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Abstract

Vision-Language Models (VLMs) are increasingly deployed
in public sector missions, necessitating robust evaluation of
their safety and vulnerability to adversarial attacks. This pa-
per introduces a novel framework to quantify adversarial risks
in VLMs. We analyze model performance under Gaussian,
salt-and-pepper, and uniform noise, identifying misclassifi-
cation thresholds and deriving composite noise patches and
saliency patterns that highlight vulnerable regions. These pat-
terns are compared against the Fast Gradient Sign Method
(FGSM) to assess their adversarial effectiveness. We propose
a new Vulnerability Score that combines the impact of ran-
dom noise and adversarial attacks, providing a comprehen-
sive metric for evaluating model robustness.

Application Context
The framework we present addresses the pressing need for
robust evaluation metrics to ensure the safety and reliabil-
ity of VLMs in public missions. Our work specifically tar-
gets applications where VLMs play a critical role, such as
disaster response, medical diagnostics, infrastructure man-
agement, and public education. These domains demand sys-
tems capable of maintaining performance even under ad-
verse conditions, including adversarial manipulations.

Our proposed Vulnerability Score metric evaluates the re-
silience of VLMs against both random noise and targeted ad-
versarial attacks. This makes it particularly suitable for gov-
ernment and non-governmental organizations tasked with
deploying AI systems in high-stakes environments. For ex-
ample, in disaster response scenarios, where real-time and
accurate decision-making is essential, identifying and mit-
igating adversarial risks ensures that VLMs can be trusted
to process critical visual and textual information reliably.
Similarly, in medical imaging or urban planning, robustness
against adversarial threats protects against errors that could
have significant societal consequences.

By combining comprehensive noise analysis and adver-
sarial impact assessment, this approach aligns with the pub-
lic sector’s emphasis on trustworthy AI. While the method’s
computational intensity might pose challenges for resource-
constrained settings, its ability to quantify vulnerabilities
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and provide actionable insights outweighs these limitations
in mission-critical scenarios. Consequently, the framework
equips stakeholders with a powerful tool to make informed
decisions about deploying and governing AI technologies in
public service contexts.

Introduction
With the rapid advancement of artificial intelligence, VLMs
have become deeply embedded in our daily lives. As
of 2023, over six billion people worldwide use smart-
phones (Aarestad 2023), many of which are enabled with
VLM-based features like augmented reality, real-time trans-
lation, and intelligent personal assistants. The increasing in-
tegration of artificial intelligence (AI) into a wide range of
public sector missions follows from disaster response and
medical diagnostics to infrastructure management and edu-
cational initiatives, there is a growing imperative to ensure
that such systems are both reliable and safe. The integration
of VLMs into governmental and non-governmental services
demands high standards of trust, fairness, and resilience, es-
pecially when these models operate under challenging con-
ditions or encounter adversarial manipulations.

An adversarial attack involves manipulating a machine
learning model by using carefully crafted data to exploit its
vulnerabilities, potentially leading to incorrect predictions.
While there has been extensive research on adversarial at-
tacks in computer vision and natural language processing,
Binte Rashid, Rahaman, and Rivas (2024) identified a re-
search gap in effectively measuring adversarial attacks and
conducting safety assessments for VLMs. Existing studies
have primarily focused on developing attack methodologies
and their defense mechanisms, with little attention given
to reliable measurement of risk assessment and developing
evaluation metrics to assess vulnerability.

To ensure safety and trustworthiness in public service AI
systems, we must develop comprehensive and standardized
metrics that reliably quantify risk, evaluate robustness, and
identify vulnerabilities. Public missions often deal with dif-
ferent kinds of stakeholders, diverse data sources, and time
constraints. It becomes not only a technical issue but also
a public policy necessity to guarantee AI’s consistent per-
formance while maintaining equity, transparency, and social
well-being.

This paper introduces a novel approach to efficiently



quantifying and evaluating the adversarial vulnerabilities of
VLMs, with a specific focus on the CLIP model (Radford
et al. 2021). Our approach combines a comparison to well-
known adversarial attack approaches with an analysis of
model performance under different noise conditions. Our
goal is to present a thorough evaluation of VLM vulnera-
bility by looking at the model’s response to Gaussian, Salt
and Pepper, and Uniform noise. Our research contributes to
the field in several ways:
• We conduct an experiment by applying incremental noise

levels to assess the threshold at which misclassification
occurs in image classification task.

• We compare the effectiveness of our noise-based pertur-
bations against the FGSM, a well-established adversarial
attack technique.

