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ABSTRACT 
In this paper we describe the Hough-KLT 
algorithm for facial feature extraction based on 
facial feature lines, and the Euclidean distance 
classifier approach is utilized.  In this paper we 
present the Feedforward Backpropagation neural 
network, FFBP, as classifier for face recognition 
using Hough-KLT.  When the FFBP algorithm is 
compared, FFBP show results comparable with the 
Euclidean distance classifier.  
 
1. INTRODUCTION 
Face recognition is one of the most interesting and 
challenging areas in computer vision and pattern 
recognition.  Current face recognition systems have 
high recognition rates, however various changes in 
face images also present a great challenge, and a 
face recognition system must be robust with 
respect to the many variabilities of face images 
such as viewpoint, pose, illumination, and facial 
expression [1]-[4].  The popular approaches for 
face recognition are the eigenface and Fisherface 
method.  The eigenface method, or principal 
component analysis (PCA) [5], is the most well 
known method for face recognition [6].  Each of 
them comes with some advantages but is not free 
from limitations and drawbacks when cast in the 
setting of face recognition. PCA is a popular 
approach in image processing and communication 
theory that is quite often referred to as a 
Karhunen–Loeve Transformation (KLT).  The 
PCA approach exhibits optimality when it comes 
to dimensionality reduction.  However, it is not 
ideal for classification purposes as it retains 
unwanted variations occurring due to diversified 
lighting and facial expression [7].   At the DSP & 
Vision Laboratory novel feature extraction 
methods for face recognition have been developed.  
One of these methods is Hough-KLT, based on face 
lines in combination with KLT.  This method 
utilizes the nearest-neighbor classifier.  Therefore 

this method requires to be tested with other 
classifiers in order to compare its performance. 
The theory of artificial neural networks, ANN, and 
fuzzy logic, FL, has been used to resolve several 
pattern recognition tasks having very good results 
[8].  As new pattern recognition methods are 
discovered or improved, new techniques of neural 
networks are proposed in which special systems 
can learn and generalize, also new systems based 
on fuzzy logic are proposed when a system needs 
to deal with uncertainty.  This makes the pattern 
recognition models be smart and powerful [8].  
ANN classifier is suggested to be used for the 
feature extraction method Hough-KLT created at 
DSP and Vision Laboratory.   
In this paper we describe at Section II the Hough-
KLT algorithm for facial feature extraction and the 
Euclidean distance classifier approach.  The 
Feedforward Backpropagation Neural Network is 
presented for face recognition in Section III.  And 
finally the general conclusions of this work are 
presented in Section IV. 

  
2. HOUGH-KLT FEATURES FOR FACE 
RECOGNITION 
After a deep study regarding the perception of 
faces, we observed that the lines are important 
features for recognition, especially on newborns.  
Therefore, we have decided to extract these 
features on every face.  Hough transform is a 
useful tool for extracting lines based on the edges 
of an image. 

 

2.1. Hough Transform. 
In the domain of the Hough transform, HT, any 
line is defined as  

 

θθρ sincos yx +=  (1) 
 

where the HT of that line describes a sinusoidal 
wave varying its amplitude on the ( )θρ,  space, as 
shown in Fig. 1. 
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Fig. 1.  Representation of a line in the ( )θρ ,  space. 
 
In practice, the HT algorithm requires to have a 
binary image as input, which represents the borders 
of the image [9].  The borders image is very 
important in order to the HT performs well. 
In this case the border detection algorithm used is 
Canny [9].  Canny has proved to be efficient in the 
borders detection task.  Once the border image is 
obtained, the HT is calculated, and the result is a 
representation of all the lines in the space ρ , 
andθ .  Given this result we can extract the main 
lines or characteristic lines just obtaining the 
maximum points in the result of the HT.  Obtaining 
the coordinates of those points we can obtain the 
lines through ρ , and θ  information.  
To obtain the characteristic lines on a face, we 
calculate the four maximum points contained on 
HT.  We consider that four lines are enough to 
represent a face, based on the newborns vision 
system.  The information of these 4 lines will be 
introduced in the feature vector to be defined in 
detail on further subsections. 
Given a grayscale facial image ( )yxI ,  Canny is 

applied to it, ( )ITI CannyBW = , and returns a 
binary image containing the borders of the facial 
image BWI .  Applying HT we get a matrix 
containing the sinusoidal representation of the lines 
of the original image, this matrix is also known as 
accumulator [9], { }ρθ PPP ,,Acumulator  

