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Self Organizing Maps for Class Discovery in the Quantitative

Colocalization Analysis Feature Space

Pablo Rivas-Perea, Jose Gerardo Rosiles and Wei Qian

Abstract-Quantitative colocalization analysis in fluorescent
microscopy imaging is a promising procedure used to perform
functional protein analysis. Images acquired are degraded,
and the features extracted are affected by this degradation.
Moreover, the classification of the data becomes uncertain. In
this paper, we address an application of SOM to a clustering
problem formulated via feature extraction from multichannel
fluorescence microscopy. First we describe the features that
are extracted. Second, we use the PCA/KLT to uncorrelate the
data in the hyperplane; and Third, SOM network is trained
to find and visualize the clusters (classes) in the data. The
SOM model shows the existence of two classes, implying it is
possible to design a classifier that distinguishes between images
with colocalized structures and without them . We provide
quantitative proof of the liability and discriminant capabilities
of the feature space .

I. INTRODUCTION

SUBCELLULAR colocalization analysis is a fluorescence
microscopy imaging technique aimed at understanding

the functional relationship between molecules in a cell. Typ­
ically this technique has been applied to measure the spatial
interaction between two proteins that have been fluorescently
labeled. This interaction is indicative of the functions that
proteins play in the biology of a cell. However, as stated by a
recent tutorial review, the actual meaning of a colocalization
measure is a source of confusion and contention when
microscopy images are used [1]. The typical method used
in confocal microscopy is to first image two labeled proteins
responding to different wavelengths (typically green and
red) and then combining the two color planes into a single
image, as shown in Fig. 1. Subjective analysis tries to assess
spatial colocalization by visually identifying yellow colored
structures in the image (i.e., pixels with large green and red
intensity overlap each other). Then the biologist makes an
experience-based assessment of the protein interaction which
can lead to the typical error and bias found in human visual
interpretation. Several qualitative approaches based on global
statistics have been proposed over the years (see Section II),
however they typically consist of a single coefficient/index
(e.g., a correlation coefficient) which may be difficult to
interpret in all situations [1] and only indicate the presence
of a colocalization event without further quantitative analysis
[2].
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Fig. I . From top left, we have the green channel. From top right we have
the red channel, and bottom left, the twho joint channels. At bottom right
we have the scatter diagram, showing the distribution of the pixIes accross
the two channels.

Recent work by Costes , et al., [2] reports a statistical
method that removes the effect of random color overlap
which leads to visual inspection bias. Looking beyond statis­
tical analysis, Bolte and Cordelieres [1] presented a colocal­
ization method that extracts subcellular structure s based on
image segmentation techniques. What can be concluded from
the extensive discussion in these two works is that neither
visual inspection , nor global statistical analysis are sufficient
to faithfully assess colocalization from images. Hence, we
can affirm that the biological and biomedical communities
have a real need for the creation of automated quantitative
image analysis methods that discriminate images into two
classes: colocalized and not-colocalized.

This paper is an attempt to formally address the problem of
colocalization from the machine learning (ML) perspective.
Our aim in this paper is two fold. First we define a set
of features that will allow automatic binary classification
(colocali zed or not-colocalized) of images. Second, we eval­
uate the discriminative quality of these features using self
organizing maps as a tool for class discovery. As features,
we have selected the global colocalization coefficients which
have been extensively used in the literature with the caveats
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mentioned above. Nonetheless, they have been informative
in many works, and are valid from a purely statistical
perspective. Hence they can be considered as a starting point
in our analysis. To the best of our knowledge this is the
first work using ML techniques to addre ss the co localization
problem.

Open questions regarding the correlation of features in the
n-dimensional hyperplane and how trivial does the clustering
become in the hyperplane need to be addressed. We answer
these questions using principal component analysis (PC A),
to decorrelate the data in some hyperplane, and to find the
clusters (classes) trough the power of Self Organizing Map
(SOM) neural networks.