• We propose a new evaluation metric that calculates a Vul-
nerability Score by combining the impact of both random
noise and targeted adversarial attacks.

In situations where public trust and mission success are
crucial, we hope that these measurements can help policy-
makers, developers, and community organizations make bet-
ter decisions concerning the deployment and regulation of
AI systems.

Background Study
Adversarial attacks on neural networks often involve craft-
ing input perturbations to cause model misclassifications.
One of the first and best known attack is the FGSM, which
adds noise aligned with the gradient of the loss to the in-
put data (Goodfellow, Shlens, and Szegedy 2014). Build-
ing on this, Projected Gradient Descent (PGD) applies it-
erative gradient-based perturbations, projecting the adver-
sarial example back onto the valid input space at each
step (Madry et al. 2017). Other notable attacks include the
Jacobian Saliency Map Adversary (JSMA), which leverages
a saliency map derived from the Jacobian matrix to identify
and perturb key pixels (Papernot et al. 2016), and the Carlini
and Wagner (C&W) attack, an optimization-based approach
designed to produce minimal, nearly invisible perturbations
that still cause reliable misclassification (Carlini and Wagner
2017).

Dong et al. (2020) highlighted the importance of evalu-
ating robustness using robustness curves that shows model
performance across different level of perturbation and attack
strengths which provides a more comprehensive assessment
of adversarial robustness compared to traditional point-wise
accuracy. The authors also discussed about the effectiveness
of adversarial training and the robustness of randomization-
based defenses against query-based black-box attacks. Zhao
et al. (2024) proposed comprehensive evaluation of adver-
sarial robustness in VLMs. The results show that advanced
models like MiniGPT-4 (Zhu et al. 2023), LLaVA (Liu et al.
2024), BLIP-2 (Li et al. 2023) trained on large datasets are
vulnerable to adversarial noise, which results in generating
erroneous or targeted output. By evaluating black-box at-
tacks, the authors concluded that adversarial attacks crafted
against one VLM can often be transferred to others, showing
the widespread vulnerability across different architectures.

Figure 1: Imposing noise to clean image

Noise Level Original Class Misclassified
0.75 Telephone Soda-Can
0.29 Playing-Card Sheet-music
0.10 Airplane Hotdog
0.46 Saturn Mussels
0.56 Penguin Chimp

Table 1: Sample of noise levels and model performance for
Gaussian noise.

Methodology
Assessing the vulnerability of VLMs to adversarial attacks
is essential for ensuring their reliability and safety in real-
world applications. Existing metrics like CLEVER (Weng
et al. 2018), AutoAttack (Croce and Hein 2020) often fail to
capture the combined impact of random noise and targeted
adversarial perturbations on model performance. Develop-
ing a comprehensive evaluation metric that integrates the ef-
fects of various perturbations can efficiently assess a model’s
robustness

In our experiment, illustrated in Figure 2, we conducted a
classification task using the CLIP model, a vision-language
model, on the Caltech-256 dataset. We randomly selected
300 images from the dataset, that is approximately 1% of the
entire dataset ensuring that all the classes were included. We
applied each of the three previously mentioned noise types
to our sample set. The implementation of the noises in as
follows:
• For each noise type, starting with a clean image, we in-

creased the noise level by 0.01 in each iteration as shown
in Figure 1. We can denote it as, for any noise N(i) ap-
plied to an image at iteration i we add 0.01 noise level at
each iteration. N(i+ 1) = N(i) + 0.01.

• At each noise level, we evaluated the CLIP model’s clas-
sification performance on the perturbed image.

• We tracked the specific noise level at which the model
first misclassified the image, marking the threshold
of the model’s robustness for that particular image
and noise type. Let Nfinal = N(i) and suppose
F (I,N(i)) ̸= True Label, where I is the original im-
age and F (I,N(i)) is the model function for class pre-
diction. In Table 1, we show a sample of noise levels
and the corresponding model performance for Gaussian
noise.

We gathered the noise levels that caused misclassification
for each of the 300 images. By averaging these noise lev-



Figure 2: Methodology Process.

els, we created a composite noise image patch representing
the average noise pattern that leads to misclassification in
the model. We performed this experiment for each of the
three noises and collected the average noise patch as shown
in Figure 3.

(a) Gaussian Noise (b) Salt and Pepper Noise

(c) Uniform Noise

Figure 3: Noise patches of three types of noises.

