and justifiable. For example, a model that

explains its compliance decisions can help legal teams understand the rationale behind

its recommendations and verify their correctness.

Third, establishing standardized benchmarks for hallucination assessment in

the context of legal compliance enables consistent evaluation of model performance.

By developing test sets that include a variety of legal compliance scenarios, researchers

and developers can measure how well LLMs perform in identifying compliance issues

and generating accurate legal interpretations. These benchmarks can guide the

development of more reliable compliance tools and help compare the effectiveness of

different models in practical legal contexts.

Fourth, applying LLMs for legal compliance benefits greatly from interdisci-

plinary collaboration. Engaging with legal experts, compliance officers, and regulatory

authorities ensures that the models are aligned with legal standards and practices.

This collaboration can lead to developing more sophisticated models that address

specific legal requirements and adapt to changes in the regulatory landscape. By

working together, AI researchers and legal professionals can refine mitigation strategies

and enhance the overall reliability of automated compliance systems.

8.3 Limitations

The criteria used in this chapter for the review may have inadvertently left out

relevant research, potentially leading to an incomplete or biased view of hallucination

detection in LLMs. Additionally, with the rapid advancements in LLM technology,

the findings could quickly become outdated as new approaches and innovations arise.

Due to the fast-paced nature of this field, regular updates to the review are necessary

to incorporate emerging developments and provide a more thorough understanding of

hallucination mitigation methods.

Another limitation lies in the scope of the models reviewed. Most research

centers around widely known LLM architectures like GPT-based and LLaMa-based

200

models. However, many other models, notably smaller or less commercially visible,

employ different mitigation techniques that have not been sufficiently covered here.

As a result, this review may not fully capture the broader landscape of hallucination

mitigation methods, especially those that may be more efficient or tailored for specific

applications.

Additionally, this review does not address the ethical implications of hallu-

cination mitigation strategies. While many methods discussed focus on improving

factual accuracy and reducing bias, broader ethical concerns remain unexplored, such

as transparency in automated decision-making and the unintended consequences of

mitigation strategies, like transforming a non-factual statement into one that contains

bias or toxicity. These issues are crucial, particularly as LLMs become more integrated

into high-stakes decision-making processes in healthcare, finance, and legal compliance.

The conclusions drawn here are specific to hallucination detection and may not

apply broadly to other areas where LLMs are used. While some challenges discussed

may be relevant across LLM research, this review focuses on detecting hallucinations.

Moreover, the lack of cross-validation of the studies in this review means that any

limitations within those works may also impact the conclusions drawn here.

8.4 Conclusions

This thesis chapter provides a comprehensive review of current methods for

mitigating hallucinations in LLMs and explores their relevance in the context of

automatic legal compliance for software systems. Hallucinations in which LLMs

generate plausible but factually incorrect outputs present a significant challenge,

especially in high-stakes domains like legal compliance.

The review highlights strategies to address hallucinations, including integrating

external knowledge bases, advancements in model architectures, improvements in

transparency and interpretability, and the development of standardized benchmarks.

Techniques such as mFACT, contextual frameworks, and self-contradiction detection

201

have been examined for their roles in identifying and mitigating hallucinations.

Collectively, these methods represent the forefront of current efforts to enhance

the reliability of LLMs.

However, the chapter also identifies inherent limitations and challenges within

these approaches. For instance, while external knowledge bases are valuable,

they require ongoing updates and maintenance to remain relevant. Similarly,

while promising, advanced model architectures and training paradigms introduce

complexities related to scalability and resource requirements. Although crucial,

Transparency and interpretability efforts often need help balancing complexity with

comprehensibility.

The chapter proposes several avenues for future research and development

in light of these challenges. The potential for hybrid models that combine multiple

mitigation strategies presents a promising direction, offering a more robust solution

to the problem of hallucinations. Additionally, exploring unsupervised or weakly

supervised learning techniques could enhance the scalability and flexibility of

mitigation methods. Integrating interdisciplinary insights drawing from legal expertise,

compliance knowledge, and advanced AI techniques can further refine and improve

the effectiveness of hallucination mitigation in legal compliance.

Tailoring these mitigation strategies to the specific requirements of automatic

legal compliance in software systems is essential. Accurate and reliable legal

assessments are critical to ensure regulation compliance and avoid legal repercussions.

By applying and adapting the reviewed techniques to this context, researchers and

practitioners can develop more effective tools for automated compliance checks, thereby

enhancing the trustworthiness and efficacy of these systems.

This chapter illuminates the current landscape of hallucination mitigation in

LLMs and provides a structured overview of existing techniques and their limitations.

The insights gained offer a foundation for future research and innovation in developing

202

more reliable and accurate language models, particularly in the domain of software

systems’ legal compliance. As the field progresses, continued exploration of hybrid

approaches, scalability solutions, and interdisciplinary collaboration will be key to

advancing the state of knowledge and practice in hallucination mitigation.

203

CHAPTER NINE

Conclusion

This concluding chapter summarizes the findings presented in this dissertation.

The key elements are carefully highlighted as significant contributions and possible

directions for future research.

In an era of rapid advancements in software development, ensuring compliance

with legal regulations has become increasingly critical. The intricate separation

between legal expertise and software engineering necessitates robust, automated

methods for compliance and auditing. This thesis focused on leveraging Large Language

Models (LLMs) to bridge this gap, particularly emphasizing legal document question

answering and classification and understanding complex software systems based on

microservices architectures. By evaluating the capabilities of LLMs in these domains,

the dissertation contributes essential insights into their potential role as auditors of

legal compliance in software systems. Although only a portion of the broader vision

of full-spectrum compliance auditing is covered, this thesis lays the groundwork for

a comprehensive approach by addressing the applications of LLMs in understanding

legal documents and software systems separately.

A core component of this thesis is the evaluation of state-of-the-art LLMs such

as BERT, ALBERT, RoBERTa, DistilBERT, and Legal-BERT on established datasets

like SQuAD V2.0 and PolicyQA. This evaluation provides critical insights into how

these models can be effectively employed in the legal domain. The introduction of the

CSIAC-DoDIN V1.0 dataset, which centers on cybersecurity policies and organizational

responsibilities, further strengthens the thesis by offering a new benchmark for future

work in Legal Natural Language Processing (Legal NLP) tailored to cybersecurity.

This dataset is a valuable resource for legal document analysis and establishes baselines

204

for evaluating LLM performance in legally sensitive contexts, laying the foundation

for further advancements.

In the context of software systems, the thesis explores the application of LLMs in

understanding complex architectures, particularly microservices. Utilizing Persistence

Operation-aware Component Call Graphs (PO-CCG) as a contextual knowledge base,

the dissertation demonstrates how structured data representations can enhance LLM

performance in analyzing software systems. This approach highlights the limitations of

relying solely on raw source code and emphasizes the critical role of prompt engineering

in improving LLM performance. The findings suggest that integrating structured

knowledge with LLMs can lead to more effective tools for compliance checking and

software system analysis, thus advancing the reliability and accuracy of these models

in practical applications.

This thesis addresses a significant challenge: hallucinations in LLMs are a

critical barrier to their deployment in legal compliance tasks. Hallucinations, where

LLMs generate incorrect or misleading information, pose a severe risk when applying

these models to legal document analysis and software system understanding. The

dissertation identifies and analyzes this problem and develops a novel method for

detecting hallucinations in LLM outputs. The thesis challenges the assumption that

larger models are inherently superior by rigorously evaluating this method across

different LLM architectures, including large and smaller models like BART. Instead, it

demonstrates that smaller, well tuned models can perform competitively, broadening

the scope of applicable models for hallucination detection.

Moreover, the thesis introduces the innovative concept of using multiple LLMs

as evaluators, demonstrating that a multi-model approach can yield more accurate

and comprehensive results than relying on a single LLM. This insight paves the way

for new approaches in compliance auditing, where leveraging the strengths of various

models can enhance the system’s overall reliability. By addressing the nuances of

205

hallucination detection, this dissertation contributes to the broader field of AI safety

and robustness, offering valuable strategies for improving LLM performance in critical

tasks related to legal compliance.

While primarily focusing on the application of LLMs in legal document question

answering and software system analysis, the thesis also lays the groundwork for a more

comprehensive approach to automatic legal compliance auditing. The insights gained

provide a robust foundation for future work that integrates LLMs across the entire

spectrum of compliance tasks, from understanding legal documents to evaluating

complex software systems. Although the dissertation covers only a portion of this

broader vision, the contributions are significant.

9.1 Publications

This research has produced notable outcomes, including publications highlight-

ing its broad applications and theoretical contributions. Below, we’d like to present

the publications that have resulted from this work and explore possible directions for

future research. Next, the publications directly related to this dissertation are listed:

• “Legal Natural Language Processing from 2015-2022: A Comprehensive

Systematic Mapping Study of Advances and Applications” IEEE Journal

Impact Factor 3.9 Q1

• “Study of Question Answering on Legal Software Document using BERT based

models” NAACL LXAI workshop 2022 (2nd Best paper Award)

• “Creation and Analysis of a Natural Language Understanding Dataset for DoD

Cybersecurity Policies (CSIAC-DoDIN V1. 0)” CSCE 2023

• “Evaluating ChatGPT’s Proficiency in Understanding and Answering Microser-

vice Architecture Queries Using Source Code Insights” Springer Journal.

206

• “Detecting Hallucinations in Large Language Model Generation: A Token

Probability Approach” CSCE 2024 (Best paper award)

Moreover, some works were published that are indirectly related to this

dissertation but strongly related to the application of LLMs in the understanding of

code in a software system:

• “BERT Goes to SQL School: Improving Automatic Grading of SQL Statements”

CSCE 2023

• “A Dataset of Microservices-based Open-Source Projects” 21st International

Conference on Mining Software Repositories (Core A)

9.2 Contributions

This thesis significantly advances the automatic legal compliance analysis field

for software systems by exploring the application and limitations of state-of-the-

art LLMs in this domain. Key contributions include the evaluation of LLMs like

ChatGPT in interpreting complex software projects and legal texts, the introduction of

the CSIAC-DoDIN V1.0 dataset for cybersecurity policy analysis, and the application

of the PO-CCG intermediate representation for enhancing LLM performance in

microservice architecture contexts. It also addresses critical challenges, such as

hallucination detection and prompt engineering, offering new methodologies and

insights that improve the accuracy and reliability of LLMs in general and potentially

in their application for automated legal compliance audits, thereby reducing the risk of

non-compliance and supporting more informed decision-making processes in software

development.