The paper is organized as follows. In Section II the
work on colocalization statistical global analysis is reviewed,
presenting the different coefficients reported in the literature.
Next, in Section III we introduce the feature vector analysis.
Class discovery analysis based on SOMs is discussed in
Section IV. We close the paper with a summary of our
analysis and a description of our future work in Section V.
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Fig. 2. From an scatter diagram, thc observer can chose the threshold
and the compute the colocalization for the intensities greater than those
thresholds. In this example is shown the selection of the thresholds k 1 =
110 and k2 = 90.

The thresholds k l , and k2 are picked by the analyst by
inspection of the scatter gram [3]-[5]. Fig. 2 shows an
example of the selection of thresholds from a scatter gram.

(2)
nln2

# (y(n l ,n2) : R(nl,n2) > k2)

I) Colocalization Coefficients CI , C2 for ROI: The colo­
calization coefficients CI , and C2 describe the relationship
between the colocalized pixels above the threshold k l , ka.
[6]. More specific, it is the total number of pixels above the
threshold divided by the total number of pixels in the image.
This relationship can be denoted as

# (y(n l ,n2) : G(nl,n2) > kl )

II. Q UANTITATIVE COLOCALIZATIO N ANALYSIS

The quantitative analysis from the image processing point
of view, consist of computing the spatial overlap of 2D
signals in multiple spectral channels. This allows researchers
to understand the mechanisms or potential of the interactions
protein-to-protein with very high precision [3]-[5].

The parameters used to estimate the degree of colocal­
ization between two channels are described in the following
subsections. Such parameters (features) are categorized in
two main groups: first, the features designed to work for all
spatial intensity values ; and second, those features designed
to operate over a specific intensity value (threshold). The al­
gorithms to compute such features are described individually
in each category.

where y(nl ,n2) contains the regions (with value 1) where
the pixels colocalize; R(nl ' n2) and G(nl , n2) denote the
red and green channels; kl , k2 are the thresholds specified
by the observer; r t is also chosen by the observer based on
the a priori knowledge of the expected result.

(3)

(4)

where CI, C2 have an expected result between the range [0
1], where a value of 1 means that all the pixels colocalize.

nl n2
V nl , n2, kl , k2

2) Weighted Colocalization Coefficients wCI , W C2: Sim­
ilar to the Colocalization Coefficients described previously,
the Weighted Colocalization Coefficients describe a relation­
ship between the total sum of the colocalized pixels, and the
total intensity of the pixels above the threshold kl , k2 [6].
This relationship is given by

where WCi denotes the Weighted Correlation Coefficient of
the ith channel of the original image, G I and R I describe
the sum of all intensities that co localize for green and red

(1)

a

1

A. Features Given a Specific Region of Interest (ROl) in the
Scatter Diagram

Consider two-channel digital images x (nl , n2)
[R(nl,n2) G(nl ,n2)]. It is said that two pixels are colo­
calized if their respe ctive intensities are strictly higher than
thresholds kl , k2 , and if their ratio (of intensity) is strictly
higher than a given ratio rt [6]. This can be expressed as

ifG(nl ,n2) > k1 , and
R(nl ,n2) > k2, and

100 (R(n , ,n 2») > rand
G(n j ,n2 ) t ,

100 ( G(n , ,n 2») > r
R(n j ,n2) t

otherwise
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(8)

(9)

(7)

where the range is between [0 1]. A value of zero means
that no pixels overlap et all, while a one means that all the
pixels overlap.

3) Fraction of Colocalizing Regions rl, r2 (Overlap Co­
efficients): This coefficient represent the differences between
intensities in each channel [5] [7] [8]. This coefficients
overcome the problems generated from a restriction in over­
lap coefficient oc. However, they are very sensitive to the
absolute fluorescent intensity; this means that if one channel
has been treated in some way (bleaching for instance) in
a different amount than the other in a way that the total
intensity vary, this will affect these coefficients [9]. We can
denote such coefficients as follows

L:n l ,n 2 G(nl, n2)R(nl, n2)

L:n l ,n 2 G(nl, n2)2

L:n l ,n 2 R(nl, n2)G(nl, n2)

L:n l ,n 2 R(nl, n2)2

channel respectively; R2 and G 2 denote the sum of all
intensities above the thresholds k 1 and k 2 respectively. Also,
similar to the coefficients previously described, the expected
result is between the range [0 1].

