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Abstract Chatbots are a specific application of a set of machine learning algo-
rithms belonging to the family of natural language processing (NLP). Recently,
NLP algorithms have gained attention as we are closer to passing the Turing
test when they are applied to human-computer interaction-based systems. In
this thesis project we will model chatbots using NLP-based machine learning
algorithms based on datasets of people. Based on sentences and text from a
specific person, we measure how well the chatbot models such person’s writing.
In theory, NLP algorithms of the Long Short Term Memory (LSTM) type are
capable of remembering, summarizing, and learning patterns of speech, style,
and forms of any sequences of text. Results indicate that an LSTMs is capable
of generating novel sentences using as a case study Donald Trump’s tweets.

1 Introduction

In the world of computer science there is a field that studies how machines
can think. This field is called artificial intelligence (AI). The study of AI has
been around since the early 1950s, with scientists of many different fields from
psychology to mathematics and computer science all coming together to work
on this problem [1]. In 1956 Allen Newell, J. Clifford Shaw, and Herb Simon
demonstrated their primitive AI program that could create logical proofs [1,
6], and AI has been growing in complexity and power since then.

One subset of AI is machine learning (ML). ML is a field of AI which focuses
on developing programs which have the ability to self-improve, simulating the
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process of learning [5]. There are many different approaches to ML, but these
different approaches fall into one of three categories, which are supervised
learning, unsupervised learning, and reinforcement learning [4].

In the area of supervised learning, we have several new advances in the
area of deep learning. Deep learning refers to neural networks which contain
hidden layers between the input and output layers [4]. One big advancement
in this field is long short-term memory models [12].

This research studies one of the applications of LSTMs to solve a prob-
lem of text generation simulating what is know as a chatbot. Chatbots are
programs which attempt to use artificial intelligence and machine learning to
try and mimic human speech and converse with humans. Chatbots can be
built using simple traditional AI and ML to perform tasks from pun genera-
tion [7] to handling customer service interactions [13]. However, by utilizing
more advanced ML techniques it is possible to achieve even better results, as
demonstrated by MILABOT [8] and ALICE [9]. By combining multiple differ-
ent techniques, it is possible to address the weaknesses of one technique with
the strengths of another [3].

In this paper, we will focus on the problem of LSTMs and the effects of
different parameters on their performance. To address this problem, we created
a chatbot designed to produce tweets based off of the twitter account of Donald
Trump. We chose Donald Trumps twitter because he tweets a lot, which gives
us a lot of data to use for our chatbot. He also has a very recognizable way of
talking, which means that a functional chatbot using this data will have much
more interesting output.

The rest of this paper is organized as follows: Section 2 gives the necessary
background information, while section 3 explains the methodology we used
in these experiments, section 4 discusses the results of the experiments, and
finally, conclusions are drawn in section 5.

2 Background

LSTMs are a subset of Recursive Neural Networks (RNNs) [12], and their
recurrence can be visually explained as sequential items until the model is
made to stop, as depicted in Figure 1.

Fig. 1 Sequential representation of the recurrence of an LSTM.

LSTMs are capable of learning long-term dependencies, as well as han-
dling the vanishing gradient problem that plagues non-LSTM RNNs [2]. The
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vanishing gradient problem refers to an issue in neural networks that utilize
gradient-based methods of training, in addition to backwards propagation. As
the number of layers increase, the update to the weights of the front layers
gets compounded more and more, sometimes to the point where training is no
longer possible for the front layers. LSTMs solve this problem by allowing the
gradient, instead of being compounded from layer to layer, to flow unchanged
through the LSTM.

In this paper we attempt to model a chatbot using an LSTM, which has
proven to be a challenging task in machine learning [11]. In our experiments,
we evaluate the performance effects of changing three parameters: batch size,
model size, and dropout.

2.1 Batch Size

The first parameter, batch size, refers to the number of lines of the input the
training algorithm looks through at any given time, illustrated in Figure 2.
The best batch size would be the entire length of the training input; however,
due to hardware limitations it is incredibly unlikely to get to that batch size
outside of specially built machines dedicated to AI training. The smaller the
batch size, the easier the process is on the hardware, but the more time it will
take per pass, and the performance may be affected. However, overstressing
the hardware with batch sizes that are too large can also lead to poor results,
so it is important to find the batch size that best suits the hardware that
training is being performed on.

Fig. 2 Example of batch selection based on batch sizes of two and five.