9.2.1 Study of State-of-the-Art Approaches in Legal NLP for Software Development.

This thesis contributes significantly to the automatic legal compliance analysis

of software systems by thoroughly investigating the performance and applicability

of state-of-the-art Legal NLP models in the context of legal documents related to

207

software development. The study explores the capabilities of several prominent models,

including BERT, LEGAL-BERT, ALBERT, DistilBERT, and RoBERTa, across the

SQuAD V2.0 and PolicyQA datasets. One key finding is the underperformance of

domain-specific models like LEGAL-BERT on the PolicyQA dataset compared to

general-purpose models like ALBERT and BERT, revealing the importance of domain

specificity and the need for models tailored to particular subdomains within Legal

NLP. This insight is crucial for developing effective compliance tools, as it suggests

that even within the broader legal domain, significant variations in subdomains, such

as software development and privacy in applications, can markedly impact model

performance.

To address the scarcity of resources in Legal NLP, particularly in software-based

policies like cybersecurity, CSIAC-DoDIN V1.0 dataset was introduced. This new

curated dataset, focused on cybersecurity policies, responsibilities, and procedures

outlined by the DoD Deputy CIO for Cybersecurity, provides a vital resource for

advancing Legal NLP applications in software compliance. Baseline performance was

established on this dataset using classic transformer-based language models like BERT,

RoBERTa, Legal-BERT, and PrivBERT across tasks such as multiclass classification

and text co-occurrence. The dataset and the code for training and evaluation have

been made openly accessible to support further research and the development of new

models.

The experimental results from these studies have profound implications for

automating legal compliance checks in software systems. The findings suggest that

organizations must carefully select and fine-tune NLP models to ensure they align with

the specific legal subdomains pertinent to their operations. This may involve training

models on datasets to represent the legal issues inherent in software development

more accurately and employing ensemble methods to enhance model performance.

Furthermore, as legal frameworks around cybersecurity and software systems evolve,

208

there is a clear need for continuous model updates and retraining to maintain the

effectiveness of compliance tools over time. This ongoing adaptation is essential for

ensuring that automated compliance checks remain robust and reliable in the face of

changing legal standards and software complexities.

9.2.2 Assessing ChatGPT’s Ability to Comprehend and Respond to Microservice

Architecture Questions Using Source Code Insights.

One of the key contributions of this thesis is developing a comprehensive set of

system design questions aimed at assessing service and interaction perspectives within

microservice architectures. These questions were crucial for benchmarking ChatGPT’s

effectiveness in generating accurate responses based on different representations,

revealing that while ChatGPT could handle service and interaction views to some

extent, its performance varied significantly depending on the representation used and

the complexity of the questions, highlighting the importance of carefully designed

queries that align with the strengths and limitations of the language model.

The dissertation also provides a comparative analysis to determine whether

ChatGPT performs better when provided with raw source code or the more abstracted

PO-CCG representation. The findings indicated that PO-CCG was generally more

effective, particularly in scenarios involving multiple microservices where token limits

were a concern. However, the raw source code proved more precise for questions

requiring detailed implementation specifics. This shows the importance of selecting

the appropriate level of abstraction in legal compliance audits, as the choice of

knowledge representation can significantly impact the accuracy and reliability of the

analysis.

Additionally, the thesis included a statistical evaluation of ChatGPT’s

performance across different categories of questions and emphasized the critical role

of prompt engineering. The findings show that refining prompts by explicitly defining

technical terms significantly improved the model’s ability to generate correct and

209

contextually relevant answers. This aspect of the research demonstrates the necessity

of precise and carefully crafted prompts in legal compliance, where ambiguity or

misinterpretation could lead to significant errors.

9.2.3 A Token Probability Method for Detecting Hallucinations in Large Language

Model Outputs.

This thesis develops a supervised learning approach for detecting hallucinations

in LLMs outputs. The core of this contribution is the proposal of a token probability

method that utilizes four carefully selected features to identify instances where LLMs

generate incorrect or misleading information, also known as hallucinations. The

research demonstrates this approach’s efficacy by successfully applying two classifiers:

Logistic Regression and a Simple Neural Network. These models were rigorously

evaluated across three datasets, revealing their competitive performance compared to

existing state-of-the-art methods.

The analysis of the proposed method extends beyond its application to a

single model as the comparative effectiveness of using different LLMs as evaluators

for hallucination detection is performed. The findings show the significance of model

diversity, showing that smaller LLMs, such as BART, can often match or even

outperform larger models like LLaMa-Chat-7b in specific tasks. This insight is precious

for legal compliance audits, where the choice of LLM for generating and evaluating

compliance-related information directly influences the accuracy and reliability of the

assessment. By incorporating a range of LLMs, the method enhances the robustness

of hallucination detection, thereby improving the overall trustworthiness of automated

legal audits.

Furthermore, the thesis highlights the importance of using different LLMs

as evaluators rather than relying solely on the LLM that generated the text. This

approach improves detection accuracy and provides a more comprehensive compliance

assessment by leveraging the unique strengths of various models. This methodology

210

has broader implications, suggesting that a multi-model approach could benefit other

domains where LLMs are employed for critical decision-making tasks.

However, areas for improvement are also identified, particularly when applying

the method to the True-False dataset, where certain features proved less significant

in detecting hallucinations. This finding points to further refinement to enhance the

method’s applicability across diverse data types, making it more versatile and effective

in real-world auditing scenarios. The proposed approach can be further optimized by

addressing these limitations to support reliable and accurate legal compliance analysis

in increasingly complex software systems.

9.3 Future Works

As this thesis has demonstrated, integrating LLMs into the domain of automatic

legal compliance in software systems presents significant opportunities and challenges.

The findings and limitations identified across the various chapters of this work open

up multiple avenues for future research and development.

9.3.1 Training Domain-Specific LLMs for Legal Compliance

The findings from this thesis suggest that training domain-specific LLMs

from scratch, using datasets exclusively related to software development and legal

compliance, could yield superior performance compared to general-purpose models.

Future research should explore the development of specialized models, such as an

ALBERT variant or other high-performance model found in the literature that is

trained solely on legal texts and compliance documents. This approach could lead to

more accurate and reliable LLMs tailored to software systems’ specific legal compliance

needs, offering organizations a powerful tool for navigating the increasingly complex

regulatory landscape.

211

9.3.2 Enhancing Context Management in LLMs

One of the key challenges identified in this thesis is the context length constraint

imposed by LLMs, particularly in complex environments like large software system

analysis or even extensive legal documents. Future research could focus on developing

sophisticated information extraction and retrieval algorithms that selectively prioritize

and inject the most relevant context for a given query. This approach would optimize

the use of limited context space, potentially improving the precision of LLM responses

in legal and regulatory settings. Moreover, investigating the potential of Chain-Of-

thought prompting, Self-Reflection, and Self-Consistency techniques could further

mitigate issues related to context management and prompt brittleness, leading to

more robust and contextually aware LLM outputs.

Besides the context length limitation, another promising avenue for future

work is the exploration of role-specific query handling by LLMs. Given that different

stakeholders, such as project managers, architects, and developers, pose distinct

queries relevant to their roles, it would be valuable to assess the ability of LLMs to

tailor their responses accordingly. This could involve training models to recognize

the context and intent behind a query based on the user’s role, thereby enhancing

the relevance and accuracy of the information provided. Such advancements could

significantly improve the usability of LLMs in complex legal compliance environments,

where precision and contextual relevance are essential.

9.3.3 Improving Detection of Hallucinations in LLMs

A critical area for future exploration involves refining the methods for

detecting hallucinations in LLM-generated text, particularly in the context of legal

documents and compliance-related tasks. While the current supervised learning

approach, leveraging token probabilities, has shown promise, there is substantial

potential in hybrid methods that combine In-Context Learning with probabilistic-based

techniques, including supervised classifiers. Additionally, future research could explore

212

incorporating advanced ensemble learning techniques, which combine predictions from

multiple LLM evaluators, to enhance the accuracy and reliability of hallucination

detection systems.

Additionally, recent research such as Chen et al. (2024) has shown that

normalizing probabilities not only by the size of the text but also by the number of

similar responses obtained through Self-Consistency significantly improves results.

This highlights the importance of hybrid methods and the value of combining the

strengths of multiple approaches. Similar to Chen et al. (2024), the methodology

developed in Chapter 7 can be extended with Self-Consistency.

Moreover, it is worth exploring the combination of not only token-level

probabilities and Self-Consistency, but also techniques such as Self-Reflection, ensemble

methods, and Mixture of Experts. The main challenge with large-scale combinations

is the computational cost, which suggests that future directions must also focus on

increasing the efficiency of these methods to make them usable in real-time while

maintaining good latency for the user.

These directions could significantly improve the trustworthiness of LLMs in

high-stakes domains such as legal compliance.

9.3.4 Ethical and Regulatory Implications

Finally, as LLMs become increasingly integrated into the legal compliance

process, addressing their use’s ethical and regulatory implications is essential. Future

work should focus on developing guidelines and best practices for the ethical deployment

of LLMs in legal settings, ensuring that these models are used responsibly and

transparently. Beyond improving performance, it is equally important to identify

scenarios where LLMs could potentially cause harm (bias, toxicity, wrong reasoning,

etc...) in legal contexts or fail to comply with software regulations. As more problematic

scenarios are discovered, further research can focus on mitigating these issues. However,

if perfect accuracy is unattainable, it will be necessary to recognize the ongoing need

213

for human intervention, with future research aiming to minimize the frequency and

extent of such interventions.

For this reason, more effort must be devoted to improving the explainability of

LLM outputs. Currently, significant progress has been made in detecting and mitigating

hallucinations, a major issue with LLMs. An interesting aspect of hallucinations is

that methods like the one developed in Chapter 7 and similar approaches based on

token probabilities Azaria and Mitchell (2023a); Chen et al. (2024) provide insight

into why hallucinations occur by identifying which tokens are most likely causing

the issue. The same effort should be made in research and ideas to achieve broader

interpretability of LLM outputs in a generalized context.

9.4 Acknowledgements

This work was partially supported by the National Science Foundation under

Grant Nos. 2039678, 2136961, and 2210091. The views expressed herein are solely

those of the author and do not necessarily reflect those of the National Science

Foundation.

214

Bibliography

Abdelfattah, A., M. Schiewe, J. Curtis, T. Cerny, and E. Song (2023). Towards security-
aware microservices: On extracting endpoint data access operations to determine
access rights. In 13th International Conference on Cloud Computing and Services
Science (CLOSER 2023).

Abdelfattah, A. S. (2022). Microservices-based systems visualization: student research
abstract. In Proceedings of the 37th ACM/SIGAPP Symposium on Applied
Computing, pp. 1460–1464.

Abdelfattah, A. S. (2024). Fostering microservice maintainability assurance through a
comprehensive framework. arXiv preprint arXiv:2407.16873 .

Abdelfattah, A. S. and T. Cerny (2023). Roadmap to reasoning in microservice systems:
A rapid review. Applied Sciences 13 (3).