3) Mander's Colocalization Coefficients M 1 , M 2: The
coefficients M 1 , M 2 are are applied only to a specific ROI
selected by the observer using the scatter diagram. M,
is used to describe the contribution of the ith channel to
the colocalization based on the intensity values. These
coefficients are proportional to the amount of fluorescence
of colocalizing objects in each channel of the image, relative
to the total fluorescence in that channel. Such relationship
is described [5] [7] [8] [9] as

L:n l ,n 2 (G(nl,n2) : R(nl,n2) > k 2)
M 1 (5)

L:n l ,n 2 G(nl, n2)

L:n l ,n 2 (R(nl,n2) : G(nl,n2) > k1 )
M 2 (6)

L:n l ,n 2 R(nl, n2)

The range of the coefficients is between [0 1]. The
meaning can be explained with an example: M 1 == 1.0 and
M 2 == 0.1 means that green channel pixels colocalize with
red, in contrast, only 10% of pixels in red channel colocalize
with green.

B. All Plane Features

The following coefficients can work either with or without
thresholds. In this section we define them assuming no
thresholds are provided.

1) Pearson's Correlation Coefficient rp: Also known as
Correlation Coefficient, the Pearson's Correlation Coefficient
is widely used and accepted, especially in mean squares,
and in many of the regression applications. It provides
information about the relationship between the region of
intensities and their distribution [5] [7] [8] [9] [10] [11]. In
[12] the authors proposed an expansion of this coefficient for
individual analysis. The Pearson's Correlation Coefficient is
denoted by

L: (R(nl,n2) - R) (G(nl,n2) - G)
r p == ---"1================================

1L: uu»; n2) - R)2 L: (G(nl, n2) - G)2

where r p denotes the correlation coefficient. The value of
r p is in the range [-1 1], and expresses the level of linear
correlation among the two images.

2) Overlap Coefficient oc (The Multiply Method): This
coefficient indicates the overlap between the two channels;
it shows a degree of colocalization [7]. As a difference from
Pearson's this coefficient will not return negative values and
will not average any pixel intensity, and it is not sensitive
to intensity variations [5] [8]. However the authors of [9]
strongly recommends that this coefficient should be used

were the individual expected range may vary. The results
can be interpreted as an indicator of the contribution of each
antigen to the areas with colocalization.

4) Mander's Co localization Coefficients m i ; m2:: The
coefficients rri«, m2 are a particular case of coefficients M 1 ,

M 2 described in a previous section with but k 1 == 0 and
k2 == o. Coefficient tru; is used to describe the contribution
of the ith channel to the colocalization based on the intensity
values. These coefficients are proportional to the amount of
fluorescence of colocalizing objects in each channel of the
image, relative to the total fluorescence in that channel. Such
relationship is described [5] [7] [8] [9] as

(10)

(11)

where m i; m2 are in the range [0 1]. The meaning can be
explained with an example: ml == 1.0 and m2 == 0.3 means
that green channel pixels colocalize with red, but only 30%
of pixels in red channel colocalize with green.

5) Intensity Correlation Analysis (CoAn):: Two images
vary around their respective mean if their intensities vary
in synchrony [9]. Therefore the product of the differences
from the mean (PDM) will be positive for such images.
However if the intensities vary asynchronously, the PDM
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will be negative. This PDM is an analysis of the relationship
between intensities and is denoted as

CoAn == (G(n1,n2) - G) (R(n1,n2) - R) (12)

where G and R denote the arithmetic mean. A value of
CoAn > 0 implies that the intensities vary synchronously,
with CoAn < 0 implies the opposite. For instance, if
the pixels in green are varying above their mean, and the
respective red intensities are varying below their mean, then
the CoAn is negative.