2.2 Model Size

The second parameter we test is model size, which refers to the length of the
word vector encodings. When performing NLP, it is common to convert the
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words from the input into vectors, to help the algorithm better understand
the relationship between words [14], described by Figure 3. When two vectors
end up close to one another, this represents some sort of relationship between
those words, that there is some similarity between the words. The longer these
vectors are, the more information there is that can be encoded into these
vectors, allowing for more, better relationships between words. The trade-off
between model sizes is that with larger model sizes, more information can be
encoded yielding better results, while taking more time to train these word
vector encodings.

Fig. 3 Example of word encoding into a vector of size 10

2.3 Dropout Rate

The third parameter we test is dropout. Dropout refers to the random drop-
ping of a number of nodes in the network, signified by a percentage, depicted
in Figure 4. We utilize dropout in neural networks to mimic the way our own
brains work, as we constantly have brain cells dying and being created. This
causes us to forget the less important pieces of information, while still remem-
bering the important information. The theory of dropout is that, by randomly
dropping a certain percentage of nodes, we will be likely to lose the less im-
portant patterns that may only come up a few times in the inputs, while being
less likely to lose the big patterns that consistently show up in the input [10].

3 Methods

3.1 Dataset

Our first step in getting our dataset ready for our chatbot was to acquire
the data. We did this through the website trumptwitterarchive.com, which
contains all of the tweets from Donald Trumps twitter account from 2016 and
earlier that have not been deleted, as well as almost all of his tweets after 2016.
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Fig. 4 Example of dropout applied to a neural network. (A) shows the network before
dropout, (B) shows the network after dropout.

The next step was to perform the preprocessing, to make sure that we
didn’t have any characters that might mess with the chatbot, while keeping
emojis, and making sure that the data we got was in the format we wanted
it in. We did this by first running the data we received through a python
script which replaced symbols such as ‘%’ and ‘&’ with the words ‘percent’
and ‘and’, and removing quotes and other similar special characters, as well as
hyperlinks. While this python script worked for most of the unwanted symbols,
some symbols were not able to be removed by the python script so we removed
the rest by hand.

After dealing with the special characters, we then broke the tweets down
into sentences, as the goal of this project was to generate sentences and not
tweets. To break down the tweets we ran the preprocessed tweets through
another python script which added new lines after each period, exclamation
mark, and question mark. While this worked for the most part, we did have
a few issues in cases like abbreviations where periods do not mark the end of
a sentence. These issues were difficult to attempt to handle, however we tried
to at least handle common cases such as “Donald J. Trump” and “U.S.A.”.
Some examples of tweets before and after preprocessing are shown in table 1.

Finally, we performed basic sentence analysis on the formatted dataset to
determine what the average length of Trumps sentences is, which we used as
the length of sentences our chatbot would form.

3.2 Architecture

After getting our dataset prepared and performing our analysis, we began
working on the chatbot itself. The first step here was to construct and train
our own word vector encoding based on our dataset. While it is possible to
find already pretrained word vector encodings, we decided that it would be
best for our purposes to create our own. This allows our encoding to best fit
our dataset, as most pretrained encodings that can be found will not include
the hashtags, twitter handles, and emojis that our dataset contains. For our
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Table 1 Examples of tweets from before and after preprocessing.

Before After

Since my election as President the Since my election as President the

Dow Jones is up 43% and the NASDAQ Dow Jones is up 43 percent and the

Composite almost 50%. Great news for NASDAQ Composite almost 50 percent

your 401(k)s as they continue to grow.

We are bringing back America faster Great news for your 401ks as they

than anyone thought possible! continue to grow

We are bringing back America faster

than anyone thought possible

There’s not one shred of evidence that Theres not one shred of evidence

this president’s done anything that this presidents done anything

Constitutionally (or anything else) Constitutionally or anything else

wrong. Graham Ledger. Thank you wrong

Graham, so true!

Graham Ledger

Thank you Graham so true

specific case of Donald Trump, this also allowed us to include his common
misspellings and nicknames to get an even better fit for our chatbot.

The next step was to construct our neural network and begin testing. We
decided to go with a 32-layer, LSTM-based neural network. We chose the Adam
optimization algorithm for our training, with a softmax-based sparse categor-
ical cross entropy loss function. We chose the Adam optimization algorithm
because it tends to yield extremely fast results; however, it can sometimes
get stuck in a loop for a while, which slows down that particular run. While
this is not common, it is something that should be taken into account when
thinking about how you want to design your architecture. A depiction of our
architecture is shown in Fig. 5.