Abdelfattah, A. S., A. Rodriguez, A. Walker, and T. Cerny (2023). Detecting semantic
clones in microservices using components. SN Computer Science 4 (5), 470.

Abualhaija, S., C. Arora, A. Sleimi, and L. C. Briand (2022). Automated question
answering for improved understanding of compliance requirements: A multi-
document study. In 2022 IEEE 30th International Requirements Engineering
Conference (RE), pp. 39–50. IEEE.

Achiam, J., S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida,
J. Altenschmidt, S. Altman, S. Anadkat, et al. (2023). Gpt-4 technical report.
arXiv preprint arXiv:2303.08774 .

Adlakha, V., P. BehnamGhader, X. H. Lu, N. Meade, and S. Reddy (2023). Evaluating
correctness and faithfulness of instruction-following models for question answering.
arXiv preprint arXiv:2307.16877 .

Agrawal, A., M. Suzgun, L. Mackey, and A. T. Kalai (2023). Do language models know
when they’re hallucinating references? arXiv preprint arXiv:2305.18248 .

Ahmad, W. U., J. Chi, Y. Tian, and K.-W. Chang (2020). Policyqa: A reading
comprehension dataset for privacy policies. arXiv preprint arXiv:2010.02557 .

Ahmed, T. and P. Devanbu (2022). Few-shot training llms for project-specific code-
summarization. In Proceedings of the 37th IEEE/ACM International Conference
on Automated Software Engineering, pp. 1–5.

Akça, O., G. Bayrak, A. M. Issifu, and M. C. Ganiz (2022). Traditional machine
learning and deep learning-based text classification for turkish law documents

215

using transformers and domain adaptation. In 2022 International Conference on
INnovations in Intelligent Systems and Applications (INISTA), pp. 1–6. IEEE.

Alamri, H., V. Cartillier, A. Das, J. Wang, A. Cherian, I. Essa, D. Batra, T. K. Marks,
C. Hori, P. Anderson, et al. (2019). Audio visual scene-aware dialog. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
7558–7567.

Aletras, N., D. Tsarapatsanis, D. Preoţiuc-Pietro, and V. Lampos (2016). Predicting
judicial decisions of the european court of human rights: A natural language
processing perspective. PeerJ Computer Science 2, e93.

Anand, D. and R. Wagh (2019). Effective deep learning approaches for summarization
of legal texts. Journal of King Saud University-Computer and Information Sciences .

Azaria, A. and T. Mitchell (2023a, December). The internal state of an LLM knows
when it’s lying. In H. Bouamor, J. Pino, and K. Bali (Eds.), Findings of the
Association for Computational Linguistics: EMNLP 2023, Singapore, pp. 967–976.
Association for Computational Linguistics.

Azaria, A. and T. Mitchell (2023b, December). The internal state of an LLM knows
when it’s lying. In H. Bouamor, J. Pino, and K. Bali (Eds.), Findings of the
Association for Computational Linguistics: EMNLP 2023, Singapore, pp. 967–976.
Association for Computational Linguistics.

Bayat, F. F., K. Qian, B. Han, Y. Sang, A. Belyi, S. Khorshidi, F. Wu, I. F. Ilyas, and
Y. Li (2023). Fleek: Factual error detection and correction with evidence retrieved
from external knowledge. arXiv preprint arXiv:2310.17119 .

Beltagy, I., M. E. Peters, and A. Cohan (2020). Longformer: The long-document
transformer. arXiv preprint arXiv:2004.05150 .

Bommasani, R., D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S.
Bernstein, J. Bohg, A. Bosselut, E. Brunskill, et al. (2021). On the opportunities
and risks of foundation models. arXiv preprint arXiv:2108.07258 .

Brokos, G.-I., P. Malakasiotis, and I. Androutsopoulos (2016). Using centroids of
word embeddings and word mover’s distance for biomedical document retrieval in
question answering. arXiv preprint arXiv:1608.03905 .

Bushong, V., D. Das, A. Al Maruf, and T. Cerny (2021). Using static analysis to
address microservice architecture reconstruction. In ASE ’21: Proceedings of the
36th IEEE/ACM International Conference on Automated Software Engineering, pp.
Accepted to be published. IEEE/ACM.

Cao, H., Z. An, J. Feng, K. Xu, L. Chen, and D. Zhao (2023). A step closer to
comprehensive answers: Constrained multi-stage question decomposition with large
language models. arXiv preprint arXiv:2311.07491 .

216

Cavusoglu, H., B. Mishra, and S. Raghunathan (2004). The effect of internet security
breach announcements on market value: Capital market reactions for breached firms
and internet security developers. International Journal of Electronic Commerce 9 (1),
70–104.

Cerny, T., J. Svacina, D. Das, V. Bushong, M. Bures, P. Tisnovsky, K. Frajtak, D. Shin,
and J. Huang (2020). On code analysis opportunities and challenges for enterprise
systems and microservices. IEEE Access , 1–22.

Chalkidis, I., I. Androutsopoulos, and N. Aletras (2019). Neural legal judgment
prediction in english. arXiv preprint arXiv:1906.02059 .

Chalkidis, I., I. Androutsopoulos, and A. Michos (2017). Extracting contract elements.
In Proceedings of the 16th edition of the International Conference on Articial
Intelligence and Law, pp. 19–28.

Chalkidis, I., M. Fergadiotis, P. Malakasiotis, N. Aletras, and I. Androutsopoulos
(2020). Legal-bert: The muppets straight out of law school. arXiv preprint
arXiv:2010.02559 .

Chalkidis, I., M. Fergadiotis, P. Malakasiotis, and I. Androutsopoulos (2019).
Large-scale multi-label text classification on eu legislation. arXiv preprint
arXiv:1906.02192 .

Chalkidis, I., M. Fergadiotis, N. Manginas, E. Katakalou, and P. Malakasiotis (2021).
Regulatory compliance through doc2doc information retrieval: A case study in eu/uk
legislation where text similarity has limitations. arXiv preprint arXiv:2101.10726 .

Chalkidis, I., A. Jana, D. Hartung, M. Bommarito, I. Androutsopoulos, D. M. Katz, and
N. Aletras (2021). Lexglue: A benchmark dataset for legal language understanding
in english. arXiv preprint arXiv:2110.00976 .

Chalkidis, I. and D. Kampas (2019). Deep learning in law: early adaptation and legal
word embeddings trained on large corpora. Artificial Intelligence and Law 27 (2),
171–198.

Chen, C., K. Liu, Z. Chen, Y. Gu, Y. Wu, M. Tao, Z. Fu, and J. Ye (2024). Inside:
Llms’ internal states retain the power of hallucination detection. arXiv preprint
arXiv:2402.03744 .

Chen, J., G. Kim, A. Sriram, G. Durrett, and E. Choi (2023). Complex claim verification
with evidence retrieved in the wild. arXiv preprint arXiv:2305.11859 .

Chen, J., A. Sriram, E. Choi, and G. Durrett (2022, December). Generating literal and
implied subquestions to fact-check complex claims. In Y. Goldberg, Z. Kozareva,
and Y. Zhang (Eds.), Proceedings of the 2022 Conference on Empirical Methods in
Natural Language Processing, Abu Dhabi, United Arab Emirates, pp. 3495–3516.
Association for Computational Linguistics.

217

Chen, M., J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan, H. Edwards,
Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger, M. Petrov,
H. Khlaaf, G. Sastry, P. Mishkin, B. Chan, S. Gray, N. Ryder, M. Pavlov, A. Power,
L. Kaiser, M. Bavarian, C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plappert,
F. Chantzis, E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak,
J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse, A. N. Carr, J. Leike,
J. Achiam, V. Misra, E. Morikawa, A. Radford, M. Knight, M. Brundage, M. Murati,
K. Mayer, P. Welinder, B. McGrew, D. Amodei, S. McCandlish, I. Sutskever, and
W. Zaremba (2021). Evaluating large language models trained on code.

Chen, M., J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Edwards,
Y. Burda, N. Joseph, G. Brockman, et al. (2021). Evaluating large language models
trained on code. arXiv preprint arXiv:2107.03374 .

Cheng, D., S. Huang, J. Bi, Y. Zhan, J. Liu, Y. Wang, H. Sun, F. Wei, D. Deng,
and Q. Zhang (2023). Uprise: Universal prompt retrieval for improving zero-shot
evaluation. arXiv preprint arXiv:2303.08518 .

Chern, I., S. Chern, S. Chen, W. Yuan, K. Feng, C. Zhou, J. He, G. Neubig, P. Liu, et al.
(2023). Factool: Factuality detection in generative ai–a tool augmented framework
for multi-task and multi-domain scenarios. arXiv preprint arXiv:2307.13528 .

Chiang, C.-H. and H.-y. Lee (2023). Can large language models be an alternative to
human evaluations? arXiv preprint arXiv:2305.01937 .

Chrysostomou, G. and N. Aletras (2021). Enjoy the salience: Towards better
transformer-based faithful explanations with word salience. arXiv preprint
arXiv:2108.13759 .

Chuang, Y.-S., Y. Xie, H. Luo, Y. Kim, J. Glass, and P. He (2023). Dola: Decoding
by contrasting layers improves factuality in large language models. arXiv preprint
arXiv:2309.03883 .

Chung, H. W., L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fedus, Y. Li, X. Wang,
M. Dehghani, S. Brahma, et al. (2024). Scaling instruction-finetuned language
models. Journal of Machine Learning Research 25 (70), 1–53.

Cohen, R., M. Hamri, M. Geva, and A. Globerson (2023). Lm vs lm: Detecting factual
errors via cross examination. arXiv preprint arXiv:2305.13281 .

Conover, W. J. and R. L. Iman (1981). Rank transformations as a bridge between
parametric and nonparametric statistics. The American Statistician 35 (3), 124–129.

Cram, W. A., J. D’arcy, and J. G. Proudfoot (2019). Seeing the forest and the trees: a
meta-analysis of the antecedents to information security policy compliance. MIS
quarterly 43 (2), 525–554.

218

Cram, W. A., J. G. Proudfoot, and J. D’arcy (2017). Organizational information
security policies: a review and research framework. European Journal of Information
Systems 26, 605–641.

Cui, J., Z. Li, Y. Yan, B. Chen, and L. Yuan (2023). Chatlaw: Open-source legal
large language model with integrated external knowledge bases. arXiv preprint
arXiv:2306.16092 .

Curran, J. R., S. Clark, and J. Bos (2007). Linguistically motivated large-scale nlp with
c&c and boxer. In Proceedings of the 45th annual meeting of the Association for
Computational Linguistics Companion volume proceedings of the demo and poster
sessions, pp. 33–36.

D’Arcy, J., T. Herath, and M. K. Shoss (2014). Understanding employee responses
to stressful information security requirements: A coping perspective. Journal of
management information systems 31 (2), 285–318.