III. FEATURE VECTORS ANALYSIS

In the implementation we are using real data images from
the yeast database [14]. Yeast database is a very good
alternative to test the feature extraction methodologies. It
contains 547 pairs of image samples. Images are of size
[512 x 512]. An example of the yeast database was shown
in Fig. 1.

The feature vector we are utilizing is composed of all the
features found in Table I (except by the scatter gram). The
feature vector can be expressed as

8(l2, l2) == # {G(n1, n2) == l1, R(n1, n2) == l2, \ln 1, n2}
(14)

Depending on the purpose, 8 (l2, l2) can be also thought
as a voting mechanism.

6) Intensity Correlation Quotient - ICQ:: The ICQ value
is based on the CoAn sign [9]. The ICQ is defined as In
this feature, all the positive occurrences in the CoAn are
counted and stored in (, as well as the negative occurrences
are stored in ~. So that the ICQ is the quotient denoted as

where ( is the number of positive PDMs and ~ is the number
of negative PDDMs. The range of ICQ falls between [-0.5
0.5]. The results can be interpreted as follows: ICQ ~

o means random discoloration; -0.5 :S ICQ < 0 means
segregated discoloration; 0 < ICQ :S 0.5 means dependent
discoloration.

7) Scatter Matrix for two channels:: The scatter matrix
8 (l2, l2), or also called scatter gram, is a very important tool
that maps the intensity content of the two channels into a
single matrix [7] [10]. In order to construct 8(l2, l2) we
must take the intensity values of G (n1 , n2) and R(n1 , n2)
as coordinates in 8 (l2, l2)' A not trivial way to represent
this could be

A. Principal Component Analysis / KLT

Principal Component Analysis, PCA, is a very widely
used technique for dimensionality reduction. The objective
of PCA is to transform the representation space f E F into
a new space x E X, in which the data is decorrelated. The
covariance matrix in this space is diagonal. The PCA method
leads to find the new set of orthogonal axis to maximize the
variance of the data.

The final objective for our problem is to decorrelate the
data and normalize it. It is not out objective the dimension­
ality reduction of the problem.

The KLT is analog to PCA, however in the KLT the input
vectors f are normalized to the interval [0,1] before applying
the PCA steps.

Using the PCA we have reduced the dimensionality of
the data by keeping two and three dimensions only, from
the original fourteen dimensions. We want to point that the
clustering is non-trivial in this problem. Such dimensionality
reduction is presented here for visualization purposes only.
In Fig. 3 a) are shown the two principal components, and in
Fig. 3 b) are the three principal components (corresponding
to the tree largest eigenvectors). Even though the data is not
correlated, no clusters or classes are trivially visible using the
PCA approach for two and three dimensions, thus, in the next
section, a powerful method to find clusters is approached:
SaM.

As we mentioned, the use of PCA in dimensionality
reduction was aimed to visually show the lack of clusters.
In practice for this project the PCA/KLT approach will

f == [C1 C2 WC1 WC2 M 1 M 2 Tp ... (15)

OC T1 T2 m.; m2 CoAn ICQ]T

where f is a column vector and T denotes the transposition
operator.

In this section we address the problem of the data clusters
interpretation of the vectors f by First, finding the sub­
space where the data is decorrelated using the Karhunen­
Loeve Transformation (KLT), which is analog to finding
the principal components. Also we utilize the SaM neural
network to find clusters in the data. Finally from the clusters
found with the SOM network, we analyze the liability and
discriminant capabilities between the data clusters through
Fisher's criterion.

(13)leQ = (f) - 0.5,

Name Variables Range Ref.
ROI Coloe. Coeff. CI,C2 [0 1] [6]

Weighted Coloe. C. wCI, WC2 lO 1J [6]
Mander's Coloe. C. - ROI M I,M2 [0 1] [5]

Pearson's Carr. C. Tp [-11] [11]-[13]
Overlap C. (Mult. Meth.) oc [0 1] [7]-[9]
Frae. Coloe. Reg. (0. C.) TI,T2 vary [7]-[9]

Mander's Coloe. C. - Gen. ml,m2 [0 1] [7]-[9]
Intensity Carr. Anal. CoAn vary [9]
Intensity Carr. Quat. ICQ [-0.5 0.5] [9]
Scatter Diag./Matrix S(nl, n2) vary [7],[13]

C. Summary

All the features previously mentioned can characterize the
degree of colocalization and provide unique information to
the performer of the colocalization study. The content of
Table I summarizes the features.