( )BWHough IT= , where AcumulatorP  is the 

accumulator, θP  (degrees) and ρP  are the vector 

for the values ρ  and θ  on which the matrix 

AcumulatorP  was generated.  In these terms, the 

longest line or characteristic line can be defined as 
the peak value in the accumulator as follows 

 

( )iT AcumulatorHoughPeaksiiPeaks ,),( PN =ρθ  (2) 
 

where ),( iiPeaks ρθN  is a matrix of i×2  
elements where i  denotes the number of peaks to 
extract.  ),( ii ρθ  represents the coordinates in the 

space ρθ ,  for the i -th peak value of AcumulatorP .  
To obtain the coordinates of the lines we can use 
the following definition 

 

),,,(
),,,( 2211

PeaksBWLines

iiiiLines

IT
yxyx

NPP
R

ρθ

=
 (3) 

 

where ),,,( 2211 iiiiLines yxyxR  denotes a matrix 

containing all the coordinates ii yx 11 ,  where the i -

th line begins and ii yx 22 ,  where the line detected 
by the HT ends.  
The result of apply the HT to a face, locating its 4 
maximum points and plotting the main lines 
obtained, produces the result shown in Fig. 2.  , 
where a) is the original image, b) is the binary 
image obtained trough Canny borders algorithm, d) 
is the spectrum representing the result of apply the 
HT to the image at b), finally c) is the original 
image plus its four characteristic lines. 
For the generation of the first part of the features 
vector from the coordinates of its four 
characteristic lines, the following method was 
designed: 
 
Step 1.  Get the four maximum peak values with (2), for 4=i . 
Step 2.  Implement (3) and get the four characteristic lines original 

coordinates, stored at 
4...1),,,( 2211 =∀ iyxyx iiiiLinesR . 

Step 3.  Concatenate the values of the lines coordinates to obtain a 

singleton introduced at vector iz , such that the reverse 

process can be always possible.  Therefore ][
21 iii ll=z . 

Step 4.  Take the value of ix1  and add it to 
1000

1iy , and introduce 

the result to 
1i

l .  The division by 1000 is performed in 

order to do not loose information and to do not increase the 
size of the feature vector. 

Step 5.  Take the value of ix2  and add it to 
1000

2iy , and introduce 

the result to 
2i

l .  We have only two points, because one 

point is the beginning of the line and the second one is the 
end of it. 
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a)                                      b)                                       c) 

 
d) 

Fig. 2.  Hough transform of a face: a) original 
image, b) face borders trough Canny, c) original 
image plus its 4 characteristic lines, and d) 
spectrum obtained by applying Hough transform. 
 
The feature vector equation can be defined as 
follows 
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Once we got the first part of the feature vector iz , 
this vector must be concatenated with the original 
image xyi  in a canonical form (vector column), to 

construct the final feature vector xyi+d .  xyi  is 
defined as 

 

),( yxIxy =i  (5) 
 

where ),( yxI  is the original image of size yx× , 

in other words, if the image I is an 8090×  
element vector, then xyi  has 7200 elements.  The 

final feature vector is defined as 
 

][ xyixyi izd =+  (6) 
 

where xyi+d  has i+xy elements.  Example, if iz  

has 8 elements (the start and end points of 4 lines) 
and xyi  has 7200 elements, then xyi+d  has 7208 

elements.  The vector iz  is linked to the 
information of the original image in order to 
contribute and complement to the feature vector 
before the transformation via KLT. 
 