Das, D., A. Walker, V. Bushong, J. Svacina, T. Cerny, and V. Matyas (2021). On
automated rbac assessment by constructing a centralized perspective for microservice
mesh. PeerJ Computer Science 7, e376.

Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova (2018). Bert: Pre-training
of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 .

Dhuliawala, S., M. Komeili, J. Xu, R. Raileanu, X. Li, A. Celikyilmaz, and J. Weston
(2023). Chain-of-verification reduces hallucination in large language models. arXiv
preprint arXiv:2309.11495 .

Do, P.-K., H.-T. Nguyen, C.-X. Tran, M.-T. Nguyen, and M.-L. Nguyen (2017). Legal
question answering using ranking svm and deep convolutional neural network. arXiv
preprint arXiv:1703.05320 .

Dong, Y., X. Jiang, Z. Jin, and G. Li (2023). Self-collaboration code generation via
chatgpt. arXiv preprint arXiv:2304.07590 .

Dragoni, M., S. Villata, W. Rizzi, and G. Governatori (2016). Combining nlp approaches
for rule extraction from legal documents. In 1st Workshop on MIning and REasoning
with Legal texts (MIREL 2016).

Duan, X., B. Wang, Z. Wang, W. Ma, Y. Cui, D. Wu, S. Wang, T. Liu, T. Huo,
Z. Hu, et al. (2019). Cjrc: A reliable human-annotated benchmark dataset for
chinese judicial reading comprehension. In Chinese Computational Linguistics: 18th
China National Conference, CCL 2019, Kunming, China, October 18–20, 2019,
Proceedings 18, pp. 439–451. Springer.

Duan, X., Y. Zhang, L. Yuan, X. Zhou, X. Liu, T. Wang, R. Wang, Q. Zhang,
C. Sun, and F. Wu (2019). Legal summarization for multi-role debate dialogue via

219

controversy focus mining and multi-task learning. In Proceedings of the 28th ACM
international conference on information and knowledge management, pp. 1361–1370.

Durmus, E., H. He, and M. Diab (2020). Feqa: A question answering evaluation
framework for faithfulness assessment in abstractive summarization. arXiv preprint
arXiv:2005.03754 .

Dziri, N., A. Madotto, O. Zäıane, and A. J. Bose (2021). Neural path hunter:
Reducing hallucination in dialogue systems via path grounding. arXiv preprint
arXiv:2104.08455 .

Dziri, N., H. Rashkin, T. Linzen, and D. Reitter (2021). Evaluating groundedness in
dialogue systems: The begin benchmark. arXiv preprint arXiv:2105.00071 4.

Elaraby, M., M. Lu, J. Dunn, X. Zhang, Y. Wang, S. Liu, P. Tian, Y. Wang, and
Y. Wang (2023). Halo: Estimation and reduction of hallucinations in open-source
weak large language models. arXiv preprint arXiv:2308.11764 .

Falke, T., L. F. Ribeiro, P. A. Utama, I. Dagan, and I. Gurevych (2019). Ranking
generated summaries by correctness: An interesting but challenging application
for natural language inference. In Proceedings of the 57th annual meeting of the
association for computational linguistics, pp. 2214–2220.

Fan, T., Y. Kang, G. Ma, W. Chen, W. Wei, L. Fan, and Q. Yang (2023). Fate-llm:
A industrial grade federated learning framework for large language models. arXiv
preprint arXiv:2310.10049 .

Fang, X. and X. Zhao (2018). Nonlinear dimensionality reduction with judicial document
learning. In 2018 IEEE International Conference on Big Knowledge (ICBK), pp.
448–455. IEEE.

Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit
in the analysis of variance. Journal of the american statistical association 32 (200),
675–701.

Galitsky, B. A. (2023). Truth-o-meter: Collaborating with llm in fighting its
hallucinations.(2023).

Gao, L., Z. Dai, P. Pasupat, A. Chen, A. T. Chaganty, Y. Fan, V. Y. Zhao, N. Lao,
H. Lee, D.-C. Juan, and K. Guu (2023). Rarr: Researching and revising what
language models say, using language models.

Gao, M., J. Ruan, R. Sun, X. Yin, S. Yang, and X. Wan (2023). Human-like
summarization evaluation with chatgpt. arXiv preprint arXiv:2304.02554 .

Gao, Y., Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai, J. Sun, and H. Wang (2023).
Retrieval-augmented generation for large language models: A survey. arXiv preprint
arXiv:2312.10997 .

220

Garćıa-Constantino, M., K. Atkinson, D. Bollegala, K. Chapman, F. Coenen, C. Roberts,
and K. Robson (2017). Cliel: context-based information extraction from commercial
law documents. In Proceedings of the 16th edition of the International Conference
on Artificial Intelligence and Law, pp. 79–87.

Ge, J., Y. Huang, X. Shen, C. Li, and W. Hu (2021). Learning fine-grained fact-article
correspondence in legal cases. IEEE/ACM Transactions on Audio, Speech, and
Language Processing 29, 3694–3706.

Goode, S., H. Hoehle, V. Venkatesh, and S. A. Brown (2017). User compensation as a
data breach recovery action. MIS Quarterly 41 (3), 703–A16.

Goodrich, B., V. Rao, P. J. Liu, and M. Saleh (2019). Assessing the factual accuracy of
generated text. In proceedings of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining, pp. 166–175.

Goyal, T. and G. Durrett (2020). Evaluating factuality in generation with dependency-
level entailment. arXiv preprint arXiv:2010.05478 .

Hadi, M. U., R. Qureshi, A. Shah, M. Irfan, A. Zafar, M. B. Shaikh, N. Akhtar,
J. Wu, S. Mirjalili, et al. (2023). A survey on large language models: Applications,
challenges, limitations, and practical usage. Authorea Preprints .

Haislip, J., J.-H. Lim, and R. Pinsker (2021). The impact of executives’ it expertise on
reported data security breaches. Information Systems Research 32 (2), 318–334.

Harkous, H., K. Fawaz, R. Lebret, F. Schaub, K. G. Shin, and K. Aberer (2018). Polisis:
Automated analysis and presentation of privacy policies using deep learning. In
27th USENIX Security Symposium (USENIX Security 18), pp. 531–548.

Hey, T., J. Keim, A. Koziolek, and W. F. Tichy (2020). Norbert: Transfer learning
for requirements classification. In 2020 IEEE 28th international requirements
engineering conference (RE), pp. 169–179. IEEE.

Hong, S., X. Zheng, J. Chen, Y. Cheng, C. Zhang, Z. Wang, S. K. S. Yau, Z. Lin,
L. Zhou, C. Ran, et al. (2023). Metagpt: Meta programming for multi-agent
collaborative framework. arXiv preprint arXiv:2308.00352 .

Hörnemalm, A. (2023). ChatGPT as a Software Development Tool: The Future of
Development.

Hu, E. J., Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen
(2021). Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685 .

Hu, X., K. Kuang, J. Sun, H. Yang, and F. Wu (2024). Leveraging print debugging to
improve code generation in large language models. arXiv preprint arXiv:2401.05319 .

Hua, X., A. Sreevatsa, and L. Wang (2021). Dyploc: Dynamic planning of content
using mixed language models for text generation. arXiv preprint arXiv:2106.00791 .

221

Huang, L., W. Yu, W. Ma, W. Zhong, Z. Feng, H. Wang, Q. Chen, W. Peng, X. Feng,
B. Qin, et al. (2023). A survey on hallucination in large language models: Principles,
taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232 .

Huang, W., X. Liao, Z. Xie, J. Qian, B. Zhuang, S. Wang, and J. Xiao (2021).
Generating reasonable legal text through the combination of language modeling and
question answering. In Proceedings of the Twenty-Ninth International Conference
on International Joint Conferences on Artificial Intelligence, pp. 3687–3693.

Huo, S., N. Arabzadeh, and C. L. Clarke (2023). Retrieving supporting evidence for
llms generated answers. arXiv preprint arXiv:2306.13781 .

Husain, H., H.-H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt (2019).
Codesearchnet challenge: Evaluating the state of semantic code search. arXiv
preprint arXiv:1909.09436 .

Jain, S., V. Keshava, S. M. Sathyendra, P. Fernandes, P. Liu, G. Neubig, and C. Zhou
(2023). Multi-dimensional evaluation of text summarization with in-context learning.
arXiv preprint arXiv:2306.01200 .

Jalil, S., S. Rafi, T. D. LaToza, K. Moran, and W. Lam (2023). Chatgpt and software
testing education: Promises & perils. In 2023 IEEE international conference on
software testing, verification and validation workshops (ICSTW), pp. 4130–4137.
IEEE.

Jayasinghe, S., L. Rambukkanage, A. Silva, N. de Silva, and A. S. Perera (2021).
Critical sentence identification in legal cases using multi-class classification. In 2021
IEEE 16th International Conference on Industrial and Information Systems (ICIIS),
pp. 146–151. IEEE.

Ji, D., P. Tao, H. Fei, and Y. Ren (2020). An end-to-end joint model for evidence
information extraction from court record document. Information Processing &
Management 57 (6), 102305.

Ji, Z., N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii, Y. J. Bang, A. Madotto,
and P. Fung (2023). Survey of hallucination in natural language generation. ACM
Computing Surveys 55 (12), 1–38.

Ji, Z., Z. Liu, N. Lee, T. Yu, B. Wilie, M. Zeng, and P. Fung (2023, July). RHO:
Reducing hallucination in open-domain dialogues with knowledge grounding. In
A. Rogers, J. Boyd-Graber, and N. Okazaki (Eds.), Findings of the Association for
Computational Linguistics: ACL 2023, Toronto, Canada, pp. 4504–4522. Association
for Computational Linguistics.

Ji, Z., T. Yu, Y. Xu, N. Lee, E. Ishii, and P. Fung (2023). Towards mitigating hallucina-
tion in large language models via self-reflection. arXiv preprint arXiv:2310.06271 .

Jiang, J., F. Wang, J. Shen, S. Kim, and S. Kim (2024). A survey on large language
models for code generation. arXiv preprint arXiv:2406.00515 .

222

Jiang, T., D. Wang, L. Sun, H. Yang, Z. Zhao, and F. Zhuang (2021). Lightxml:
Transformer with dynamic negative sampling for high-performance extreme multi-
label text classification. In Proceedings of the AAAI Conference on Artificial
Intelligence, Volume 35, pp. 7987–7994.

Jin, H., L. Huang, H. Cai, J. Yan, B. Li, and H. Chen (2024). From llms to llm-based
agents for software engineering: A survey of current, challenges and future. arXiv
preprint arXiv:2408.02479 .