TABLE I

SUMMARY OF THE FEATURES FOR QUANTITATIVE COLOCALIZATION
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peA·2 largest eigenvectors. Yeast database with M33LM

be used keeping all its eigenvectors and eigenvalues. No
dimensionality reduction will be performed.

(18)

where E [.] denotes the expected value, x E X is the input
vector given by the problem, Wj are the synaptic weights
at coordinates (k 1 , k2 ) , 'Pcj (t) is a neighborhood function,
having the neuron map c, and c (Cl , C2) as the coordinate of
the winning neuron, while M corresponds to the number
of the winning neuron. The neighborhood function is a
Gaussian defined as

where de is the location of the winning neuron , dj is the
location of the jth neuron, and (J (t) is the variance of the
neighboring neurons at time t. The variance will be decreas­
ing as time increases in order to control the neighborhood
size among neurons at a given time t.

The expected value E [fi (x)] is similar to the k-means
algorithm in the sense that, if we remove the neighboring
function 'Pcj (t) then, the remaining equations are similar to
the mathematical formulation of the k-means algorithm [16].
Thus, the SOM can be also defined as a setting M number of
cluster center (according to M neurons) and organizing them
in a SOM lattice array. Then, using min (E [f; (x)]), these
clusters are being updated until a stop criterion is reached.
The formation of M micro-clusters will be merged with M
clusters to gain the final result.

To perform the SOM analysis, we start by extracting a
feature vector according to Equation (15). For the yeast
data base a total of 547 training vectors are obtained. As
described in the previous subsection, the feature vectors are
processed using the PCA/KLT approach. This will allow us
to have uncorrelated data . The dimensionality is kept as in
the original problem. In addition, the data is normalized to
have a dynamic range in the [0 1] interval. We found that
the resulting reference vectors had similar dynamic ranges.
This represented an advantage since the numerical accuracy
was improved in all of our experiments.

From our past successful implementations on SOM [15]
and from numerous applications in the literature, we know
that an appropriate size of the SOM map is ten times the
size of the feature vector. Therefore in our case , since we
have fourteen features, the size of the map should be 140.
For convenience, a map of size [12 x 12] was chosen (since
[11 x 11] = 121, and would be under the recommended size).
To initialize the weights of the SOM we used the well known
approach that suggests to initialize the weights {Wj (O)}J: l

from the available set of feature vectors {Xi (0)};':1 in a
random manner. The advantage of this approach is that the
initial map will be in the range of the final map .

The implementation of our cluster analysis method is
summarized in Fig. 4. In this algorithm the microscopic
images have to go through a restoration process to remove
distortions introduced by the acquisition process. In this
case, we use the M33LM algorithm proposed by the authors
in [17].

Fig. 5 shows the hexagonal topology created in this prob­
lem and the corresponding connections with the neighboring

(16)

(17)
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IV. S ELF ORGANIZING MAPS C LUS TERING

It is well known that the Self Organizing Maps (SOM)
architecture is constructed by a competitive non-supervised
algorithm [15]. Kohonen 's algorithm tries to approximate
each neuron to the input pattern and at the end of each
iteration, the closest neuron to the input pattern is the winner.
The weights of the network are adjusted to all the neuron's
neighborhood commonly using a Gaussian function.

The basic Kohonen algorithm is defined as

·6

·7

·4

·3

·8

'J.N -5

·2

.,

Fig, 3. In a) is a plot of the 2 largest eigenvectors using PCA for feature
analysis. A plot of the 3 largest eigenvectors using PCA for feature analysis
is shown in b).
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Fig. 7. Hits Plot, shows where the neurons match exactly the input pattern .
As desired , neurons are hitting fairly and evenly across the map. The
netwo rk has good generalization since only few neurons fit exactly the input
pattern .