2.2. Principal Component Analysis 
Principal Component Analysis, PCA, is a very 
widely used technique for dimensionality 
reduction.  The objective of PCA is to transform 
the representation space X into a new space Y, in 
which the data are uncorrelated.  The covariance 
matrix in this space is diagonal.  PCA aims to find 
the new set of orthogonal axis to maximize the 
variance of the data.  The final objective is 
dimensionality reduction of the problem [8].   
 
The steps needed for PCA are the following.   
 

Step 1.  The covariance matrix XCov  is calculated over the 

input vectors set ix  that represents i  facial images 

represented as vectors x .  The covariance is defined 
as 

 

( )( )
Tn

i
iin ∑

=
−−

−
=

11
1Cov xxxxX

 (7) 

 

where x  denotes the mean of each variable of the 
vector x , and n  is the amount of input vectors.   

Step 2. The d eigenvalues of XCov  are extracted and defined 

as dλλλ ,..., 21 , where dλλλ ≥≥≥ ...21 .   

Step 3.  The d eigen-vectors are calculated in dΦΦΦ ,..., 21  

and associated to dλλλ ,..., 21 .   

Step 4.  A transformation matrix is created 
],...,[ 21 dPCA ΦΦΦ=W .   

Step 5.  The new vectors y  are calculated using the following 
equation 

 

XWY T
PCA=  (8) 

 

where T  denotes the transpose of PCAW , and X  

denotes the matrix containing all the input vectors.  Y  
denotes the matrix containing all the new vectors. 

 
2.3. Karhunen-Loeve Transformation 
The KLT [6] is also known as principal component 
analysis.  As a difference from PCA, with KLT the 
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input vectors }{ ix  are normalized to the interval 
[0 1].  So, when the normalization is done, the 
PCA algorithm can be followed at no change. 
At this point we can get the KLT transformation 
matrix, but it should be clear that the input vectors 

}{ ix  are the training set, in other words, a set of 
faces selected specially for training purposes.  
These images are represented as vectors and then 
they can follow the normal process of eigenvectors, 
etc.  This means that if a facial pattern image has 
size of 100x20, it should be introduced as a 2000 
element vector.  If the # of faces is 10 per 
individual, with 8 people, the matrix }{ ix  
generated should be of 2000 x 80 elements. 

 
2.4. Hough-KLT Implementation 
The vector xyi+d  (input to the KLT) is composed 

by 8 coefficients of the TH iz , and the remaining 
coefficients are composed by the original image 

xyi , as denoted in (6). 
This feature vector is transformed to the KLT 
domain in order to get the transformation matrix.  
Following these steps can perform the recognition 
process: 

 

Step 1.  Of a given facial image faceI  belonging to a class “C”, 

CI face ∈ , it is adjusted to set it on a vectorial form.  

This means, obtain xyi . 

Step 2.  Compute the 8 elements of the vector of coordinates 

iz  with (4). 

Step 3.  The TH coefficients and the image on vectorial form are 
concatenated in order to get 

xyi+d . 

Step 4.  The vector xyi+d  is projected on the transformation 

matrix 
KLTW  obtained with (8), in order to compute Y. 

Step 5.  Compute the Euclidean distance between Y and ever 
single existing elements on the hyperplane.  The 
nearest neighbor classifies Y as a member of the same 
class. 

 

The Euclidean distance between the new face 
image Y, projected over the transformation matrix, 

KLTW , and other image =CZ
Cxyi+d KLTW⋅  

belonging to a class C, is redefined from (4.4) as 
follows 

 

CCd ZYZY −=),(  (9) 
 

In this way,  Y is assigned to the class C  where 

),( Cd ZY  is minimum. 
 