John, A. K., L. Di Caro, and G. Boella (2017). Solving bar exam questions with deep
neural networks. In Proceedings of the Second Workshop on Automated Semantic
Analysis of Information in Legal Texts: co-located with the 16th International
Conference on Artificial Intelligence and Law.

Jones, E., H. Palangi, C. Simões, V. Chandrasekaran, S. Mukherjee, A. Mitra,
A. Awadallah, and E. Kamar (2023). Teaching language models to hallucinate less
with synthetic tasks. arXiv preprint arXiv:2310.06827 .

Joshi, M., E. Choi, D. S. Weld, and L. Zettlemoyer (2017). Triviaqa: A large scale
distantly supervised challenge dataset for reading comprehension. arXiv preprint
arXiv:1705.03551 .

Jurafsky, D. and J. H. Martin (2022). Speech and language processing: An introduction
to natural language processing, computational linguistics, and speech recognition.

Kang, H., J. Ni, and H. Yao (2023). Ever: Mitigating hallucination in large
language models through real-time verification and rectification. arXiv preprint
arXiv:2311.09114 .

Kapitsaki, G. M. and D. Paschalides (2017). Identifying terms in open source software
license texts. In 2017 24th Asia-Pacific Software Engineering Conference (APSEC),
pp. 540–545. IEEE.

Kien, P. M., H.-T. Nguyen, N. X. Bach, V. Tran, M. Le Nguyen, and T. M. Phuong
(2020). Answering legal questions by learning neural attentive text representation.
In Proceedings of the 28th International Conference on Computational Linguistics,
pp. 988–998.

Kingma, D. P. and J. Ba (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980 .

Köksal, A., R. Aksitov, and C.-C. Chang (2023). Hallucination augmented recitations
for language models. arXiv preprint arXiv:2311.07424 .

Kornilova, A. and V. Eidelman (2019). Billsum: A corpus for automatic summarization
of us legislation. arXiv preprint arXiv:1910.00523 .

Krishna, M., B. Gaur, A. Verma, and P. Jalote (2024). Using llms in software require-
ments specifications: An empirical evaluation. arXiv preprint arXiv:2404.17842 .

223

Kumar, J. and S. Chimalakonda (2024). Code summarization without direct access
to code-towards exploring federated llms for software engineering. In Proceedings
of the 28th International Conference on Evaluation and Assessment in Software
Engineering, pp. 100–109.

Kwiatkowski, T., J. Palomaki, O. Redfield, M. Collins, A. Parikh, C. Alberti, D. Epstein,
I. Polosukhin, J. Devlin, K. Lee, et al. (2019). Natural questions: a benchmark for
question answering research. Transactions of the Association for Computational
Linguistics 7, 453–466.

Laban, P., W. Kryściński, D. Agarwal, A. R. Fabbri, C. Xiong, S. Joty, and C.-S. Wu
(2023). Llms as factual reasoners: Insights from existing benchmarks and beyond.
arXiv preprint arXiv:2305.14540 .

Ladhak, F., E. Durmus, M. Suzgun, T. Zhang, D. Jurafsky, K. McKeown, and
T. Hashimoto (2023, May). When do pre-training biases propagate to downstream
tasks? a case study in text summarization. In A. Vlachos and I. Augenstein (Eds.),
Proceedings of the 17th Conference of the European Chapter of the Association
for Computational Linguistics, Dubrovnik, Croatia, pp. 3206–3219. Association for
Computational Linguistics.

Landthaler, J., B. Waltl, P. Holl, and F. Matthes (2016). Extending full text search for
legal document collections using word embeddings. In JURIX, pp. 73–82.

Le, Q. and T. Mikolov (2014). Distributed representations of sentences and documents.
In International conference on machine learning, pp. 1188–1196. PMLR.

Le Scao, T., A. Fan, C. Akiki, E. Pavlick, S. Ilić, D. Hesslow, R. Castagné, A. S.
Luccioni, F. Yvon, M. Gallé, et al. (2023). Bloom: A 176b-parameter open-access
multilingual language model.

Lee, M. (2023). A mathematical investigation of hallucination and creativity in gpt
models. Mathematics 11 (10), 2320.

Lei, D., Y. Li, M. Wang, V. Yun, E. Ching, E. Kamal, et al. (2023). Chain of natural
language inference for reducing large language model ungrounded hallucinations.
arXiv preprint arXiv:2310.03951 .

Lewis, M., Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov, and
L. Zettlemoyer (2020, July). BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and comprehension. In D. Jurafsky,
J. Chai, N. Schluter, and J. Tetreault (Eds.), Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, Online, pp. 7871–7880. Association
for Computational Linguistics.

Lewis, P., E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler,
M. Lewis, W.-t. Yih, T. Rocktäschel, et al. (2020). Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neural Information Processing
Systems 33, 9459–9474.

224

Li, H., M. Tomko, M. Vasardani, and T. Baldwin (2022). Multispanqa: A dataset
for multi-span question answering. In Proceedings of the 2022 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pp. 1250–1260.

Li, J., J. Chen, R. Ren, X. Cheng, W. X. Zhao, J.-Y. Nie, and J.-R. Wen (2024).
The dawn after the dark: An empirical study on factuality hallucination in large
language models. arXiv preprint arXiv:2401.03205 .

Li, J., X. Cheng, X. Zhao, J.-Y. Nie, and J.-R. Wen (2023, December). HaluEval:
A large-scale hallucination evaluation benchmark for large language models. In
H. Bouamor, J. Pino, and K. Bali (Eds.), Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, Singapore, pp. 6449–6464.
Association for Computational Linguistics.

Li, K., O. Patel, F. Viégas, H. Pfister, and M. Wattenberg (2024). Inference-time
intervention: Eliciting truthful answers from a language model. Advances in Neural
Information Processing Systems 36.

Liga, D. and L. Robaldo (2023). Fine-tuning gpt-3 for legal rule classification. Computer
Law & Security Review 51, 105864.

Lin, C.-Y. (2004). Rouge: A package for automatic evaluation of summaries. In Text
summarization branches out, pp. 74–81.

Lin, S., J. Hilton, and O. Evans (2022, May). TruthfulQA: Measuring how models
mimic human falsehoods. In S. Muresan, P. Nakov, and A. Villavicencio (Eds.),
Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), Dublin, Ireland, pp. 3214–3252. Association
for Computational Linguistics.

Lippi, M., P. Pa lka, G. Contissa, F. Lagioia, H.-W. Micklitz, G. Sartor, and P. Torroni
(2019). Claudette: an automated detector of potentially unfair clauses in online
terms of service. Artificial Intelligence and Law 27, 117–139.

Liu, W., G. Li, K. Zhang, B. Du, Q. Chen, X. Hu, H. Xu, J. Chen, and J. Wu (2023).
Mind’s mirror: Distilling self-evaluation capability and comprehensive thinking from
large language models. arXiv preprint arXiv:2311.09214 .

Liu, Y., M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,
and V. Stoyanov (2019). Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692 .

Locke, D., G. Zuccon, and H. Scells (2017). Automatic query generation from legal texts
for case law retrieval. In Information Retrieval Technology: 13th Asia Information
Retrieval Societies Conference, AIRS 2017, Jeju Island, South Korea, November
22-24, 2017, Proceedings 13, pp. 181–193. Springer.

225

Luo, B., Y. Feng, J. Xu, X. Zhang, and D. Zhao (2017). Learning to predict charges
for criminal cases with legal basis. arXiv preprint arXiv:1707.09168 .

Luo, X., Y. Xue, Z. Xing, and J. Sun (2022). Prcbert: Prompt learning for requirement
classification using bert-based pretrained language models. In Proceedings of the
37th IEEE/ACM International Conference on Automated Software Engineering, pp.
1–13.

Luo, Z., Q. Xie, and S. Ananiadou (2023). Chatgpt as a factual inconsistency evaluator
for text summarization. arXiv preprint arXiv:2303.15621 .

Lyu, Y., Z. Wang, Z. Ren, P. Ren, Z. Chen, X. Liu, Y. Li, H. Li, and H. Song (2022).
Improving legal judgment prediction through reinforced criminal element extraction.
Information Processing & Management 59 (1), 102780.

Ma, Y., Z. Lan, L. Zong, and K. Huang (2021). Global-aware beam search for neural
abstractive summarization. Advances in Neural Information Processing Systems 34,
16545–16557.

Ma, Y., Y. Shao, Y. Wu, Y. Liu, R. Zhang, M. Zhang, and S. Ma (2021). Lecard:
a legal case retrieval dataset for chinese law system. In Proceedings of the 44th
international ACM SIGIR conference on research and development in information
retrieval, pp. 2342–2348.

Manakul, P., A. Liusie, and M. Gales (2023, December). SelfCheckGPT: Zero-
resource black-box hallucination detection for generative large language models.
In H. Bouamor, J. Pino, and K. Bali (Eds.), Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, Singapore, pp. 9004–9017.
Association for Computational Linguistics.

Martins, A. and R. Astudillo (2016). From softmax to sparsemax: A sparse model
of attention and multi-label classification. In International conference on machine
learning, pp. 1614–1623. PMLR.

Maynez, J., S. Narayan, B. Bohnet, and R. McDonald (2020). On faithfulness and
factuality in abstractive summarization. arXiv preprint arXiv:2005.00661 .

Merchant, K. and Y. Pande (2018). Nlp based latent semantic analysis for legal
text summarization. In 2018 International Conference on Advances in Computing,
Communications and Informatics (ICACCI), pp. 1803–1807. IEEE.

Merity, S., C. Xiong, J. Bradbury, and R. Socher (2016). Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843 .

Mihalcea, R. and P. Tarau (2004). Textrank: Bringing order into text. In Proceedings
of the 2004 conference on empirical methods in natural language processing, pp.
404–411.

226

Mikolov, T., K. Chen, G. Corrado, and J. Dean (2013). Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781 .

Milne, G. R. and M. J. Culnan (2004). Strategies for reducing online privacy risks:
Why consumers read (or don’t read) online privacy notices. Journal of interactive
marketing 18 (3), 15–29.

Min, S., K. Krishna, X. Lyu, M. Lewis, W.-t. Yih, P. W. Koh, M. Iyyer, L. Zettlemoyer,
and H. Hajishirzi (2023). Factscore: Fine-grained atomic evaluation of factual
precision in long form text generation. arXiv preprint arXiv:2305.14251 .

Mishra, A., D. Patel, A. Vijayakumar, X. L. Li, P. Kapanipathi, and K. Talamadupula
(2021). Looking beyond sentence-level natural language inference for question
answering and text summarization. In Proceedings of the 2021 conference of the
North American chapter of the association for computational linguistics: human
language technologies, pp. 1322–1336.