We performed three tests for each parameter value, beginning with batch
size testing. Our starting parameters were a batch size of 128, a model size of
50, and a dropout value of 0%. We then changed our batch size to 512 and
1024. We then chose the best batch size, and moved on to modifying our model
size. For model size testing, we used values of 50, 100, and 300. Choosing the
best model size, we moved on to dropout testing. We tested dropout values of
0%, 10%, 15%, and 20%.

4 Experimental Results

4.1 Batch Size

The first experiment was carried on batch size. Fig. 6 shows the Batch Size
test results mapping loss over time. As it can be seen, the batch size that
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Fig. 5 Depiction of our designed architecture. The dense layer is a Softmax layer.

Fig. 6 Batch Size test results mapping loss over time

performed the best was 512, and the batch size that performed the worst was
1024. The batch size of 128 fell between the two. What we would expect to see
is an increase in batch size correlating with better performance, however we
found that the highest batch size performed the worst. We believe that this
is due to hardware limitations, where our hardware was not able to optimally
use the larger batch size. Other than that, the outcome is what we expected.
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Fig. 7 Model Size test results mapping loss over time

4.2 Model Size

The second experiment was with model size. Fig. 7 shows the Model Size
test results mapping loss over time. For these tests, we continued with our
batch size of 512. In our testing, we found that a model size of 300 performed
the best, with the worst performance coming from the model size of 50. The
model size of 100 performed slightly worse than the model size of 300, but
better than a model size of 50. These results line up with what we would
expect from these tests. The corner in the graph on the model size 300 line
around epoch 50 comes from one of the tests having the optimizer get stuck in
a loop, which happens to the Adam optimizer from time to time, as evidenced
by the flat line between epochs 0 and 50 on one of the three tests. There is
not a huge difference between the model sizes of 100 and 300 compared to 100
and 50, so the decision between the two of them is a question of the increase
in performance over the added time to train the word to vector encoding. It is
important to note, however, that while the model sizes of 100 and 300 seemed
to converge to a similar loss rate, the model size of 300 was able to converge
much faster than the model size of 100.

4.3 Dropout Rate

The third experiment was on the proportion of dropout. Fig. 8 shows the
Dropout test results mapping loss over time. For these tests, we continued
with our batch size of 512 and model size of 300. In our testing, we found
that a 0% dropout produced the best results, with each increase in dropout
percentage producing worse results, meaning that the worst results came from
a 20% dropout. While we were not sure what percentage would work best, we
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Fig. 8 Dropout test results mapping loss over time

did not predict that the 0% dropout would be the best. We believe that this
is due to either the size of the network not being large enough to benefit from
the dropout, or the size of the dataset not being large enough to benefit from
dropout. To better optimize dropout, it may be best to increase the size of
the network, and add in more layers, to see if network size is the parameter
holding back dropout. The corners in this graph are also produced by cer-
tain tests having their optimizer not converging. This experiment elucidates
the consequences of selectively ignoring (dropping) neurons associated with
specific vocabulary words; one might observe that, while the rest (surviving)
neurons become stronger, still the performance of the network does not in-
crease. This is especially interesting if we consider that many words in the
vocabulary consist of hashtags and user names that may not contribute much
to the structure of sentences from a grammatical standpoint.

4.4 Quality of Results

After selecting the optimal set of hyper-parameters, we collected sample sen-
tences of the model at different stages of training. Table 2 shows some examples
of these collected sentences.

As can be seen, the early results seem to be a random string of words from
the vocab with no meaning. The late results, on the other hand, seem to make
much more sense. While they are not perfect results, they are much better
than the early results. An issue that is brought forward by these results is
that the vocab contains an incredibly large number of twitter handles, which
causes them to show up a lot even in the later sentences.
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Table 2 Performance comparison of the LSTM architecture early and later on the training
set.

Ep Prompt Output

5 bad bad hp heroic contractor @dhsgov #oscars @souperfan2013

@kevweezy5 worst-the @yewkalaylee lifetime

5 democrats democrats syria @buckleybro40 michael @greenerag

@samanthaviner @mstrbass2000 @pamplinfilmco @business

@thecccowanshow prison

100 crooked crooked hillary presidential beyond belief approximately

hampshire packed house #potus7 #usa

100 fake fake source gov agree me supporters @holzmdk radar better

off @garrett

4.5 Discussion

While these results are not bad, there are a few things that we believe may
be having a negative impact on our model. First, the vocab that we have is
incredibly large. This is somewhat due to a myriad of misspellings and typos
in the dataset, and also somewhat due to a large number of twitter handles,
some of which only appear a few times at most in the corpus. Another issue
that may be impacting the model is the size of the model. It may be that to
get the best results, more layers are needed in our model. The problems also
may just be coming from the writing style of the dataset. It may be that the
tweets are too inconsistent to be able to pull any meaningful data about how
they are constructed.