2.5. Yale Face Database 
The face database “Yale Face Database” contains 
images of subjects in a variety of conditions 
included with-without glasses, illumination and 
expression variations [6].  In Fig. 3 are presented 
samples of two different subjects under the 
conditions described above. 
 

 
Fig. 3.  Sample faces of the YALE database. 
 
2.6. Results with Euclidean distance 
The experiments consists on vary the samples for 
training from 1 to 8 samples per subject.  10 
classes were constructed according to the number 
of subjects to recognize.  The samples picked for 
training and for testing where selected arbitrary.  
These experiments were realized on YALE.  The 
highest performance obtained when testing, 
reaches the 78% for face recognition as presented 
on Table I.  The average performance for the 
YALE database is 63% of recognition. 
 

TABLE I 
RECOGNITION RATE RESULTS FOR YALE 

 TRAINING SAMPLES 
SUBJECT 

# TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8 

S1 0.2 0.4 0.7 0.7 0.8 0.8 0.8 0.8 
S2 0.9 0.9 0.9 1 1 1 1 1 
S3 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 
S4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 
S5 0.3 0.9 0.9 0.9 0.9 1 1 1 
S6 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 
S7 0.4 0.4 0.4 0.3 0.3 0.3 0.5 0.6 
S8 0.6 0.8 0.9 0.9 0.9 0.9 0.9 0.9 
S9 0.5 0.6 0.6 0.7 0.7 0.8 0.7 0.6 

S10 0.6 0.7 0.8 0.8 0.8 0.8 0.8 0.8 
TOTAL 0.55 0.67 0.72 0.73 0.74 0.76 0.77 0.78 

Where S refers to the subject, and TS means Training Sample. 
 
3. FFBP-HOUGH-KLT FOR FACE 
RECOGNITION 
In this section we describe the experiments and the 
results for a Feedforward-Backpropagation Hough-
KLT face recognition scheme.   
 
3.1. Feedforward-Backpropagation 
Network 
A “Feedforward” network is a computing device 
where the processing units are distributed on layers 
in a unidirectional way via weights [10].  The Fig. 
4 shows in a) an example of a four-layer 
Feedforward network.  With a Feedforward 
containing four perceptrons that are independent of 
each other in the hidden layer, a point is classified 
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into 4 pairs of linearly separable regions, each of 
which has a unique line separating the region as 
shown in b).  The MALTAB software utilizes a 
singular notation for neural networks.  For 
Feedforward on MATLAB we have the figure 
shown in c).  We utilize MATLAB for the entire 
project reported on this document. 

 

 
a) b) 

 
c) 

Fig. 4.  Feedforward networks.  a) a 4 layer 
Feedforward network.  b) intersection of 4 linearly 

separable regions forms the center region.  c) 
example of MATLAB notation for a Feedforward. 
 
Multi-layer Perceptron, MLP consists on multiple 
perceptrons utilizing different activation functions 
that allows good class separation for real life 
problems.  The training algorithm for MLP is the 
well-known Backpropagation, BP. 
 
3.2. BP Algorithm 
The BP training is one of the most important 
algorithms developed for ANN [11].  Given a set 
of training input output samples {x(k), d(k)}, k 
denotes the number of the pairs; the algorithm 
adjusts the weights of the neurons to classify the 
input patterns to their corresponding classes [11]. 
This algorithm is realized in two phases.  First, the 
input pattern x(k) is propagated from the input layer 
to the output layer, and the result of this data flow 
produces the actual network output y(k).  Then the 
error is computed according to the difference 
between the desired output d(k) and the current 
network output y(k), this error is back propagated 
from the output layer to the previous layer to adjust 
the weights following the descendent gradient 
method [11].  The weight adjust process is 
performed until the input layer is reached. 
 
3.3. Feature vector 
The feature vector was constructed with (6).  The 
feature vector suffered a dimensionality reduction 
to a size of 34 elements.  The samples picked for 
training were 8 samples per subject.  The samples 

were picked randomly.  We have designed the 
system for 10 people (10 classes).  The training 
matrix size was 34x80.  The face database utilized 
is YALE. 
 