Moon, S., P. Shah, A. Kumar, and R. Subba (2019). Opendialkg: Explainable
conversational reasoning with attention-based walks over knowledge graphs. In
Proceedings of the 57th annual meeting of the association for computational
linguistics, pp. 845–854.

Mudalige, C. R., D. Karunarathna, I. Rajapaksha, N. de Silva, G. Ratnayaka, A. S.
Perera, and R. Pathirana (2020). Sigmalaw-absa: dataset for aspect-based sentiment
analysis in legal opinion texts. In 2020 IEEE 15th international conference on
industrial and information systems (ICIIS), pp. 488–493. IEEE.

Mullenbach, J., S. Wiegreffe, J. Duke, J. Sun, and J. Eisenstein (2018). Explainable
prediction of medical codes from clinical text. arXiv preprint arXiv:1802.05695 .

Mündler, N., J. He, S. Jenko, and M. Vechev (2023). Self-contradictory hallucinations
of large language models: Evaluation, detection and mitigation. arXiv preprint
arXiv:2305.15852 .

Nan, F., R. Nallapati, Z. Wang, C. N. d. Santos, H. Zhu, D. Zhang, K. McKeown, and
B. Xiang (2021). Entity-level factual consistency of abstractive text summarization.
arXiv preprint arXiv:2102.09130 .

Narayan, S., S. B. Cohen, and M. Lapata (2018, October-November). Don’t give me the
details, just the summary! topic-aware convolutional neural networks for extreme
summarization. In E. Riloff, D. Chiang, J. Hockenmaier, and J. Tsujii (Eds.),
Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, Brussels, Belgium, pp. 1797–1807. Association for Computational
Linguistics.

Nemenyi, P. B. (1963). Distribution-free multiple comparisons. Princeton University.

227

Nenkova, A. and R. Passonneau (2004, May 2 - May 7). Evaluating content selection in
summarization: The pyramid method. In Proceedings of the Human Language
Technology Conference of the North American Chapter of the Association for
Computational Linguistics: HLT-NAACL 2004, Boston, Massachusetts, USA, pp.
145–152. Association for Computational Linguistics.

Ni, A., P. Yin, Y. Zhao, M. Riddell, T. Feng, R. Shen, S. Yin, Y. Liu, S. Yavuz, C. Xiong,
et al. (2023). L2ceval: Evaluating language-to-code generation capabilities of large
language models. arXiv preprint arXiv:2309.17446 .

Nie, Y., A. Williams, E. Dinan, M. Bansal, J. Weston, and D. Kiela (2020, July).
Adversarial NLI: A new benchmark for natural language understanding. In
D. Jurafsky, J. Chai, N. Schluter, and J. Tetreault (Eds.), Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, Online, pp.
4885–4901. Association for Computational Linguistics.

Noguti, M. Y., E. Vellasques, and L. S. Oliveira (2020). Legal document classification:
An application to law area prediction of petitions to public prosecution service. In
2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE.

Nokhbeh Zaeem, R. and K. S. Barber (2021). A large publicly available corpus of
website privacy policies based on dmoz. In Proceedings of the Eleventh ACM
Conference on Data and Application Security and Privacy, pp. 143–148.

Pan, S., L. Luo, Y. Wang, C. Chen, J. Wang, and X. Wu (2024). Unifying large language
models and knowledge graphs: A roadmap. IEEE Transactions on Knowledge and
Data Engineering .

Parker, G., S. Kim, A. Al Maruf, T. Cerny, K. Frajtak, P. Tisnovsky, and D. Taibi
(2023). Visualizing anti-patterns in microservices at runtime: A systematic mapping
study. IEEE Access .

Patel, A., S. Bhattamishra, and N. Goyal (2021, June). Are NLP models really able to
solve simple math word problems? In K. Toutanova, A. Rumshisky, L. Zettlemoyer,
D. Hakkani-Tur, I. Beltagy, S. Bethard, R. Cotterell, T. Chakraborty, and Y. Zhou
(Eds.), Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Online,
pp. 2080–2094. Association for Computational Linguistics.

Paul, S., P. Goyal, and S. Ghosh (2022). Lesicin: A heterogeneous graph-based
approach for automatic legal statute identification from indian legal documents.
In Proceedings of the AAAI Conference on Artificial Intelligence, Volume 36, pp.
11139–11146.

Peng, B., M. Galley, P. He, H. Cheng, Y. Xie, Y. Hu, Q. Huang, L. Liden, Z. Yu,
W. Chen, et al. (2023). Check your facts and try again: Improving large
language models with external knowledge and automated feedback. arXiv preprint
arXiv:2302.12813 .

228

Peng, S., E. Kalliamvakou, P. Cihon, and M. Demirer (2023). The impact of
ai on developer productivity: Evidence from github copilot. arXiv preprint
arXiv:2302.06590 .

Pfeiffer, J., I. Vulić, I. Gurevych, and S. Ruder (2020, November). MAD-X: An Adapter-
Based Framework for Multi-Task Cross-Lingual Transfer. In B. Webber, T. Cohn,
Y. He, and Y. Liu (Eds.), Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), Online, pp. 7654–7673. Association for
Computational Linguistics.

Pillai, V. G. and L. R. Chandran (2020). Verdict prediction for indian courts using bag
of words and convolutional neural network. In 2020 Third International Conference
on Smart Systems and Inventive Technology (ICSSIT), pp. 676–683. IEEE.

Polsley, S., P. Jhunjhunwala, and R. Huang (2016). Casesummarizer: a system for
automated summarization of legal texts. In Proceedings of COLING 2016, the 26th
international conference on Computational Linguistics: System Demonstrations, pp.
258–262.

Ponte, J. M. and W. B. Croft (2017). A language modeling approach to information
retrieval. In ACM SIGIR Forum, Volume 51, pp. 202–208. ACM New York, NY,
USA.

Pothong, S. and N. Facundes (2021). Coreference resolution and meaning representation
in a legislative corpus. In 2021 16th International Joint Symposium on Artificial
Intelligence and Natural Language Processing (iSAI-NLP), pp. 1–6. IEEE.

Press, O., M. Zhang, S. Min, L. Schmidt, N. A. Smith, and M. Lewis (2022). Measuring
and narrowing the compositionality gap in language models. arXiv preprint
arXiv:2210.03350 .

Qian, C., W. Liu, H. Liu, N. Chen, Y. Dang, J. Li, C. Yang, W. Chen, Y. Su,
X. Cong, et al. (2024). Chatdev: Communicative agents for software development.
In Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 15174–15186.

Qin, R., M. Huang, and Y. Luo (2022). A comparison study of pre-trained language
models for chinese legal document classification. In 2022 5th International
Conference on Artificial Intelligence and Big Data (ICAIBD), pp. 444–449. IEEE.

Qiu, Y., V. Embar, S. B. Cohen, and B. Han (2023). Think while you write:
Hypothesis verification promotes faithful knowledge-to-text generation. arXiv
preprint arXiv:2311.09467 .

Qiu, Y., Y. Ziser, A. Korhonen, E. M. Ponti, and S. B. Cohen (2023). Detecting
and mitigating hallucinations in multilingual summarisation. arXiv preprint
arXiv:2305.13632 .

229

Quevedo, E., T. Cerny, A. Rodriguez, P. Rivas, J. Yero, K. Sooksatra, A. Zhakubayev,
and D. Taibi (2023). Legal natural language processing from 2015-2022: A
comprehensive systematic mapping study of advances and applications. IEEE
Access .

Rabelo, J., M.-Y. Kim, and R. Goebel (2019). Combining similarity and transformer
methods for case law entailment. In Proceedings of the seventeenth international
conference on artificial intelligence and law, pp. 290–296.

Radford, A., K. Narasimhan, T. Salimans, I. Sutskever, et al. (2018). Improving
language understanding by generative pre-training.

Radford, A., J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. (2019). Language
models are unsupervised multitask learners. OpenAI blog 1 (8), 9.

Rajpurkar, P., R. Jia, and P. Liang (2018). Know what you don’t know: Unanswerable
questions for squad. arXiv preprint arXiv:1806.03822 .

Rajpurkar, P., J. Zhang, K. Lopyrev, and P. Liang (2016). Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250 .

Rawte, V., S. Chakraborty, A. Pathak, A. Sarkar, S. Tonmoy, A. Chadha, A. P. Sheth,
and A. Das (2023). The troubling emergence of hallucination in large language
models–an extensive definition, quantification, and prescriptive remediations. arXiv
preprint arXiv:2310.04988 .

Ray, P. P. (2023). Chatgpt: A comprehensive review on background, applications,
key challenges, bias, ethics, limitations and future scope. Internet of Things and
Cyber-Physical Systems .

Reddy, S., D. Chen, and C. D. Manning (2019). Coqa: A conversational question an-
swering challenge. Transactions of the Association for Computational Linguistics 7,
249–266.

Reimers, N. and I. Gurevych (2019). Sentence-bert: Sentence embeddings using siamese
bert-networks. arXiv preprint arXiv:1908.10084 .

Robertson, S. E., S. Walker, S. Jones, M. M. Hancock-Beaulieu, M. Gatford, et al.
(1995). Okapi at trec-3. Nist Special Publication Sp 109, 109.

Ronanki, K., B. Cabrero-Daniel, and C. Berger (2022). Chatgpt as a tool for user story
quality evaluation: Trustworthy out of the box? In International Conference on
Agile Software Development, pp. 173–181. Springer.

Rosili, N. A. K., N. H. Zakaria, R. Hassan, S. Kasim, F. Z. C. Rose, and T. Sutikno
(2021). A systematic literature review of machine learning methods in predicting
court decisions. IAES International Journal of Artificial Intelligence 10 (4), 1091.

230

Roziere, B., J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi, J. Liu,
R. Sauvestre, T. Remez, et al. (2023). Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950 .

Sahoo, P., A. K. Singh, S. Saha, V. Jain, S. Mondal, and A. Chadha (2024). A
systematic survey of prompt engineering in large language models: Techniques and
applications. arXiv preprint arXiv:2402.07927 .

Sanh, V., L. Debut, J. Chaumond, and T. Wolf (2019). Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108 .

Sannier, N., M. Adedjouma, M. Sabetzadeh, and L. Briand (2017). An automated
framework for detection and resolution of cross references in legal texts. Require-
ments Engineering 22 (2), 215–237.

Sansone, C. and G. Sperli (2022). Legal information retrieval systems: State-of-the-art
and open issues. Information Systems 106, 101967.

Santhanam, S., B. Hedayatnia, S. Gella, A. Padmakumar, S. Kim, Y. Liu, and
D. Hakkani-Tur (2021). Rome was built in 1776: A case study on factual correctness
in knowledge-grounded response generation. arXiv preprint arXiv:2110.05456 .

Saputro, D. R. S. and P. Widyaningsih (2017). Limited memory broyden-fletcher-
goldfarb-shanno (l-bfgs) method for the parameter estimation on geographically
weighted ordinal logistic regression model (gwolr). AIP Conference Proceedings .