Fig. 6. The distance between the weights in the SaM. Blue hexagons
represent the neurons ; red lines connect neighboring neurons ; colors in the
regions containing the red lines indicate the distances between neurons. The
darker colors represent larger distances. The lighter colors represent smaller
distances. A group of light segments appear in the lowcr-Ieft region, and at
the top-right there is other group shown as darker segments. This group ing
indicates that the network has clustered the data into two groups (classes).

1210864

SOM Neighlior Weight Distances

2o

SOM Neighbor Connections

Fig. 5. The neighbor neurons and its corresponding connections in the
SaM.

Fig. 4. Algorithm to perform c1ustcr discovery. A summary of the main
steps,

The quality of the clusters generated by the SOM can be
assessed by the Fisher Ratio. The Fisher's criterion computes
the separation between classes and the inner reliability of
the classes at the same time. A feature should be more
discriminative when the Fisher's ratio is higher. Good

Algorithm DISCOVER CLUSTERS

Step 1. Perform image restoration in the images using the
M33LM algorithm.

Step 2. Construct the feature vector from the restored images,
in the form of Equation 18 using the coefficients in
Table I.

Step 3. Perform PCA/KLT and project the data using the
transformation matrix given by PCA/KLT .

Step 4. ConstructaSOMofsizeof[12 x 12] .
Step 5. Select the Hexagonal topology for the map.
Step 6. Train the SOM network with the 547 feature vectors.
Step 7. Compute Fisher Criterion.

neurons. As the training is performed, the weighted connec­
tions between neurons (synapses) change approximating the
input pattern. In Fig. 6 are shown the synapses after training
was finished; as can be seen there is a strong separation
of the neurons indicated by darker colors confirming the
presence two classes. Another useful figure that tells us how
many features are associated exactly with each neuron (hits)
is presented in Fig. 7. It is best if the hits are fairly and
evenly distributed across the neurons. In this case, the data
is concentrated a little more in the lower-left neurons, but
overall the distribution is fairly few and even [18]. The fact
that only a few neurons are exactly hitting the input pattern,
it is very good, since it is a signal of the good generalization
capabilities of the network.
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v. CONCLUSIONS

TABLE II

FISHER RATIO RESULTS.

features must have high class mean values as well as high
reliability [19]. The generalized Fisher ratio is given by
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where

is the mean of all the means. At this point, we know how
many classes are because of the use of the SOM. There are
two classes distributed in the hyperplane. Therefore, from the
labeled data we can quantify the decorrelation of the data.
After the implementation, we have concluded that the two
classes found by the SOM, are well defined, reliable and
discriminant to each other according to the results shown in
Table II.

Sum of Fisher Ratio
Mean Fisher Ratio

We have presented 14 coefficients that exist in the lit­
erature for colocalization analysis through fluorescence mi­
croscopy. Most of the coefficients assume images with zero
background. We used our algorithm M33LM [17] for image
restoration, before feature extraction.

After the features were extracted with the restored images,
a feature vector analysis was performed in order to verify the
structure and discriminant properties of the data. We have
implemented the PCA/KLT to decorrelate the data in the
hyperplane. Then, we presented an application of the SOM
for non-trivial class discovery. After feature vector projec­
tion into the KLT domain, a SOM network was constructed
with a map size of 12 x 12 and a hexagonal topology. As a
result, two classes were found.

The significance of this paper relies on the fact that an
automatic classification method can be derived from this
work. Moreover, to the best of our knowledge this is the
first approach to solve the colocalization problem from an
objective machine learning point of view. Furthermore,
subjectivity in the classification can be minimized with this
approach. The SOM provided with two group of neurons
that represent two patterns in the feature induced hyperplane:
colocalization and no-colocalization.

The development of such a classifier that provides mean­
ingful results to researchers in Biological Sciences is the
subject of our current work.
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