However, we believe that these results are a good start. While the sentences
generated could be better, there is a clear improvement between the early
output and the late output which is overall a success. Also, each parameter
that we optimized, provided an increase in performance, which shows that we
are moving in the right direction. Finally, the fact that we were able to produce
these results on a machine that was not specifically designed to perform heavy
ML training shows how far technology has come in the last few decades, and
so theoretically even better results could be produced on a machine built with
ML in mind.

5 Conclusions

We conclude that it is possible to develop and deploy a chatbot, when taking
special care in the choice of dataset, preprocessing, and architecture. We chose
a dataset that was both large and freely available, processed it to make sure
that there were no characters that would impede the performance of the chat-
bot, and then chose the paramters of the chatbot that would yield the best
results we could achieve. We determined that, for our setup, a batch size of
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512, combined with a model size of 300 and dropout rate of 0%, gave us the
best results. While our vocabulary was too large to easily produce coherent
sentences, it would be a trivial task to remove uncommon handles and other
unwanted words from the vocab to help streamline the model. Finally, while
our results were not bad, we believe that this process could be repeated on a
dedicated ML machine to produce even better results.

The next steps for this project are to look into different parameters to
try and better optimize our chatbot. The parameters that we are currently
looking into are network size, and optimizer. For network size, we want to
slowly add layers to see how that affects the performance of the chatbot, as
well as whether or not a larger network changes the dropout curves. For the
optimizer, we are looking into whether changing the loss function from the
softmax-based sparse categorical cross-entropy function that we are currently
using to a sigmoid-based binary cross-entropy function will yield better results.
If you would like more information about this project, we have made the code
available in a github repository which can be found at https://github.com/
MichaelInAction/Senior_Thesis_LSTM_Chatbot
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Michael Read and Prof. Pablo Rivas

Chatbots are a specific application of a set of machine learning algorithms 
belonging to the family of natural language processing (NLP). Recently, NLP 
algorithms have gained attention as we are closer to passing the Turing test when 
they are applied to human-computer interaction-based systems. In this thesis project 
we will model chatbots using NLP-based machine learning algorithms based on 
datasets of people and we will examine how well the chatbot can respond like a real 
person; that is, based on sentences and text from a specific person, we will measure 
how well the chatbot models such person’s writing style and form. In theory, NLP 
algorithms of the Long Short Term Memory (LSTM) are capable of remembering, 
summarizing, and learning patterns of speech, style, and forms of any sequences of 
text. We will test LSTMs accuracy in doing such tasks. 

Abstract
Batch Size - The 512 tests yielded the best results, followed by 128, with 1024 
doing the worst. We believe this was because the hardware capabilities of the 
computer we tested on was not capable of handling a batch size of 1024

Model Size - The length 300 model yielded the best results, followed by 100, with 
50 performing the worst. This lines up with what we expected

Dropout - The 0% dropout model yielded the best results, followed by 10%, then 
15%, then finally 20%

Background

● Sample tweets from Donald Trump were obtained from his twitter account 
● Tweets were broken down into sentences and formatted for analysis
● Multiple tests were performed with the data, while modifying the variables of 

batch size, model size, and dropout
○ 3 tests were performed for each value of each variable
○ Batch size was tested first, with values of 128, 512, and 1024
○ Model size was second with values of 50, 100, and 300
○ Dropout was last with values of 0%, 10%, 15%, and 20%

Methods Results

LSTM - A subset of Recursive Neural Networks (RNNs) that are capable of learning 
long-term dependencies

Neural Network - Collection of “neurons”, which act in a similar manner to the 
neurons in our brains, arranged in layers and which learn to translate a given input(s) 
into the desired output

Batch Size - The number of inputs that the model is trained with at a given time

Dropout - A percentage of the neurons that get blocked when updating the model

Word to Vector Encoding - The encoding of words as n-dimensional vectors, with 
the proximity of the vectors to one another correlating to how related the words are 
to one another

Model Size - The length of the word to vector encoding

Example Output
Examples from early in training:
● bad hp heroic contractor @dhsgov #oscars @souperfan2013 @kevweezy5 

worst—the @yewkalaylee lifetime
●  democrats syria @buckleybro40 michael @greenerag @samanthaviner01 

@mstrbass2000 @pamplinfilmco @business @thecccowanshow prison
Examples from late in training:
● crooked hillary presidential beyond belief approximately hampshire packed 

house #potus7 #usa
● fake source gov agree me supporters @holzmdk radar better off @garrett
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