3.4. Design of the FFBP network 
In this experiment we have constructed a 2-layered 
network.  The FFBP network was constructed for 
34 inputs at the input layer; 80 neurons in the 
hidden layer with tangsig activation functions; and 
10 neurons at the output layer with purelin 
activation functions.  This architecture is shown 
graphically in Fig. 5. 
 

 
Fig. 5.  FFBP network architecture, experiment 3. 
 
For the Backpropagation algorithm we have 
decided to use the Bayesian regularization 
Backpropagation algorithm, trainbr.  Regarding to 
the learning, gradient descent with momentum 
weight and bias learning function, learngdm, was 
utilized.  The network in the training process has 
reached 7.2423e-28 of error rate.  This has done in 
6 epochs.  The Fig. 6 shows the error curve. 

 
Fig. 6.  Error curve for experiment 3. 

 
3.5. Testing the FFBP network 
For testing phase, we pick one of the two available 
samples for testing for each person.   
The sample is picked randomly.  Ideally the output 
of the neuron on training and testing should be the 
identity matrix.  In practice (depending of the 
activation function) we have decimal values.  The 
output of the network on testing is shown in Table 
II.  For neuron N1, the output expected for subject 
S1 is one, but as can be seen we have 0.6338 that is 
close to one but with errors.  However, if we 
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calculate the maximum output of the neurons we 
can assign classification depending of the neuron.  
This means, if the neuron N8 has the maximum 
output, means that it is the subject S8.  The results 
shown in Table II are also known as confusion 
matrix. 
The performance reached with this experiment is 
60%.  Still being a low rate, for pattern recognition.  
However, this architecture results can be compared 
with the Euclidean distance classifier. 
 

TABLE I 
RESULTS FOR TESTING FFBP ON YALE 

 TESTING VECTOR 

Neuron  
number S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Is  

Correct 
N1 0.63 0.31 0.72 0.17 0.21 1.00 0.23 0.22 0.47 0.14 0 
N2 -0.19 1.86 -0.96 0.61 -0.09 1.41 0.13 0.50 0.48 -0.55 0 

N3 -0.13 -0.16 0.08 0.57 -0.01 0.28 0.40 0.58 0.37 -0.04 0 

N4 -0.44 0.37 -0.14 0.70 0.12 -0.52 -0.22 0.21 0.29 0.11 1 

N5 0.12 0.20 -0.64 0.33 0.52 -0.82 -0.75 0.28 -1.40 -0.55 1 

N6 0.36 -0.39 -0.01 0.37 0.30 1.44 -0.54 0.29 0.47 -0.11 0 

N7 -0.54 0.16 0.07 0.07 -0.43 -0.32 1.52 0.26 -0.30 -0.15 1 

N8 1.02 0.80 -0.19 -0.08 0.22 0.28 -0.47 1.20 0.50 0.32 1 

N9 0.16 0.22 -0.33 0.66 -0.09 0.51 0.01 0.13 0.53 -0.35 1 

N10 -0.69 -0.69 0.64 -0.54 -0.36 1.44 -0.34 -0.86 0.52 0.97 1 

Perfor- 
mance           60% 

 

4. CONCLUSIONS 
We have presented the Hough-KLT algorithm for 
feature extraction; using the Euclidean distance 
classifier the system present an average 
performance of 63% for YALE.  We have 
presented a FFBP classifier experiments based on 
the scheme shown in Fig. 7.  The higher 
recognition rate on testing reaches 60%.  This 
result is comparable with the Euclidean distance 
classifier.  This proves the power of the neural 
networks in face recognition applications.  We 
have to remember that YALE is a face database 
containing variations in lighting conditions.  

Therefore the recognition rate is affected by this 
situation and low performance is expected as 
normal.   
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