Saxena, A. and P. Bhattacharyya (2024). Hallucination detection in machine generated
text: A survey.

Schlackl, F., N. Link, and H. Hoehle (2022). Antecedents and consequences of data
breaches: A systematic review. Information & Management , 103638.

Schuetz, S. W., P. Benjamin Lowry, D. A. Pienta, and J. Bennett Thatcher (2020).
The effectiveness of abstract versus concrete fear appeals in information security.
Journal of Management Information Systems 37 (3), 723–757.

Shaheen, Z., G. Wohlgenannt, and D. Mouromtsev (2021). Zero-shot cross-lingual
transfer in legal domain using transformer models. In 2021 International Conference
on Computational Science and Computational Intelligence (CSCI), pp. 450–456.
IEEE.

Shankar, A., A. Waldis, C. Bless, M. Andueza Rodriguez, and L. Mazzola (2023).
Privacyglue: A benchmark dataset for general language understanding in privacy
policies. Applied Sciences 13 (6), 3701.

Shao, Y., J. Mao, Y. Liu, W. Ma, K. Satoh, M. Zhang, and S. Ma (2020). Bert-pli:
Modeling paragraph-level interactions for legal case retrieval. In IJCAI, pp. 3501–
3507.

231

Shavrina, T. and V. Malykh (2021). How not to lie with a benchmark: Rearranging
nlp learderboards.

Shi, C., H. Yang, D. Cai, Z. Zhang, Y. Wang, Y. Yang, and W. Lam (2024). A
thorough examination of decoding methods in the era of llms. arXiv preprint
arXiv:2402.06925 .

Shi, W., X. Han, M. Lewis, Y. Tsvetkov, L. Zettlemoyer, and S. W.-t. Yih (2023).
Trusting your evidence: Hallucinate less with context-aware decoding. arXiv
preprint arXiv:2305.14739 .

Shulayeva, O., A. Siddharthan, and A. Wyner (2017). Recognizing cited facts and
principles in legal judgements. Artificial Intelligence and Law 25 (1), 107–126.

Shuster, K., S. Poff, M. Chen, D. Kiela, and J. Weston (2021). Retrieval augmentation
reduces hallucination in conversation. arXiv preprint arXiv:2104.07567 .

Si, C., Z. Gan, Z. Yang, S. Wang, J. Wang, J. Boyd-Graber, and L. Wang (2023).
Prompting gpt-3 to be reliable.

Song, D., S. Gao, B. He, and F. Schilder (2022). On the effectiveness of pre-trained
language models for legal natural language processing: An empirical study. IEEE
Access 10, 75835–75858.

Song, D., A. Vold, K. Madan, and F. Schilder (2022). Multi-label legal document
classification: A deep learning-based approach with label-attention and domain-
specific pre-training. Information Systems 106, 101718.

Sridhara, G., S. Mazumdar, et al. (2023). Chatgpt: A study on its utility for ubiquitous
software engineering tasks. arXiv preprint arXiv:2305.16837 .

Srinath, M., S. Wilson, and C. L. Giles (2020). Privacy at scale: Introducing the
privaseer corpus of web privacy policies. arXiv preprint arXiv:2004.11131 .

Steidl, D., B. Hummel, and E. Juergens (2013). Quality analysis of source code
comments. In 2013 21st international conference on program comprehension (icpc),
pp. 83–92. Ieee.

Su, W., C. Wang, Q. Ai, Y. Hu, Z. Wu, Y. Zhou, and Y. Liu (2024). Unsupervised
real-time hallucination detection based on the internal states of large language
models. arXiv preprint arXiv:2403.06448 .

Sun, R., S. Ö. Arik, A. Muzio, L. Miculicich, S. Gundabathula, P. Yin, H. Dai,
H. Nakhost, R. Sinha, Z. Wang, et al. (2023). Sql-palm: Improved large language
model adaptation for text-to-sql (extended). arXiv preprint arXiv:2306.00739 .

Sun, W., C. Fang, Y. You, Y. Chen, Y. Liu, C. Wang, J. Zhang, Q. Zhang, H. Qian,
W. Zhao, et al. (2023). A prompt learning framework for source code summarization.
arXiv preprint arXiv:2312.16066 .

232

Sun, W., Y. Miao, Y. Li, H. Zhang, C. Fang, Y. Liu, G. Deng, Y. Liu, and Z. Chen
(2024). Source code summarization in the era of large language models. arXiv
preprint arXiv:2407.07959 .

Suri, S., S. N. Das, K. Singi, K. Dey, V. S. Sharma, and V. Kaulgud (2023). Software
engineering using autonomous agents: Are we there yet? In 2023 38th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pp. 1855–1857.
IEEE.

Taibi, D., V. Lenarduzzi, C. Pahl, and A. Janes (2017). Microservices in agile software
development: a workshop-based study into issues, advantages, and disadvantages.
In Proceedings of the XP2017 Scientific Workshops, pp. 1–5.

Talmor, A., J. Herzig, N. Lourie, and J. Berant (2019, June). CommonsenseQA: A
question answering challenge targeting commonsense knowledge. In J. Burstein,
C. Doran, and T. Solorio (Eds.), Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota,
pp. 4149–4158. Association for Computational Linguistics.

Team, G., T. Mesnard, C. Hardin, R. Dadashi, S. Bhupatiraju, S. Pathak, L. Sifre,
M. Rivière, M. S. Kale, J. Love, et al. (2024). Gemma: Open models based on
gemini research and technology. arXiv preprint arXiv:2403.08295 .

Tian, K., E. Mitchell, H. Yao, C. D. Manning, and C. Finn (2023). Fine-tuning
language models for factuality. arXiv preprint arXiv:2311.08401 .

Tieu, T.-T., C.-N. Chau, T.-S. Nguyen, L.-M. Nguyen, et al. (2021). Apply bert-based
models and domain knowledge for automated legal question answering tasks at
alqac 2021. In 2021 13th International Conference on Knowledge and Systems
Engineering (KSE), pp. 1–6. IEEE.

Touvron, H., L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov,
S. Batra, P. Bhargava, S. Bhosale, et al. (2023). Llama 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288 .

Tran, V., M. Le Nguyen, S. Tojo, and K. Satoh (2020). Encoded summarization:
summarizing documents into continuous vector space for legal case retrieval.
Artificial Intelligence and Law 28, 441–467.

Tran, V., M. L. Nguyen, and K. Satoh (2019). Building legal case retrieval systems
with lexical matching and summarization using a pre-trained phrase scoring model.
In Proceedings of the Seventeenth International Conference on Artificial Intelligence
and Law, pp. 275–282.

Trinh, T. H. and Q. V. Le (2018). A simple method for commonsense reasoning. arXiv
preprint arXiv:1806.02847 .

233

Undavia, S., A. Meyers, and J. E. Ortega (2018). A comparative study of classifying
legal documents with neural networks. In 2018 Federated Conference on Computer
Science and Information Systems (FedCSIS), pp. 515–522. IEEE.

Vallecillos Ruiz, F. (2024). Agent-driven automatic software improvement. In
Proceedings of the 28th International Conference on Evaluation and Assessment in
Software Engineering, pp. 470–475.

Varshney, N., W. Yao, H. Zhang, J. Chen, and D. Yu (2023). A stitch in time saves
nine: Detecting and mitigating hallucinations of llms by validating low-confidence
generation. arXiv preprint arXiv:2307.03987 .

Viswanath, H. and T. Zhang (2023). Fairpy: A toolkit for evaluation of social biases
and their mitigation in large language models. arXiv preprint arXiv:2302.05508 .

Vold, A. and J. G. Conrad (2021). Using transformers to improve answer retrieval
for legal questions. In Proceedings of the Eighteenth International Conference on
Artificial Intelligence and Law, pp. 245–249.

Vu, T., M. Iyyer, X. Wang, N. Constant, J. Wei, J. Wei, C. Tar, Y.-H. Sung, D. Zhou,
Q. Le, et al. (2023). Freshllms: Refreshing large language models with search engine
augmentation. arXiv preprint arXiv:2310.03214 .

Walker, A., D. Das, and T. Cerny (2020). Automated code-smell detection in
microservices through static analysis: A case study. Applied Sciences 10 (21).

Walker, A., I. Laird, and T. Cerny (2021, December). On automatic software
architecture reconstruction of microservice applications. In Information Science
and Applications, pp. (in print). Springer Singapore.

Wan, L. J., Y. Huang, Y. Li, H. Ye, J. Wang, X. Zhang, and D. Chen (2024).
Software/hardware co-design for llm and its application for design verification.
In 2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC),
pp. 435–441. IEEE.

Wang, B. and A. Komatsuzaki (2021). Gpt-j-6b: A 6 billion parameter autoregressive
language model.

Wang, T., P. Liang, and M. Lu (2018). What aspects do non-functional requirements
in app user reviews describe? an exploratory and comparative study. In 2018 25th
Asia-Pacific Software Engineering Conference (APSEC), pp. 494–503. IEEE.

Wang, X., J. Wei, D. Schuurmans, Q. Le, E. Chi, S. Narang, A. Chowdhery, and
D. Zhou (2022). Self-consistency improves chain of thought reasoning in language
models. arXiv preprint arXiv:2203.11171 .

Wang, Z., X. Wang, B. An, D. Yu, and C. Chen (2020). Towards faithful
neural table-to-text generation with content-matching constraints. arXiv preprint
arXiv:2005.00969 .

234

Weber, I. (2024). Large language models as software components: A taxonomy for
llm-integrated applications. arXiv preprint arXiv:2406.10300 .

Wei, A., N. Haghtalab, and J. Steinhardt (2024). Jailbroken: How does llm safety
training fail? Advances in Neural Information Processing Systems 36.

Weston, J., S. Chopra, and A. Bordes (2014). Memory networks. arXiv preprint
arXiv:1410.3916 .

White, J., S. Hays, Q. Fu, J. Spencer-Smith, and D. C. Schmidt (2024). Chatgpt
prompt patterns for improving code quality, refactoring, requirements elicitation,
and software design. In Generative AI for Effective Software Development, pp.
71–108. Springer.

Wilson, S., F. Schaub, A. A. Dara, F. Liu, S. Cherivirala, P. G. Leon, M. S. Andersen,
S. Zimmeck, K. M. Sathyendra, N. C. Russell, et al. (2016). The creation and
analysis of a website privacy policy corpus. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 1330–1340.

Wyner, A. Z., B. J. Fawei, and J. Z. Pan (2016). Passing a usa national bar exam: a
first corpus for experimentation. In LREC 2016, Tenth International Conference
on Language Resources and Evaluation. LREC.