Results and Performance Analysis
Once we established both the noise patches and the saliency
pattern, our next goal was to rigorously assess their potential
as adversarial perturbations in comparison to a well-known
benchmark, FGSM. We approached this comparison sys-
tematically. First, we introduced image-level perturbations
derived from each of our identified noise patches. These
patches, generated by averaging the noise levels at which
misclassifications first occurred, were designed to capture
the “average vulnerability” of the model to each type of
noise. By applying these noise patches to previously un-
seen images, we aimed to determine how well they gener-
alized as universal adversarial perturbation. In other words,
we wanted to see if a single, pre-computed noise pattern
could reliably induce misclassification in images it had never
“seen” during the noise derivation phase.

Attack Name Accuracy(%)
Baseline 95.00
Gaussian Noise 67.54
Salt and Pepper 66.80
Uniform Noise 66.56
FGSM 9.35

Table 2: Comparison of Model Accuracy under Different
Adversarial Attacks

We wanted to gain a deeper understanding of which pixels
or regions of the image seems to be more vulnerable towards
adversarial perturbation. Using the same noise patches, we
generated a saliency pattern. This saliency pattern highlights
image regions that, when altered, cause the model’s predic-
tive confidence and accuracy to degrade. By applying this
saliency pattern as a perturbation, we effectively tested the
ability of focusing our adversarial attack on critical, high-
impact areas within the image. This approach allowed us to
move from broad-spectrum noise attacks to more targeted,
strategic perturbations.

After experimenting with both the noise patches and the
saliency pattern, we then introduced the conventional FGSM
attack for comparison. While FGSM is known for its sim-
plicity but as it calculates the gradients of loss to mislead
the model, it is computationally expensive. By taking into
account the result of FGSM, we could ascertain how well
our noise patches and saliency-based perturbations measure
up against a classic, widely recognized adversarial method.
The outcomes of these experiments are summarized in Ta-
ble 2, which provides a direct comparison of the model’s
accuracy for each type of attack. With the help of the results
of Table 2, we developed a new metric that jointly consid-
ers the impact of random noise and targeted adversarial per-
turbations on the model’s performance. This metric offers a
more comprehensive measure of the model’s vulnerability.
Our evaluation metric is defined as:

Noise Impact Score =
AccBaseline − AccNoise

AccBaseline
× 100,

FGSM Impact Score =
AccBaseline − AccFGSM

AccBaseline
× 100,

where AccBaseline is the baseline accuracy, AccNoise is the ac-
curacy under random noise, and AccFGSM is the accuracy
under FGSM attack.



Vulnerability Score = w1 × Noise Impact Score + w2 ×
FGSM Impact Score where w1 + w2 = 1 and w1, w2 ≥ 0.

By utilizing our proposed evaluation metric, we aim to
systematically assess the vulnerability of VLMs to adver-
sarial perturbations. This metric provides an efficient and
scalable method for researchers to quantify their models’
robustness, as demonstrated in our experiments where we
worked with only 1% of the dataset. Despite the limited sam-
ple size, the results effectively highlighted the sensitivity of
the model to both random noise and targeted adversarial at-
tacks, underscoring the metric’s reliability.

A key advantage of our approach lies in its flexibility: the
weights w1 and w2 can be adjusted to emphasize either ran-
dom noise impact or adversarial perturbations, depending
on the specific evaluation needs. This adaptability allows
researchers to tailor the metric to suit different scenarios,
such as prioritizing robustness against natural perturbations
in real-world environments or focusing on resilience to de-
liberate adversarial attacks (Rashid and Rivas 2024).

Conclusions
In this work, we introduced a novel framework to evaluate
the adversarial vulnerabilities of VLMs, focusing on pub-
lic mission applications. Our method integrates the analysis
of random noise and adversarial attacks, providing a com-
prehensive Vulnerability Score that highlights model weak-
nesses under diverse perturbation conditions. By leveraging
incremental noise application and saliency-based analysis,
we demonstrated the effectiveness of our approach in quan-
tifying risks and identifying critical areas of vulnerability.

The proposed framework addresses a pressing need in
public sector AI, ensuring that systems deployed in high-
stakes environments maintain trust and reliability. While
computational complexity poses a potential challenge, the
insights gained from this evaluation provide actionable met-
rics for developers, policymakers, and organizations seeking
to deploy robust AI systems. Future work will optimize the
framework’s computational efficiency and extend its appli-
cability to other multimodal AI architectures.

Our findings contribute to the broader effort of ensuring
trustworthy AI in public service, offering a practical and
scalable solution for assessing and improving the safety of
VLMs in mission-critical applications.
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