Xia, X., L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li (2017). Measuring program
comprehension: A large-scale field study with professionals. IEEE Transactions on
Software Engineering 44 (10), 951–976.

Xiao, C., X. Hu, Z. Liu, C. Tu, and M. Sun (2021). Lawformer: A pre-trained language
model for chinese legal long documents. AI Open 2, 79–84.

Xu, F., W. Shi, and E. Choi (2023). Recomp: Improving retrieval-augmented lms with
compression and selective augmentation. arXiv preprint arXiv:2310.04408 .

Xu, K., J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and Y. Bengio
(2015). Show, attend and tell: Neural image caption generation with visual attention.
In International conference on machine learning, pp. 2048–2057. PMLR.

Xu, Z., S. Jain, and M. Kankanhalli (2024). Hallucination is inevitable: An innate
limitation of large language models. arXiv preprint arXiv:2401.11817 .

Yan, J. N., T. Liu, J. Chiu, J. Shen, Z. Qin, Y. Yu, C. Lakshmanan, Y. Kurzion, A. M.
Rush, J. Liu, et al. (2024). Predicting text preference via structured comparative
reasoning. In Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 10040–10060.

Yang, H., S. Yue, and Y. He (2023). Auto-gpt for online decision making: Benchmarks
and additional opinions. arXiv preprint arXiv:2306.02224 .

235

Yang, Z., Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V. Le (2019).
Xlnet: Generalized autoregressive pretraining for language understanding. Advances
in neural information processing systems 32.

Yang, Z., P. Qi, S. Zhang, Y. Bengio, W. Cohen, R. Salakhutdinov, and C. D. Manning
(2018, October-November). HotpotQA: A dataset for diverse, explainable multi-hop
question answering. In E. Riloff, D. Chiang, J. Hockenmaier, and J. Tsujii (Eds.),
Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, Brussels, Belgium, pp. 2369–2380. Association for Computational
Linguistics.

Yang, Z., D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy (2016). Hierarchical attention
networks for document classification. In Proceedings of the 2016 conference of the
North American chapter of the association for computational linguistics: human
language technologies, pp. 1480–1489.

Yoon, S., E. Yoon, H. S. Yoon, J. Kim, and C. Yoo (2022, December). Information-
theoretic text hallucination reduction for video-grounded dialogue. In Y. Goldberg,
Z. Kozareva, and Y. Zhang (Eds.), Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, Abu Dhabi, United Arab Emirates, pp.
4182–4193. Association for Computational Linguistics.

Yoshioka, M., Y. Aoki, and Y. Suzuki (2021). Bert-based ensemble methods with data
augmentation for legal textual entailment in coliee statute law task. In Proceedings
of the Eighteenth International Conference on Artificial Intelligence and Law, pp.
278–284.

Yu, Z., X. Liu, S. Liang, Z. Cameron, C. Xiao, and N. Zhang (2024). Don’t listen
to me: Understanding and exploring jailbreak prompts of large language models.
arXiv preprint arXiv:2403.17336 .

Zaheer, M., G. Guruganesh, K. A. Dubey, J. Ainslie, C. Alberti, S. Ontanon, P. Pham,
A. Ravula, Q. Wang, L. Yang, et al. (2020). Big bird: Transformers for longer
sequences. Advances in neural information processing systems 33, 17283–17297.

Zhang, C., J. Wang, Q. Zhou, T. Xu, K. Tang, H. Gui, and F. Liu (2022). A survey of
automatic source code summarization. Symmetry 14 (3), 471.

Zhang, H., S. Diao, Y. Lin, Y. Fung, Q. Lian, X. Wang, Y. Chen, H. Ji, and T. Zhang
(2024, June). R-tuning: Instructing large language models to say ‘I don’t know’.
In K. Duh, H. Gomez, and S. Bethard (Eds.), Proceedings of the 2024 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), Mexico City, Mexico, pp.
7113–7139. Association for Computational Linguistics.

Zhang, H., H. Song, S. Li, M. Zhou, and D. Song (2023, oct). A survey of controllable
text generation using transformer-based pre-trained language models. ACM Comput.
Surv. 56 (3).

236

Zhang, H., C. Zhu, X. Wang, Z. Zhou, S. Hu, and L. Y. Zhang (2024). Badrobot:
Jailbreaking llm-based embodied ai in the physical world. arXiv preprint
arXiv:2407.20242 .

Zhang, J., Y. Chen, C. Liu, N. Niu, and Y. Wang (2023). Empirical evaluation of
chatgpt on requirements information retrieval under zero-shot setting. In 2023
International Conference on Intelligent Computing and Next Generation Networks
(ICNGN), pp. 1–6. IEEE.

Zhang, S., S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan, M. Diab,
X. Li, X. V. Lin, et al. (2022). Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068 .

Zhang, S., J. Wang, G. Dong, J. Sun, Y. Zhang, and G. Pu (2024). Experimenting a
new programming practice with llms. arXiv preprint arXiv:2401.01062 .

Zhang, T., V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi (2019). Bertscore:
Evaluating text generation with bert. arXiv preprint arXiv:1904.09675 .

Zheng, L., N. Guha, B. R. Anderson, P. Henderson, and D. E. Ho (2021). When does
pretraining help? assessing self-supervised learning for law and the casehold dataset
of 53,000+ legal holdings. In Proceedings of the Eighteenth International Conference
on Artificial Intelligence and Law, pp. 159–168.

Zhong, H., Z. Guo, C. Tu, C. Xiao, Z. Liu, and M. Sun (2018). Legal judgment
prediction via topological learning. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pp. 3540–3549.

Zhong, H., C. Xiao, C. Tu, T. Zhang, Z. Liu, and M. Sun (2020a). How does nlp
benefit legal system: A summary of legal artificial intelligence. arXiv preprint
arXiv:2004.12158 .

Zhong, H., C. Xiao, C. Tu, T. Zhang, Z. Liu, and M. Sun (2020b). Jec-qa: A legal-
domain question answering dataset. In Proceedings of the AAAI Conference on
Artificial Intelligence, Volume 34, pp. 9701–9708.

Zhou, C., G. Neubig, J. Gu, M. Diab, P. Guzman, L. Zettlemoyer, and M. Ghazvininejad
(2020). Detecting hallucinated content in conditional neural sequence generation.
arXiv preprint arXiv:2011.02593 .

Zhou, X., X. Peng, T. Xie, J. Sun, C. Xu, C. Ji, and W. Zhao (2018). Benchmarking
microservice systems for software engineering research. In M. Chaudron, I. Crnkovic,
M. Chechik, and M. Harman (Eds.), Proceedings of the 40th International Conference
on Software Engineering: Companion Proceeedings, ICSE 2018, Gothenburg, Sweden,
May 27 - June 03, 2018, pp. 323–324. ACM.

Zhu, Y., R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, and
S. Fidler (2015, December). Aligning books and movies: Towards story-like visual
explanations by watching movies and reading books. In The IEEE International
Conference on Computer Vision (ICCV).

237

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CONTENT
	Introduction
	Objectives
	Contributions
	Study state-of-the-art approaches of Legal NLP in legal documents oriented to software development.
	Assessing state-of-the-art LLMs like ChatGPT capabilities to comprehend and respond to complex software project inquiries through source code analysis.
	A Token Probability Method for Detecting Hallucinations in Large Language Model Outputs.

	Thesis Organization

	Literature Review on Legal NLP
	Taxonomy of Legal NLP tasks
	Language Modeling
	Multiclass Classification
	Summarization
	Information Extraction
	Question Answering and Information Retrieval

	Current Legal NLP Limitations
	Discussion
	Datasets
	Limitations
	Conclusion
	Credit

	Study the performance of state of the art of Legal NLP in legal regulations associated with software systems
	LLMs evaluated on SQuAD V2.0 and PolicyQA
	LLMs used
	Experiments

	Creation and Analysis of a Natural Language Understanding Dataset for DoD Cybersecurity Policies (CSIAC-DoDIN V1.0)
	Dataset
	Annotation Scheme
	Extraction and Annotation process
	Developed Legal NLP Tasks
	Statistics of the Dataset
	Experiments and Results

	Discussion
	Limitations
	Conclusions
	Credit

	Survey in the Use of LLMs to Understand Software Systems
	Taxonomy of Software Engineering Area where LLMs have been applied
	Software Requirements and Documentation
	Code Generation and Software Development
	Software Design and Evaluation
	Code Summarization
	Overall Conclusions

	Discussion
	Limitations
	Conclusions

	Assessing ChatGPT’s Ability to Comprehend and Respond to Microservice Architecture Questions Using Source Code Insights
	Research Questions
	Methodology
	Source Code Extraction
	NL Transformation
	Questions Created
	Prompt Engineering
	ChatGPT Question Answering Process

	Experimental Design
	Testbench
	Customized Questions for TrainTicket Testbench
	Prompt Engineering
	Methodology Implementation
	Execution of the Experiments
	Evaluation of Answers
	Analysis

	Limitations
	Discussion
	Conclusion
	Credit

	LLMs Hallucinations Detection Survey
	Definition
	Taxonomy of Hallucination Detection Methods
	Retrieval methods
	Uncertainty-based
	Prompting-based
	Facts Overlapping
	Entailment methods
	Supervised Learning methods

	Discussion
	Limitations
	Conclusions

	A Token Probability Method for Detecting Hallucinations in Large Language Model Outputs
	Methodology
	Problem Statement
	General Pipeline
	Features Description
	Feature Extraction
	Models Specification

	Experimental Setup and Results
	Datasets
	LLM Evaluators Used
	Training Process of the Classifiers
	Results
	HELM results without condition-text
	Feature Importance Analysis - Ablation

	Discussion
	Limitations
	Conclusions
	Credit

	LLMs Hallucinations Mitigation Survey
	Taxonomy of Hallucination Mitigation Methods in LLMs
	Mitigating Misinformation and Biases
	Retrieval Augmented Generation (RAG)
	Self-Improvement through reasoning and feedback
	Prompt Engineering
	Decoding Strategies
	Using Knowledge Graphs
	Faithfulness loss functions
	Supervised Fine-tuning

	Discussion
	Hallucinations in LLMs
	Why Hallucinations Happen
	Hallucination Mitigation
	Proposals

	Limitations
	Conclusions

	Conclusion
	Publications
	Contributions
	Study of State-of-the-Art Approaches in Legal NLP for Software Development.
	Assessing ChatGPT's Ability to Comprehend and Respond to Microservice Architecture Questions Using Source Code Insights.
	A Token Probability Method for Detecting Hallucinations in Large Language Model Outputs.

	Future Works
	Training Domain-Specific LLMs for Legal Compliance
	Enhancing Context Management in LLMs
	Improving Detection of Hallucinations in LLMs
	Ethical and Regulatory Implications

	Acknowledgements

	Bibliography

